EP0212473B1 - Druckgesteuertes Wärmerohr - Google Patents

Druckgesteuertes Wärmerohr Download PDF

Info

Publication number
EP0212473B1
EP0212473B1 EP86110933A EP86110933A EP0212473B1 EP 0212473 B1 EP0212473 B1 EP 0212473B1 EP 86110933 A EP86110933 A EP 86110933A EP 86110933 A EP86110933 A EP 86110933A EP 0212473 B1 EP0212473 B1 EP 0212473B1
Authority
EP
European Patent Office
Prior art keywords
heat pipe
heat
displacement body
cooling zone
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86110933A
Other languages
English (en)
French (fr)
Other versions
EP0212473A3 (en
EP0212473A2 (de
Inventor
Carlo Bassani
Claus A.O. Busse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
European Atomic Energy Community Euratom
Original Assignee
European Atomic Energy Community Euratom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Atomic Energy Community Euratom filed Critical European Atomic Energy Community Euratom
Publication of EP0212473A2 publication Critical patent/EP0212473A2/de
Publication of EP0212473A3 publication Critical patent/EP0212473A3/de
Application granted granted Critical
Publication of EP0212473B1 publication Critical patent/EP0212473B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/132Heat exchange with adjustor for heat flow
    • Y10S165/133Conduction rate

Definitions

  • the invention relates to a pressure-controlled heat pipe, consisting of a closed vessel containing a heat transfer medium with a heat source at which the heat transfer medium evaporates, and a vertically arranged heat sink in the form of a cooling zone, a non-condensable inert gas at a controllable pressure in at the upper end of the cooling zone the vessel can be fed.
  • Pressure controlled heat pipes are e.g. known from the journal "Heat and mass transfer", Volume 19, 1985, pages 67 to 71.
  • the temperature of such heat pipes is influenced by the size of an inert gas plug in the cooling zone. If you want to raise the temperature of the heating furnace, you increase the inert gas pressure, which reduces the cooled area of the cooling zone that can be reached by the heat transfer medium.
  • the object of the invention is to improve a heat pipe of the type mentioned in such a way that solid deposits can no longer occur in the cooling zone, even if the inert gas pressure is changed quickly for control purposes.
  • This object is achieved in that from the upper end of the cooling zone along the central region of this zone, a good heat-conducting displacement body protrudes downwards and that this displacement body carries at least in its upper part baffles which separate the space between the cooled wall and the displacement body Divide a variety of interconnected volumes.
  • the baffles are preferably designed as spiral ribs.
  • spiral ribs serve on the one hand to extend the path, the condensate droplets have to take on their way up, so that they no longer come to the coldest area of the cooling wall, and on the other hand to the convection flow of the inert gas in the axial area of the To hinder the cooling zone.
  • the displacement body contributes to achieving the object on which the invention is based by firstly occupying the axial region of the cooling zone and thus deflecting condensate droplets early towards the cooled wall, and secondly by opening the axial region of the cooling zone above the steam zone maintains a high temperature at which solid deposits are not possible.
  • Heat pipes with displacement bodies in the condensation zone are known per se, e.g. from "Proceedings Part II, 5th International Heat Pipe Conference, Tsukuba Science City, May 14-18, 1984, page 47.
  • the spiral ribs are preferably inclined outward in a roof shape, so that condensate can flow outward by gravity in the direction of the chimney wall.
  • spiral ribs are designed as a single-start screw. It would also be possible, for example, to interrupt the rib structure and to form at least two single-start screws lying one behind the other, one of which could be, for example, right-handed and the other left-handed, or one of which has a larger screw thread than the other.
  • the heat pipe furnace shown in Fig. 1 consists of a double-walled horizontal heat pipe 1 which coaxially surrounds a furnace channel 2.
  • a heat transfer medium e.g. Water, cesium or sodium
  • the heat source 3 is formed, for example, by a resistance heater which is inserted into an insulation 5 surrounding the heat pipe 1 and which heats the heat pipe 1 from the outside.
  • the heat sink 4 is formed by a chimney which is connected to the heat pipe 1 and protrudes vertically upwards from the insulation 5.
  • the outer wall of the chimney is cooled in the upper area, for example with the aid of water cooling 6.
  • a helium line through which the uppermost chimney area can be provided with an inert gas plug 8.
  • the boundary layer 9 between the vaporous heat transfer medium in the heat pipe 1 and the inert gas plug 8 can be displaced vertically, so that a more or less large area of the cooled wall is available as a heat sink 4 for the heat transfer medium.
  • the helium is fed in by a control circuit, not shown, which orients the temperature in the furnace 2 at a target temperature.
  • Fig. 2 shows an enlarged view of the upper end of the chimney with the water cooling 6 and the boundary layer 9 between the inert gas plug 8 and the steam of the heat transfer medium.
  • a displacement body 11 which consists of a highly thermally conductive metal, projects axially into this chimney from above through the cover 7.
  • the displacement body 11 extends below the minimum level of the boundary layer 9, so that its tip is always immersed in the vaporous heat transfer medium.
  • the upper half of this displacer 11 carries spiral ribs 12 which extend almost to the wall of the chimney provided with capillary grooves 13.
  • the displacement body 11 according to the invention deflects the droplets laterally and reduces convection effects, since the steam particles are forced outward from the axial area towards the cooled chimney wall at an early stage.
  • the displacer 11 the lower end of which is immersed in the hot steam of the heat transfer medium, keeps the spiral ribs 12 at a high temperature with respect to the wall, so that there is no fear of solid deposits which could render the furnace 2 unusable.
  • the displacement body 11 also brings safety advantages in the event of an accident in which the helium feed line 14 breaks. In this case, the then rising steam flow of the heat transfer medium must pass through the entire spirals 12 before it can exit through the broken helium line 14.
  • the displacement body 11 thus acts as a condensation trap and prevents the heat transfer medium from escaping.
  • the heat pipe can also have a shape other than that of a double-walled coaxial pipe.
  • the heat pipe does not need to be horizontal, but can also be inclined or vertical. While it is important in a horizontal heat pipe assembly that all inner walls are provided with capillary structures so that all walls are always wetted with liquid heat transfer medium, with vertical assembly the wetting could also be done by gravity alone without capillary structures.
  • the chimney could also be placed at an angle on the heat pipe if only it was ensured that it was higher than the latter.
  • spiral ribs 12 could be replaced by internally shaped internals, e.g. through pagoda-like deflector plates, which act as chicanes for the steam flow and also divide the annular space between the displacement body and the cooled wall into numerous interconnected partial volumes.
  • internally shaped internals e.g. through pagoda-like deflector plates, which act as chicanes for the steam flow and also divide the annular space between the displacement body and the cooled wall into numerous interconnected partial volumes.
  • the spiral screw can also be designed as a multi-start screw, which can have a greater pitch than a single-start screw, without the individual partial volumes being increased thereby.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Pipeline Systems (AREA)

Description

  • Die Erfindung bezieht sich auf ein druckgesteuertes Wärmerohr, bestehend aus einem ein Wärmeträgermedium enthaltenden geschlossenen Gefäß mit einer Wärmequelle, an der das Wärmeträgermedium verdampft, und einer senkrecht angeordneten Wärmesenke in Form einer Kühlzone, wobei am oberen Ende der Kühlzone ein nichtkondensierbares Inertgas unter regelbarem Druck in das Gefäß einspeisbar ist.
  • Druckgesteuerte Wärmerohre sind z.B. aus der Zeitschrift "Wärme- und Stoffübertragung", Band 19, 1985, Seiten 67 bis 71 bekannt. Die Temperatur solcher Wärmerohre wird durch die Größe eines Inertgasstopfens in der Kühlzone beeinflußt. Will man die Temperatur des Wärmeofens anheben, dann steigert man den Inertgasdruck, wodurch die vom Wärmeträgermedium erreichbare gekühlte Fläche der Kühlzone verringert wird.
  • Besonders bei niedrigen Betriebsdrücken hat sich gezeigt, daß sich an der Grenzfläche zwischen dem dampfförmigen Wärmeträgermedium und dem Inertgas in der Kühlzone eine Nebelzone ausbildet und daß Dampftröpfchen weit in den Bereich des Inertgasstopfens nach oben gerissen werden. Es kann dann passieren, daß der Dampf an der wesentlich kühleren Wand im Bereich des Inertgasstopfens nicht nur kondensiert, sondern sogar als fester Stoff abgelagert wird. Dieser Effekt wird noch verstärkt durch die natürliche Konvektion des Edelgases, das im Axialbereich der Kühlzone aufsteigt und im kühleren Wandbereich wieder nach unten fällt.
  • Besonders groß ist diese Gefahr während eines Regelübergangs des Wärmerohrs auf niedrigere Temperatur, da dann ein Teil des Inertgases abgezogen wird.
  • Aufgabe der Erfindung ist es, ein Wärmerohr der eingangs genannten Art so zu verbessern, daß Feststoffablagerungen in der Kühlzone nicht mehr auftreten können, und zwar selbst dann nicht, wenn der Inertgasdruck zu Regelzwecken rasch geändert wird.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß vom oberen Ende der Kühlzone entlang des zentralen Bereichs dieser Zone ein gut wärmeleitender Verdrängungskörper nach unten ragt und daß dieser Verdrängungskörper zumindest in seinem oberen Teil Ablenkbleche trägt, die den Zwischenraum zwischen der gekühlten Wand und dem Verdrängungskörper in eine Vielzahl von miteinander in Verbindung stehenden Volumen unterteilen. Vorzugsweise sind die Ablenkbleche als Spiralrippen ausgebildet.
  • Die Spiralrippen dienen zum einen dazu, den Weg zu verlängern, den Kondensattröpfchen auf ihrem Weg nach oben nehmen müssen, so daß sie gar nicht mehr bis in den kältesten Bereich der Kühlwand kommen, und zum anderen dazu, die Konvektionsströmung des Inertgases im axialen Bereich der Kühlzone zu behindern.
  • Der Verdrängungskörper trägt zur Lösung der der Erfindung zugrundeliegenden Aufgabe dadurch bei, daß er zum einen den Axialbereich der Kühlzone besetzt und damit Kondensattröpfchen frühzeitig in Richtung auf die gekühlte Wand ablenkt, und zum anderen dadurch, daß er den axialen Bereich der Kühlzone oberhalb der Dampfzone auf einer hohen Temperatur hält, bei der Feststoffablagerungen nicht möglich sind.
  • Wärmerohre mit Verdrängungskörpern in der Kondensationszone sind an sich bekannt, z.B. aus "Proceedings Part II, 5th International Heat Pipe Conference, Tsukuba Science City, 14.-18. Mai 1984, Seite 47.
  • Vorzugsweise sind die Spiralrippen dachförmig nach außen geneigt, so daß Kondensat durch Schwerkraft nach außen in Richtung auf die Kaminwand abfließen kann.
  • Es ist nicht notwendig, aber aus fertigungstechnischen Gründen sinnvoll, daß die Spiralrippen als eingängige Schraube ausgebildet sind. Möglich wäre es beispielsweise auch, die Rippenstruktur zu unterbrechen und mindestens zwei hintereinanderliegende eingängige Schrauben auszubilden, von denen die eine beispielsweise rechtsgängig und die andere linksgängig sein könnte oder von denen die eine einen größeren Schraubengang als die andere besitzt.
  • Nachfolgend wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels mithilfe zweier Figuren näher erläutert.
    • Fig. 1 zeigt im Querschnitt einen Wärmerohrofen mit einem erfindungsgemäßen druckgesteuerten Wärmerohr.
    • Fig. 2 zeigt in vergrößertem Maßstab ein Detail aus Fig. 1.
  • Der in Fig. 1 dargestellte Wärmerohrofen besteht aus einem doppelwandigen horizontalen Wärmerohr 1, das einen Ofenkanal 2 koaxial umgibt. Im Bereich zwischen den beiden Wänden des Wärmerohrs 1 befindet sich ein Wärmeträgermedium, z.B. Wasser, Caesium oder Natrium, das an einer Wärmequelle 3 verdampft und an einer Wärmesenke 4 kondensiert. Die Wärmequelle 3 wird beispielsweise von einer Widerstandsheizung gebildet, die in eine das Wärmerohr 1 umgebende Isolierung 5 eingefügt ist und das Wärmerohr 1 von außen aufheizt. Die Wärmesenke 4 wird von einem Kamin gebildet, der an das Wärmerohr 1 angeschlossen ist und senkrecht nach oben aus der Isolierung 5 herausragt. Die Au- ßenwand des Kamins ist im oberen Bereich gekühlt, beispielsweise mithilfe einer Wasserkühlung 6. An einem Deckel 7 des Kamins mündet eine Inertgasleitung 14, z.B. eine Heliumleitung, durch die der oberste Kaminbereich mit einem Inertgasstopfen 8 versehen werden kann. Durch geeignete Wahl des Heliumdrucks kann die Grenzschicht 9 zwischen dem dampfförmigen Wärmeträgermedium in dem Wärmerohr 1 und dem Inertgasstopfen 8 vertikal verschoben werden, so daß ein mehr oder minder großer Bereich der gekühlten Wand als Wärmesenke 4 für das Wärmeträgermedium verfügbar ist. Die Heliumeinspeisung erfolgt durch einen nicht dargestellten Regelkreis, der die Temperatur im Ofen 2 an einer Solltemperatur orientiert.
  • Fig. 2 zeigt vergrößert das obere Ende des Kamins mit der Wasserkühlung 6 und der Grenzschicht 9 zwischen dem Inertgasstopfen 8 und dem Dampf des Wärmeträgermediums. In diesen Kamin ragt axial von oben durch den Deckel 7 gehalten ein Verdrängungskörper 11 hinein, der aus einem gut wärmeleitfähigen Metall besteht. Der Verdrängungskörper 11 reicht bis unterhalb des Mindestniveaus der Grenzschicht 9, so daß seine Spitze stets in das dampfförmige Wärmeträgermedium eintaucht. Die obere Hälfte dieses Verdrängungskörpers 11 trägt Spiralrippen 12, die fast bis an die mit Kapillarrillen 13 versehene Wand des Kamins reichen.
  • Der erfindungsgemäße Verdrängungskörper 11 lenkt die Tröpfchen seitlich ab und verringert Konvektionseffekte, da die Dampfpartikel frühzeitig aus dem axialen Bereich nach außen in Richtung auf die gekühlte Kaminwand gedrängt werden. Zugleich hält der Verdrängungskörper 11, dessen unteres Ende in den heißen Dampf des Wärmeträgermediums eintaucht, die Spiralrippen 12 auf einer gegenüber der Wand hohen Temperatur, so daß dort keine Feststoffablagerungen zu befürchten sind, die den Ofen 2 unbrauchbar machen könnten. Diese Einflüsse des erfindungsgemäßen Verdrängungskörpers 11 fördern also die Stabilität unter Normalbedingungen.
  • Bei gewünschten Änderungen des Betriebszustands, insbesondere bei einer Absenkung der Ofentemperatur durch Verkleinerung des Inertgasstopfens 8 wird ebenfalls die Gefahr von bis in die oberen Bereiche des Kamins vordringenden Kondensattröpfchen beseitigt, während ohne den erfindungsgemäßen Verdrängungskörper 11 in diesem Fall sogar in die Heliumleitung 14 Kondensattröpfchen eindringen können.
  • Schließlich bringt der erfindungsgemäße Verdrängungskörper 11 auch Sicherheitsvorteile bei einem Unfall, bei dem die Heliumzuleitung 14 bricht. In diesem Fall muß der dann aufsteigende Dampfstrom des Wärmeträgermediums die ganzen Spiralen 12 durchlaufen, ehe er durch die gebrochene Heliumleitung 14 austreten kann. Hier wirkt der Verdrängungskörper 11 somit als Kondensationsfalle und verhindert ein Austreten des Wärmeträgermediums.
  • Das Wärmerohr kann auch eine andere Form als die eines doppelwandigen koaxialen Rohrs besitzen. Das Wärmerohr braucht nicht waagerecht zu liegen, sondern kann auch geneigt sein oder senkrecht stehen. Während bei einer waagerechten Wärmerohrmontage wichtig ist, daß alle Innenwände mit Kapillarstrukturen versehen sind, damit alle Wände stets mit flüssigem Wärmeträgermedium benetzt sind, könnte bei einer Senkrechtmontage die Benetzung auch ohne Kapillarstrukturen alleine durch die Schwerkraft erfolgen. Der Kamin könnte auch schräg auf dem Wärmerohr aufgesetzt werden, wenn nur dafür gesorgt wird, daß er höher als letzteres liegt.
  • Die Spiralrippen 12 könnten durch anders geformte Einbauten ersetzt werden, z.B. durch pagoden- ähnliche Abweisbleche, die als Schikanen für die Dampfströmung wirken und ebenfalls den Ringraum zwischen dem Verdrängungskörper und der gekühlten Wand in zahlreiche miteinander in Verbindung stehende Teilvolumen unterteilen.
  • Je nach den zulässigen Druckverlusten entlang der Kühlzone kann man die Spiralschraube auch als mehrgängige Schraube ausbilden, die eine größere Steigung als eine eingängige Schraube haben kann, ohne daß die einzelnen Teilvolumen dadurch vergrößert würden.

Claims (3)

1. Druckgesteuertes Wärmerohr, bestehend aus einem ein Wärmeträgermedium enthaltenden geschlossenen Gefäß mit einer Wärmequelle, an der das Wärmeträgermedium verdampft, und einer senkrecht angeordneten Wärmesenke in Form einer Kühlzone, wobei am oberen Ende der Kühlzone ein nichtkondensierbares Inertgas unter regelbarem Druck in das Gefäß einspeisbar ist, dadurch gekennzeichnet, daß vom oberen Ende der Kühlzone aus entlang des zentralen Bereichs dieser Zone ein gut wärmeleitender Verdrängungskörper (11) nach unten ragt, und daß dieser Verdrängungskörper (11) zumindest in seinem oberen Teil Ablenkbleche (12) trägt, die den Zwischenraum zwischen dem Verdrängungskörper (11) und der gekühlten Wand dieser Zone in eine Vielzahl von miteinander in Verbindung stehenden Volumen unterteilt.
2. Wärmerohr nach Anspruch 1, dadurch gekennzeichnet, daß die Ablenkbleche als Spiralrippen (12) ausgebildet sind, die bis in die Nähe der gekühlten Wand reichen.
3. Wärmerohr nach Anspruch 2, dadurch gekennzeichnet, daß die Spiralrippen (12) dachförmig nach außen geneigt sind.
EP86110933A 1985-08-19 1986-08-07 Druckgesteuertes Wärmerohr Expired EP0212473B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
LU86046 1985-08-19
LU86046A LU86046A1 (de) 1985-08-19 1985-08-19 Druckgesteuertes waermerohr

Publications (3)

Publication Number Publication Date
EP0212473A2 EP0212473A2 (de) 1987-03-04
EP0212473A3 EP0212473A3 (en) 1987-07-29
EP0212473B1 true EP0212473B1 (de) 1989-05-24

Family

ID=19730533

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86110933A Expired EP0212473B1 (de) 1985-08-19 1986-08-07 Druckgesteuertes Wärmerohr

Country Status (9)

Country Link
US (1) US4674562A (de)
EP (1) EP0212473B1 (de)
JP (1) JPH0686991B2 (de)
CA (1) CA1267406A (de)
DE (1) DE3663587D1 (de)
DK (1) DK160963C (de)
IE (1) IE57284B1 (de)
LU (1) LU86046A1 (de)
PT (1) PT83193B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008021975A1 (de) 2008-05-02 2009-11-05 Bayerische Motoren Werke Aktiengesellschaft Druckgesteuertes Wärmerohr

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2642156B1 (fr) * 1989-01-20 1994-05-20 Bertin Et Cie Procede et dispositif de regulation rapide d'une temperature de paroi
US4917178A (en) * 1989-05-18 1990-04-17 Grumman Aerospace Corporation Heat pipe for reclaiming vaporized metal
GB2315324A (en) * 1996-07-16 1998-01-28 Alan Brown Thermo-syphons
US7497136B2 (en) * 2006-12-13 2009-03-03 Espec Corp. Environmental test apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU57482A1 (de) * 1968-12-05 1970-06-09
US3934643A (en) * 1971-07-26 1976-01-27 Nikolaus Laing Controllable heat pipe
NL7206063A (nl) * 1972-05-04 1973-11-06 N.V. Philips Gloeilampenfabrieken Verwarmingsinrichting
LU72213A1 (de) * 1975-04-04 1977-02-01
SU838058A1 (ru) * 1979-07-23 1981-06-15 Московское Научно-Производственноеобъединение По Механизированномустроительному Инструменту И Отделоч-Ным Машинам (Объединение Вниисми) Штукатурна форсунка
SU929986A1 (ru) * 1980-07-14 1982-05-23 Предприятие П/Я В-2679 Теплова труба
SU1017900A1 (ru) * 1981-09-23 1983-05-15 Semena Mikhail G Регулируема теплова труба
GB2117104A (en) * 1982-03-11 1983-10-05 Mahdjuri Sabet Faramarz Heat pipe for collecting solar radiation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008021975A1 (de) 2008-05-02 2009-11-05 Bayerische Motoren Werke Aktiengesellschaft Druckgesteuertes Wärmerohr

Also Published As

Publication number Publication date
JPH0686991B2 (ja) 1994-11-02
LU86046A1 (de) 1986-09-11
DE3663587D1 (en) 1989-06-29
US4674562A (en) 1987-06-23
DK385886D0 (da) 1986-08-13
CA1267406A (en) 1990-04-03
JPS6298191A (ja) 1987-05-07
IE57284B1 (en) 1992-07-01
DK385886A (da) 1987-02-20
DK160963B (da) 1991-05-06
EP0212473A3 (en) 1987-07-29
PT83193B (pt) 1992-10-30
DK160963C (da) 1991-11-04
PT83193A (en) 1986-09-01
EP0212473A2 (de) 1987-03-04
IE862076L (en) 1987-02-19

Similar Documents

Publication Publication Date Title
DE7614361U1 (de) Elektrischer transformator
DE2450847A1 (de) Wasserheizer
EP0212473B1 (de) Druckgesteuertes Wärmerohr
EP0031153B1 (de) Wärmespeicheranlage zum Einspeichern von Sonnen- oder Abwärme in mehrere Speichertanks
DE3639760C2 (de)
DE4431185A1 (de) Durchlaufdampferzeuger
DE3203289C2 (de)
EP0173173A2 (de) Wärmetauscher
DE3044079C2 (de) Warmwasserspeicher
DE19703724C2 (de) Druckloser Warmwasser-Speicher aus Kunststoff für die Solar-Wärmetechnik
DE2428893A1 (de) Heizvorrichtung zum behandeln von synthetischen fasern oder dergleichen mit heizdampf
EP0017101B1 (de) Wärmeaustauscher, insbesondere für Wärmepumpenanlagen
DE2903250C2 (de) Kessel zum Erhitzen und Speichern von Wasser
AT408909B (de) Wärmespeicher für eine warmwasserheizung und zur aufbereitung von hygienewarmwasser
DE7902340U1 (de) Kessel zur speicherung und erzeugung von erhitztem wasser
AT205988B (de) Haubenglühofen
DE2539151C3 (de) Anlage zur Herstellung von Brucheis
DE2047536C3 (de) Einrichtung im Kochersystem eines mit inertem Gas arbeitenden Absorptionskälteapparats
DE907923C (de) Schlackenfangrost fuer Schmelzkammerfeuerungen von Wasserrohrkesseln
DE2947807C2 (de) Wärmetauscher in Kältemittelkreisläufen
AT150975B (de) Elektrischer Schachtofen.
DE1589714C (de) Siedekühl-Vorrichtung zur Kühlung von Entladungsröhren
DE1679764B2 (de) Elektrischer heisswasserspeicher
AT159261B (de) Metalldampfstromrichter mit aus Metall bestehenden Anodenarmen.
DE4116383A1 (de) Gliederheizkessel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI NL

17P Request for examination filed

Effective date: 19871230

17Q First examination report despatched

Effective date: 19880620

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

REF Corresponds to:

Ref document number: 3663587

Country of ref document: DE

Date of ref document: 19890629

ITF It: translation for a ep patent filed
ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960618

Year of fee payment: 11

Ref country code: FR

Payment date: 19960618

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960715

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960724

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960831

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960924

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970831

BERE Be: lapsed

Owner name: EUROPAISCHE ATOMGEMEINSCHAFT EURATOM

Effective date: 19970831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970807

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050807