EP0209771A1 - Verfahren und Anordnung zur Feinregulierung des Brennstoffmengenstromes an brennerbetriebenen Feuerungsanlagen durch Messung des Restsauerstoffes und des Kohlenmonoxidgehaltes in den Abgasen - Google Patents

Verfahren und Anordnung zur Feinregulierung des Brennstoffmengenstromes an brennerbetriebenen Feuerungsanlagen durch Messung des Restsauerstoffes und des Kohlenmonoxidgehaltes in den Abgasen Download PDF

Info

Publication number
EP0209771A1
EP0209771A1 EP86109152A EP86109152A EP0209771A1 EP 0209771 A1 EP0209771 A1 EP 0209771A1 EP 86109152 A EP86109152 A EP 86109152A EP 86109152 A EP86109152 A EP 86109152A EP 0209771 A1 EP0209771 A1 EP 0209771A1
Authority
EP
European Patent Office
Prior art keywords
burner
microprocessor
value
fine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP86109152A
Other languages
English (en)
French (fr)
Inventor
Michael Schall
Jürgen Dittrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bieler and Lang GmbH
Original Assignee
Bieler and Lang GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bieler and Lang GmbH filed Critical Bieler and Lang GmbH
Publication of EP0209771A1 publication Critical patent/EP0209771A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/48Learning / Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2227/00Ignition or checking
    • F23N2227/20Calibrating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/10Fail safe for component failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2231/00Fail safe
    • F23N2231/20Warning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/06Air or combustion gas valves or dampers at the air intake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/02Air or combustion gas valves or dampers
    • F23N2235/10Air or combustion gas valves or dampers power assisted, e.g. using electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/16Fuel valves variable flow or proportional valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/18Groups of two or more valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/24Controlling height of burner
    • F23N2237/26Controlling height of burner oxygen-air ratio

Definitions

  • the invention relates to a method and an arrangement for fine regulation of the fuel flow rate by means of a fine regulator in burner-operated combustion plants for fossil fuels, in particular in a fuel regulator as a shunt line next to the main regulator, by measuring the residual oxygen content of the exhaust gases Exhaust gas containing CO is used.
  • the actuator works as an independent main air flow follower depending on the residual oxygen.
  • the position of the main fuel flow controller influences the above-mentioned run-on only through the burnout or the resulting lack of air or excess air.
  • DE-OS 34 35 902 describes a control system for the automatic control of the excess air or oxygen during combustion of flowing fuels.
  • the fuel is controlled with a control valve and an adjusting device.
  • the combustion air is also regulated by an air flap which is actuated by an actuating device. Both variables are controlled via a special control system with a control device which is connected to the two actuating devices via a line.
  • the setpoint value of the fuel: air ratio is set by an auxiliary control system in accordance with the development of unburned fuel during combustion. This is to ensure that the combustion is carried out with the smallest possible excess of air or oxygen and at the same time the formation of noteworthy unburned gas components, such as carbon monoxide and hydrocarbons, is excluded.
  • the present invention has for its object to provide a method of the type mentioned that enables the problem-free control of a residual oxygen-guided fine flow controller in order to enable a minimal pollutant effect with the best thermal utilization.
  • the microprocessor of the fine control should automatically enable the fine control of the fuel flow after a completed training program that is specific to each system.
  • a method of the type mentioned is specified, which is characterized in that by means of a microprocessor connected to the fine controller by a software routine and by means of a CO monitor with a corresponding interface to a respective burner mixing head and to a respective one set burn-out air volume, real carbon monoxide concentration (ppm) is read in, the microprocessor undergoing a learning phase when the burner is started for the first time, in such a way that when it is started for the first time using a CO measuring device, the CO value and an O2 measuring probe the O2 value is measured continuously and the initially controlled quantity fine flow controller is raised step by step until the CO content increases sharply, the associated O2 value being stored in the RAM memory of the microprocessor, whereupon the next load level is defined by a defined setting of the fuel Main air regulator nec is selected and the microprocessor now takes up the next step by repeating the above steps until the complete recording and storage of the burnout characteristic curve typical for the burner is stored in the RAM memory of the microprocessor.
  • ppm real carbon monoxid
  • Another advantage of the solution according to the invention consists in the resolution of the combustion performance-dependent burnout characteristic of a system under consideration that can be used with any number of calibration points.
  • the invention further relates to an arrangement for performing the method according to the invention, which is characterized by a servomotor-driven fine flow controller, which is arranged in a shunt circuit of the fuel supply of the burner and is controlled by a microprocessor, which with an O2 probe and with a transmitter element for each driven load level is connected.
  • a servomotor-driven fine flow controller which is arranged in a shunt circuit of the fuel supply of the burner and is controlled by a microprocessor, which with an O2 probe and with a transmitter element for each driven load level is connected.
  • the microprocessor computing unit essentially consists of a CPU logic including A / D converter and D / A converter, the task of which is to use a bidirectional bus system and associated I / O port from the C0 measuring device connected during the learning process, The festival Process connected O2 probe electronics and the load stage transmitter data so that a defined reference variable is created as a manipulated variable for the volume fine-current controller, the CPU logic using a battery-buffered RAM working memory for storing the O2 values resulting from the learning cycle and ROM containing operating software - Memory and different timers.
  • the main advantage of the method according to the invention and the arrangement for carrying out the method is that, without manual intervention, the microprocessor for each system and any adjustable load range is always specific to the system, by carrying out the learning phase, the desired, optimal conditions with the best thermal utilization and minimal oxygen emissions determined and carries out the corresponding fine adjustment of the fuel flow.
  • the method according to the invention thus relates to a burnout control with continuous O2 measurement, an automatic self-optimization process, also called the learning phase, being initiated during the initial start-up by means of a CO probe. With this learning phase, the system-specific limit stoichiometry is sought, and only then is the required O2 allowance requested.
  • the combustion system consists of a combustion chamber 1 with a burner 2, to which the air is fed via a feed 3 and the fuel, for example oil or gas, is fed via the line 4.
  • the fuel for example oil or gas
  • a flap 6 controlled by an actuator 5 is arranged in the air supply 3, the actuator 5 also controlling the main fuel regulator 7 in the feed line 4.
  • the main component of the arrangement according to the invention is the shunt line 8, which bridges the regulator 7 in the feed line 4 and in which a quantity fine flow regulator 9 is connected, which is connected to the microprocessor 10 described in FIG. 2.
  • the microprocessor computing unit 10 is also connected to an O2 probe 11 and is connected via a further line 12 to a load stage transmitter element 13, which is coupled to the servomotor 5.
  • the microprocessor essentially consists of the CPU unit 14, which is connected via a BUS 15 to an I / O port 16, an A / D converter 17, a display module 18, a probe electronics 19 and a D / A converter 20 is connected.
  • the CPU unit is further connected to a battery-buffered RAM 21, a ROM 22 and possibly a "watchdog" 23.
  • the A / D converter 17 can be connected to a CO measuring device 24 during the learning phase.
  • the angular position or the power of the burner is recorded via the transmitter element 25.
  • the O2 probe 11 is connected via the probe electronics 19 to the output port 28.
  • the measured O2 concentration is read in via the bus system 15.
  • the specification of the minimum and maximum permissible control deviation is shaped with the actuators 26 and 27.
  • the port 16 is provided with a wide variety of inputs and outputs, which are connected to the following organs in order to fulfill the task: quantity fine flow controller, burner, automatic burner control, timing elements, air performance level, burner motor, alarm output, mode switch "Learn-Execute", Display module and other paths if necessary.
  • FIG 3 shows the flowchart for controlling the microprocessor during the learning phase.
  • the release for the O2 control is determined by a delayed timer 29.
  • This timer must be adjustable in order to do justice to the peculiarities of the respective firing systems.
  • the microprocessor continuously queries the operating status of the burner and compares the O2 value before and after the flame is formed. During the pre-ventilation phase ( ⁇ 30 sec.) And after the above-mentioned tightening delay (10 ⁇ 25 sec.) It is checked whether the acid substance content in the exhaust gas collector is at least 20 vol.%. Flame formation must occur no later than one second after opening the fuel valve. When the fuel valve is opened, another time routine of approx.
  • the volume fine flow controller will react to every change in the angle setting (driven burner output) and to any spread of the fuel calorific value (kW / m3) by correspondingly opening or closing its actuator, so that the residual oxygen concentration in any case within that with the actuators 26, 27 characterized hysteresis remains and is in coincidence with the burnout characteristic curve that has been mathematically optimized during the learning phase.
  • the encoder element 25 is to be monitored for a wire break and short circuit and the presence of one of these errors is indicated via the display module 18 while a fault message is activated at the same time.
  • the learning process of the controller according to the method according to the invention proceeds as follows.
  • the microprocessor computing unit is activated when the Brenner underwent a learning phase.
  • the CO contained in the exhaust gas serves as a parameter for evaluating the material turnover.
  • the CO value is continuously measured by means of the CO measuring device 24, the analog output of which is digitized in the A / D converter, and the O2 value is measured continuously by means of the O2 probe 11, the microprocessor initially initializing the fine flow rate controller 9, ie that the burner works with the excess air characterized by the main fuel-air regulator.
  • the volume fine flow controller is now opened step by step until the CO content increases significantly.
  • the corresponding O2 value is stored in RAM 21.
  • the next load level is selected by a defined setting of the main fuel-air controller, and the microprocessor now takes up the next level by repeating the above steps.
  • the curve is provided with an adapted aviation security surcharge so that the lambda value remains within an optimal hysteresis during adjustment processes.
  • the display module 18 shows how many setpoints have been specified and which are currently being learned, whereby the setpoint and actual values or the read-in value, the arithmetically determined value and the residual oxygen content present during normal operation of the burner can be displayed.
  • the mode of operation of the main fuel-air regulator is not touched and that the O2 control carries out an autonomous fine adjustment in the direction of maximum combustion quality.
  • FIG. 3 shows an embodiment of the computer program by executing the method according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Feinregulierung des Brennstoffmengenstromes in brennerbetriebenen Feuerungs­anlagen für fossile Energieträger durch Messung des Rest­sauerstoffgehaltes der Abgase, wobei als Kenngröße zur Bewertung des optimalen Stoffumsatzes das im Abgas ent­haltene CO verwendet wird. Dabei wird ein Mikroprozes­sor verwendet, in den die zu einem jeweiligen Brenner­mischkopf und zu einer jeweilig eingestellten Ausbrand­luftmenge gehörende, reale Kohlenmonoxidkonzentration (ppm) eingelesen wird. Der Mikroprozessor wird bei der ersten Inbetriebnahme des Brenners einer Lernphase un­terzogen. Dabei werden die CO- und O₂ Werte laufend ge­messen und der zunächst zugeregelte Mengenfeinstromreg­ler Stufe für Stufe aufgefahren, bis der CO-Gehalt stark zunimmt. Der zugehörige O₂ Wert wird im RAM-Speicher des Mikroprozessors gespeichert und die nächste Laststufe durch definierte Einstellung des Brennstoff-Luft-Haupt­reglers bis zur kompletten Aufnahme und Speicherung der brennertypischen Ausbrandkennlinie im RAM-Speicher ange­wählt.

Description

  • Die Erfindung betrifft ein Verfahren und eine Anordnung zur Feinregulierung des Brennstoffmengenstromes mittels eines insbesondere in einer neben dem Hauptregler in der Brennstoffzuführungsleitung als Nebenschlußleitung angeordneten Feinreglers in brennerbetriebenen Feuerungs­anlagen für fossile Energieträger durch Messung des Rest­sauerstoffgehaltes der Abgase, wobei als Kenngröße zur Bewertung des optimalen Stoffumsatzes das im Abgas ent­haltene CO verwendet wird.
  • Nutz- und Prozeßwärme wird gegenwärtig zum größten Teil durch Verbrennung von fossilen Energieträgern, wie Erd­öl, Erdgas und Kohle, gewonnen. In Anbetracht dessen, daß das natürliche Vorkommen dieser Rohstoffe begrenzt ist und die Verarbeitung des Ausgangsmateriales zu stän­digen Preissteigerungen geführt hat, ist man bestrebt, durch geeignete Maßnahmen eine spürbare Verbrauchsredu­zierung und Wirkungsgradsteigerung der eingesetzten Energie zu erzielen.
  • Außerordentlich aktuell ist hierbei der Gesichtspunkt einer bestmöglichen, jedoch zumindest den neuesten Ver­ordnungen entsprechenden Verminderung des Schadstoff­auswurfes zum Schutze der Umwelt. Herkömmliche Brenner­feuerungen sind bezüglich der Schadstoffbildung (NOX, SO₂, SO₃, CnHm, CO) stark von der angesetzten Einstel­lungs- und Wartungssorgfalt abhängig. Zur Kompensation ausbrandbeeinflussender Parameter (Mischeinrichtung, Brennstoff, Witterung usw.) werden häufig uneffektive Luftüberschüsse eingestellt, die zwar bis zu einem ge­wissen Grad der Schadstoffbildung entgegenwirken, ande­rerseits aber die optimale Umsetzung der Brennstoffener­gie in verfügbare Nutzwärme negativ beeinflussen.
  • Feuerungsanlagen ohne Restsauerstoffmessung, jedoch mit Ausbrandkontrolle in Form einer Restsauerstoffbewertung über Ist-Soll-Vergleich und hieraus abgeleitetes Stell­signal zur unmittelbaren Beeinflussung der Luft- und/­oder Brennstoffmenge anhand eines in Reihe zum Luft- und/oder Brennstoffhauptstrom geschaltetes Steuerglied, dessen Wirkungsweise im einzelnen folgend klassifiziert wird, arbeiten mit folgenden Methoden:
    - TRIMM-METHODE: Das Stellglied beeinflußt in Abhängig­keit des Restsauerstoffes den Wirkhub des Brennstoff-­Luft-Verbundreglergestänges nur auf der Lufthauptstrom­seite.
    - KONSTANT-EINGANGSHEIZWERT-METHODE: Das Stellglied be­einflußt in Abhängigkeit des Restsauerstoffes einen zusätzlich vor den Brennstoff-Luft-Regler in den Brenn­stoffhauptstrom plazierten Mengenstromregler.
    - VERBUNDFREIE METHODE: Das Stellglied arbeitet in Ab­hängigkeit des Restsauerstoffes als eigenständiger Lufthauptstrom-Nachlaufregler. Die Stellung des Brenn­stoff-Hauptstromreglers beeinflußt den o. g. Nachlauf ausschließlich über den Ausbrand bzw. über den da­durch entstehenden Luftmangel oder Luftüberschuß.
  • In der DE-OS 34 35 902 ist ein Regelsystem zum selbst­tätigen Regeln des Luft- bzw. Sauerstoffüberschusses einer Verbrennung von strömenden Brennstoffen beschrie­ben. Die Steuerung des Brennstoffes erfolgt mit einem Regelventil und einer Stellvorrichtung. Ebenso wird die Verbrennungsluft durch eine Luftklappe geregelt, die von einer Stellvorrichtung betätigt wird. Die Regelung beider Größen erfolgt über ein besonderes Regelsystem mit einem Regelgerät, das über eine Leitung mit den bei­den Stellvorrichtungen verbunden ist.
  • Bei dem vorbekannten Regelsystem wird der Sollwert des Brennstoff:Luftverhältnisses durch ein Hilfsregelsystem entsprechend der Entwicklung von unverbranntem Brenn­stoff bei der Verbrennung eingestellt. Damit soll ge­währleistet sein, daß die Verbrennung mit möglichst ge­ringem Luft- bzw. Sauerstoffüberschuß durchgeführt wird und gleichzeitig die Bildung von nennenswerten unver­brannten Gasbestandteilen, wie Kohlenmonoxid und Kohlen­wasserstoffen, ausgeschlossen ist.
  • Bei dem vorbekannten Regelsystem müssen aber die ge­wünschten Ausgangswerte von Hand einprogrammiert und für jede geänderte Anlage wiederum geändert werden.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, das die problemlose Steuerung eines restsauerstoffgeführten Mengenfeinstromreglers ermöglicht, um bei bester thermi­scher Nutzung eine minimale Schadstoffauswirkung zu er­möglichen.
  • Nach Durchführung des Verfahrens soll der Mikroprozes­sor des Feinreglers nach einem absolvierten Lernprogramm, das für jede Anlage spezifisch ist, automatisch die Fein­regelung des Brennstoffmengenstromes ermöglichen.
  • Zur Lösung der gestellten Aufgabe wird ein Verfahren der eingangs genannten Art angegeben, welches dadurch gekennzeichnet ist, daß mittels eines mit dem Feinreg­ler verbundenen Mikroprozessors durch eine Software-­Routine und anhand eines CO-Monitors mit entsprechender Schnittstelle der zu einem jeweiligen Brennermischkopf und zu einer jeweilig eingestellten Ausbrandluftmenge gehörenden, realen Kohlenmonoxidkonzentration (ppm) ein­gelesen wird, wobei der Mikroprozessor bei der ersten Inbetriebnahme des Brenners einer Lernphase unterzogen wird, in der Weise, daß bei der ersten Inbetriebnahme mittels eines CO-Meßgerätes der CO-Wert und mittels einer O₂-Meßsonde der O₂ Wert laufend gemessen wird und der zunächst zugeregelte Mengenfeinstromregler Stufe für Stufe aufgefahren wird, bis der CO-Gehalt stark zunimmt, wobei der zugehörige O₂-Wert im RAM-Speicher des Mikro­prozessors gespeichert wird, worauf die nächste Last­stufe durch definierte Einstellung des Brennstoff-Luft-­Hauptreglers angewählt wird und der Mikroprozessor jetzt unter Wiederholung der vorgenannten Schritte die nächste Stufe aufnimmt, bis zur kompletten Aufnahme und Speiche­rung der brennertypischen Ausbrandkennlinie im RAM-Spei­cher des Mikroprozessors.
  • In weiterer Ausgestaltung des erfindugnsgemäßen Verfah­ rens wird, wenn die zuvor erwähnte komplette Kennlinie aufgenommen ist, diese mit einem rechnerisch ermittel­ten Luftsicherheitszuschlag versehen, damit bei Ausre­gelvorgängen der Lambda-Wert innerhalb einer optimalen Hysterese bleibt.
  • Mit dem erfindungsgemäßen Verfahren werden mehrere Vor­teile erreicht. So kann zunächst der Luftüberschuß für den späteren Brennerbetrieb in sehr engen Grenzen gehal­ten werden. Ein weiterer Vorteil der erfindungsgemäßen Lösung besteht in der mit beliebig vielen Eichpunkten ansetzbaren Auflösung der feuerungsleistungsabhängigen Ausbrandkennlinie einer in Betracht gezogenen Anlage.
  • Schließlich besteht ein wesentlicher Vorteil darin, daß durch die vorprogrammierte und den jeweiligen Gegeben­heiten angepaßte Ausbrandkennlinie eine wesentliche Ver­ringerung des Primärenergiebedarfs bei gleichzeitiger Senkung des Schadstoffauswurfes erzielt wird.
  • Die Erfindung betrifft ferner eine Anordnung zur Durch­führung des erfindungsgemäßen Verfahrens, welche ge­kennzeichnet ist durch einen stellmotorgetriebenen Men­genfeinstromregler, der in einem Nebenschlußkreis der Brennstoffversorgung des Brenners angeordnet ist und von einem Mikroprozessor gesteuert wird, der mit einer O₂-Sonde und mit einem Geberglied für die jeweils ge­fahrene Laststufe verbunden ist.
  • Die Mikroprozessorrecheneinheit besteht im wesentlichen aus einer CPU-Logik inklusive A/D-Wandler und D/A-Wand­ler, deren Aufgabe es ist, die über ein bidirektionelles Bussystem nebst zugehörigem I/O-Port von dem während des Lernvorganges angeschlossenen C0-Meßgerät, der fest­ angeschlossenen O₂-Sondenelektronik und dem Laststufen­geberglied kommenden Daten so zu verarbeiten, daß eine definierte Führungsgröße als Stellwert für den Mengen­feinstromregler entsteht, wobei die CPU-Logik über einen batteriegepufferten RAM-Arbeitsspeicher für die Spei­cherung der aus dem Lernzyklus resultierenden O₂ Werte sowie einen Betriebssoftware beinhaltenden ROM-Speicher und verschiedene Zeitglieder verfügt.
  • Der wesentliche Vorteil des Verfahrens gemäß der Erfin­dung und der Anordnung zur Durchführung des Verfahrens besteht darin, daß ohne manuelle Eingriffe anlagenspe­zifisch der Mikroprozessor für jede Anlage und jeden einstellbaren Lastbereich durch die Vornahme der Lern­phase immer die gewünschten, optimalen Bedingungen bei bester thermischer Nutzung und minimalem Sauerstoff­ausstoß ermittelt und die entsprechende Feinregulierung des Brennstoffmengenstromes vornimmt. Das erfindungs­gemäße Verfahren bezieht sich also auf eine Ausbrand­regelung mit kontinuierlicher O₂ Messung, wobei bei der Erstinbetriebnahme mittels einer CO-Sonde ein automati­scher Selbstoptimierungsprozeß, auch Lernphase genannt, eingeleitet wird. Mit dieser Lernphase wird die anlagen­spezifische Grenzstöchiometrie aufgesucht, und erst hier­nach werden die erforderlichen O₂-Zuschüsse erfragt.
  • Anhand der Zeichnungen soll am Beispiel einer bevorzug­ten, erfindungsgemäßen Anordnung das erfindungsgemäße Verfahren näher erläutert werden.
  • In den Zeichnungen zeigt
    • Fig. 1 eine Prinzipzeichnung der erfindungsgemäßen An­ordnung.
    • Fig. 2 zeigt die Schaltungsanordnung der Mikroprozes­soreinrichtung.
    • Fig. 3 zeigt im Prinzip ein Ablaufdiagramm eines Pro­gramms, mit dem das erfindugnsgemäße Verfahren ausgeführt werden kann.
  • Wie sich aus Fig. 1 ergibt, besteht die Feuerungsanlage aus einem Verbrennungsraum 1 mit einem Brenner 2, wel­chem über eine Zufuhr 3 die Luft und über die Leitung 4 der Brennstoff, beispielsweise Öl oder Gas, zugeführt wird.
  • In der Luftzufuhr 3 ist eine von einem Stellmotor 5 ge­steuerte Klappe 6 angeordnet, wobei der Stellmotor 5 auch den Brennstoff-Hauptregler 7 in der Zuleitung 4 steuert.
  • Hauptbestandteil der erfindungsgemäßen Anordnung ist die Nebenschlußleitung 8, die den Regler 7 in der Zu­führungsleitung 4 überbrückt und in welcher ein Mengen­feinstromregler 9 geschaltet ist, der mit dem in Fig. 2 beschriebenen Mikroprozessor 10 verbunden ist.
  • Die Mikroprozessorrecheneinheit 10 ist ferner mit einer O₂-Sonde 11 verbunden und steht über eine weitere Lei­tung 12 mit einem Laststufengeberglied 13 in Verbindung, welches mit dem Stellmotor 5 gekoppelt ist.
  • Wie sich aus Fig. 2 ergibt, besteht der Mikroprozessor im wesentlichen aus der CPU-Einheit 14, die über einen BUS 15 mit einem I/O-Port 16, einem A/D-Wandler 17, einem Anzeigemodul 18, einer Sondenelektronik 19 und einem D/A-Wandler 20 verbunden ist. Die CPU-Einheit ist ferner mit einem batteriegepufferten RAM 21, einem ROM 22 und ggf. einem "Watchdog" 23 verbunden. Der A/D-Wand­ler 17 kann mit einem CO-Meßgerät 24 während der Lern­phase verbunden werden.
  • Die Aufnahme der Winkelposition bzw. der Leistung des Brenners erfolgt über das Geberglied 25.
  • Die O₂-Sonde 11 ist über die Sondenelektronik 19 mit dem Ausgabeport 28 verbunden.Die gemessene O₂ Konzentra­tion wird über das Bussystem 15 eingelesen. Die Vorgabe der minimal und maximal zulässigen Regelabweichung wird mit den Stellgliedern 26 und 27 geprägt.
  • Der Port 16 ist mit den verschiedensten Ein- und Aus­gängen versehen, die zur Erfüllung der Aufgabe wenig­stens mit nachstehenden Organen verbunden sind: Mengen­feinstromregler, Brenner, Feuerungsautomat, Zeitglieder, Luft-Leistungs-Stufe, Brennermotor, Alarmausgabe, Modus­schalter "Lernen-Ausführen", Anzeigemodul und ggf. wei­tere Pfade.
  • In Fig. 3 ist das Ablaufdiagramm zur Steuerung des Mikro­prozessors während der Lernphase dargestellt.
  • Bei jedem Brenneranlauf wird die Freigabe für die O₂­Regelung durch ein anzugsverzögerndes Zeitglied 29 be­stimmt. Dieses Zeitglied muß einstellbar sein, um den Eigenheiten der jeweiligen Feuerungsanlagen gerecht zu werden. Dabei fragt der Mikroprozessor den Betriebssta­tus des Brenners laufend ab und vergleicht den O₂-Wert vor und nach Bildung der Flamme. Während der Vorbelüf­tungsphase (≧ 30 sec.) und nach Ablauf der o. g. Anzugs­verzögerung (10 ≦ 25 sec.) wird geprüft, ob der Sauer­ stoffgehalt im Abgaskollektor wenigstens 20 Vol. % be­trägt. Spätestens eine Sekunde nach Öffnen des Brenn­stoffventiles muß die Flammenbildung erfolgen. Mit Öff­nen des Brennstoffventiles wird eine weitere Zeitrouti­ne von ca. 10 sec. aktiv, nach welcher die O₂ Sonde prüft, ob der Restsauerstoffgehalt im Abgas auf die von der Grundeinstellung des Luft-Brennstoff-Hauptreg­lers abhängige Konzentration, jedoch nicht mehr als 4 Vol. % O₂, abgesunken ist. Erst nach erfolgreicher Quittierung dieser Anfahrbedingungen wird der Mengen­feinstromregler vom Mikroprozessor über das I/O-Port angesprochen und aus der initialisierenden Grundstel­lung in Abhängigkeit von der Brennstoff-Luft-Hauptreg­ler-Stellung proportional aufgefahren, bis der Rest­sauerstoffgehalt der Abgase in Übereinstimmung mit der errechneten Ausbrandkennlinie steht. Im weiteren Ver­lauf des Brennerbetriebes wird der Mengenfeinstromreg­ler auf jede Veränderung der Winkeleinstellung (gefah­rene Brennerleistung) und auf jede Streuung des Brenn­stoffbrennwertes (kW/m³) durch entsprechendes Auf- oder Zuregeln seines Stellantriebes reagieren, so daß die Restsauerstoffkonzentration auf jeden Fall innerhalb der mit den Stellgliedern 26, 27 geprägten Hysterese bleibt und in Koenzidenz mit der anläßlich der Lernphase rechnerisch optimierten Ausbrandkennlinie steht.
  • Das Geberglied 25 soll auf Drahtbruch und Kurzschluß überwacht und das Vorhandensein einer dieser Fehler über das Anzeigemodul 18 bei gleichzeitiger Aktivierung einer Störungsmeldung ausgewiesen werden.
  • Der Lernprozeß des Reglers gemäß dem erfindungsgemäßen Verfahren läuft dabei wie folgt ab. Die Mikroprozessor­recheneinheit wird bei der ersten Inbetriebnahme des Brenners einer Lernphase unterzogen. Als Kenngröße zur Bewertung des stofflichen Umsatzes dient dabei das im Abgas enthaltene CO. Bei der ersten Inbetriebnahme wird mittels des CO-Meßgerätes 24, dessen Analogausgang im A/D-Wandler digitalisiert wird, der CO-Wert und mittels der O₂-Sonde 11 der O₂ Wert laufend gemessen, wobei der Mikroprozessor den Mengenfeinstromregler 9 zunächst ini­tialisiert, d. h. daß der Brenner mit dem vom Brennstoff-­Luft-Hauptregler geprägten Luftüberschuß arbeitet. Der Mengenfeinstromregler wird nun Stufe für Stufe aufge­fahren, und zwar so lange, bis der CO-Gehalt stark zu­nimmt. Der entsprechende O₂ Wert wird im RAM 21 gespei­chert. Dann wird die nächste Laststufe durch definierte Einstellung des Brennstoff-Luft-Hauptreglers angewählt, und der Mikroprozessor nimmt jetzt unter Wiederholung der vorgenannten Schritte die nächste Stufe auf.
  • Wenn die komplette Kurve aufgenommen und gespeichert ist, wird die Kurve mit einem angepaßten Luftsicherheits­zuschlag versehen, damit bei Ausregelvorgängen der Lambda-Wert innerhalb einer optimalen Hysterese bleibt.
  • Am Anzeigemodul 18 wird ausgewiesen, wieviel Setpoints vorgegeben wurden und welche gerade gelernt werden, wo­bei der Soll- und der Ist-Wert bzw. der eingelesene, der rechnerisch ermittelte und der beim Regelbetrieb des Brenners vorhandene Restsauerstoffgehalt angezeigt werden können.
  • Von besonderem Vorteil ist dabei, daß die Wirkungsweise des Brennstoff-Luft-Hauptreglers nicht angetastet wird und daß die O₂-Regelung eine autonome Feinregulierung in Richtung maximaler Verbrennungsgüte vornimmt.
  • Fig. 3 zeigt eine Ausführungsmöglichkeit des Rechen­programms durch Durchführung des Verfahrens gemäß der Erfindung.

Claims (5)

1. Verfahren zur Feinregulierung des Brennstoffmengen­stromes mittels eines insbesondere in einer neben dem Hauptregler in der Brennstoffzuführungsleitung als Nebenschlußleitung angeordneten Feinreglers in brennerbetriebenen Feuerungsanlagen für fossile Ener­gieträger durch Messung des Restsauerstoffgehaltes der Abgase, wobei als Kenngröße zur Bewertung des optimalen Stoffumsatzes das im Abgas enthaltene CO verwendet wird, dadurch gekenn­zeichnet, daß mittels eines mit dem Fein­regler verbundenen Mikroprozessors durch eine Soft­ware-Routine und anhand eines CO-Monitors mit entspre­chender Schnittstelle der zu einem jeweiligen Bren­nermischkopf und zu einer jeweilig eingestellten Aus­brandluftmenge gehörenden, realen Kohlenmonoxidkon­zentration (ppm) eingelesen wird, wobei der Mikro­prozessor bei der ersten Inbetriebnahme des Brenners einer Lernphase unterzogen wird, in der Weise, daß bei der ersten Inbetriebnahme mittels eines CO-Meß­gerätes der CO-Wert und mittels einer O₂-Meßsonde der O₂-Wert laufend gemessen wird und der zunächst zuge­regelte Mengenfeinstromregler Stufe für Stufe aufge­fahren wird, bis der CO-Gehalt stark zunimmt, wobei der zugehörige O₂ Wert im RAM-Speicher des Mikropro­zessors gespeichert wird, worauf die nächste Last­stufe durch definierte Einstellung des Brennstoff-­ Luft-Hauptreglers angewählt wird und der Mikroprozessor jetzt unter Wiederholung der vorgenannten Schritte die nächste Stufe aufnimmt, bis zur kompletten Aufnahme und Speicherung der brennertypischen Ausbrandkennlinie im RAM-Speicher des Mikroprozessors.
2. Verfahren nach Anspruch 1, dadurch gekenn­zeichnet, daß nach Aufnahme der kompletten brennertypischen Ausbrandkennlinie diese mit einem rechnerisch ermittelten Luftsicherheitszuschlag ver­sehen wird, damit bei Ausregelvorgängen der Lambdawert innerhalb einer optimalen Hysterese bleibt.
3. Anordnung zur Durchführung des Verfahrens nach Anspruch 1 und 2,gekennzeichnet durch eine Mikroprozessor-Recheneinheit, deren Steuerausgang auf einen als Nebenschluß in der Brennstoffversorgung an­geordneten, stellmotorbetätigten Mengenfeinstromregler wirkt und deren Eingänge im wesentlichen mit einer O₂-­Sonde und einem Geberglied für die jeweils gefahrene Laststufe verbunden sind.
4. Anordnung nach Anspruch 3, dadurch gekenn­zeichnet, daß die Mikroprozessor-Recheneinheit aus einer CPU-Logik inklusive A/D-Wandler und D/A-Wand­ler besteht, deren Aufgabe es ist, die über ein bi­direktionelles Bussystem nebst zugehörigem I/O-Port von dem während des Lernvorganges angeschlossenen CO-Meß­gerät, der fest angeschlossenen O₂-Sondenelektronik und dem Laststufengeberglied kommenden Daten so zu verarbeiten, daß eine definierte Führungsgröße als Stellwert für den Mengenfeinstromregler entsteht, wobei die CPU-Logik über einen batteriegepufferten RAM-Arbeitsspeicher für die Ablage der aus dem Lernzyklus resultierenden O₂-Werte sowie einen Betriebssoftware beinhaltenden ROM und verschiedene Zeitglieder verfügt.
5. Rechenprogramm zur Durchführung des erfindungsgemäßen Verfahrens mit einer Anordnung nach der Erfindung, gekennzeichnet durch folgenden Ab­lauf:
1. Schalter schließen durch Einleitung der Lernphase,
2. CO-Meßgerät anschließen,
3. erste oder zweite Stufe der Last einstellen,
4. Mengenfeinregler schließen,
5. Wert der Laststufe ermitteln,
6. Messung des O₂ und CO-Gehaltes,
7. Vergleich der gemessenen Werte zur Bestimmung des
8. Anstiegspunktes des CO-Wertes,
9. If-Then-Verzweigung, Feinregler um einen Schritt öffnen und Rücksprung zum Schritt 4.,
10. gemessenen O₂-Wert abspeichern,
11. Wert der entsprechenden Laststufe abspeichern,
12. nächsten Lastschritt einstellen,
13. Ermittlung der Anzahl der gemessenen Werte,
14. If-Then, wenn nicht, Rücksprung zum Schritt 3.,
15. Sicherheitswert für die gemessene Kurve berechnen,
16. Sprung zur Reglerroutine.
EP86109152A 1985-07-24 1986-07-04 Verfahren und Anordnung zur Feinregulierung des Brennstoffmengenstromes an brennerbetriebenen Feuerungsanlagen durch Messung des Restsauerstoffes und des Kohlenmonoxidgehaltes in den Abgasen Withdrawn EP0209771A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853526384 DE3526384A1 (de) 1985-07-24 1985-07-24 Verfahren und anordnung zur feinregulierung des brennstoffmengenstromes an brennerbetriebenen feuerungsanlagen durch messung des restsauerstoffes und des kohlenmonoxidgehaltes in den abgasen
DE3526384 1985-07-24

Publications (1)

Publication Number Publication Date
EP0209771A1 true EP0209771A1 (de) 1987-01-28

Family

ID=6276567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86109152A Withdrawn EP0209771A1 (de) 1985-07-24 1986-07-04 Verfahren und Anordnung zur Feinregulierung des Brennstoffmengenstromes an brennerbetriebenen Feuerungsanlagen durch Messung des Restsauerstoffes und des Kohlenmonoxidgehaltes in den Abgasen

Country Status (2)

Country Link
EP (1) EP0209771A1 (de)
DE (1) DE3526384A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655583A1 (de) * 1993-11-29 1995-05-31 ABBPATENT GmbH Verfahren zur Regelung und Überwachung
WO1996025628A1 (en) * 1995-02-16 1996-08-22 British Gas Plc Apparatus for providing an air/fuel mixture to a fully premixed burner
WO1996025627A1 (en) * 1995-02-16 1996-08-22 British Gas Plc Apparatus for providing an air/fuel mixture to a fully premixed burner
WO1996025626A1 (en) * 1995-02-16 1996-08-22 British Gas Plc Apparatus for providing an air/fuel mixture to a fully premixed burner
DE19749506C1 (de) * 1997-11-08 1999-01-07 Hartmuth Dipl Phys Dambier Verfahren zur laufenden Optimierung der Luftzufuhr bei Feuerungsanlagen
DE19923059A1 (de) * 1999-05-20 2000-12-07 Steag Ag Verfahren zum Regeln eines Verbrennungsprozesses
WO2001098711A1 (de) * 2000-06-19 2001-12-27 Honeywell B.V. Regelungsverfahren für gasbrenner
EP1239220A2 (de) * 2001-03-08 2002-09-11 Robert Bosch Gmbh Gasverbrennungsgerät, insbesondere Gasheizgerät
EP1467149A1 (de) * 2003-04-11 2004-10-13 E.ON Ruhrgas AG Verfahren zum Überwachen der Verbrennung in einer Verbrennungseinrichtung
AT412903B (de) * 2000-10-02 2005-08-25 Herz Feuerungstechnik Ges M B Verfahren zur steuerung bzw. regelung von feuerungsanlagen sowie danach regelbare feuerungsanlage
DE102004013971A1 (de) * 2004-03-19 2005-10-06 Rational Ag Brennereinrichtung für ein Gargerät und Gargerät mit solch einer Brennereinrichtung
EP3156729A3 (de) * 2015-10-12 2017-04-26 MHG Heiztechnik GmbH Verfahren zur nachkalibrierung einer brennervorrichtung für flüssigbrennstoffe
EP3156730A3 (de) * 2015-10-12 2017-08-16 MHG Heiztechnik GmbH Verfahren zur kalibrierung einer brennervorrichtung für flüssigbrennstoffe

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3610363A1 (de) * 1986-03-27 1987-10-01 Kernforschungsz Karlsruhe Verfahren zum kontinuierlichen ueberwachen von konzentrationen von gasfoermigen bestandteilen in gasgemischen, ausgenommen o(pfeil abwaerts)2(pfeil abwaerts)
CH671823A5 (de) * 1987-03-13 1989-09-29 Landis & Gyr Ag
EP0339135A1 (de) * 1988-04-25 1989-11-02 Landis & Gyr Betriebs AG Verbundsteuereinrichtung für einen Brenner
DE4428952C2 (de) * 1994-08-16 1998-07-09 Lamtec Mes Und Regeltechnik Fu Verfahren und Vorrichtung zur Regelung und Überwachung der Verbrennung einer Feuerungsanlage
DE10220774B4 (de) * 2002-05-10 2004-06-24 Robert Bosch Gmbh Einrichtung zur Regelung eines Brenners
AT413440B (de) * 2003-10-08 2006-02-15 Vaillant Gmbh Verfahren zur anpassung des brenngas-luft- verhältnisses an die gasart bei einem gasbrenner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0040736A1 (de) * 1980-05-22 1981-12-02 Siemens Aktiengesellschaft Verfahren zum Betrieb einer Vergasungsbrenner/Heizkesselanlage
EP0050840A1 (de) * 1980-10-23 1982-05-05 Karl Dungs GmbH & Co. Verfahren zur Einstellung von Verbundreglern für Brenner in Wärmeerzeugungsanlagen
DE3331625A1 (de) * 1982-09-03 1984-03-15 Hitachi, Ltd., Tokyo Diagnoseverfahren fuer den verbrennungszustand in einem ofen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0040736A1 (de) * 1980-05-22 1981-12-02 Siemens Aktiengesellschaft Verfahren zum Betrieb einer Vergasungsbrenner/Heizkesselanlage
EP0050840A1 (de) * 1980-10-23 1982-05-05 Karl Dungs GmbH & Co. Verfahren zur Einstellung von Verbundreglern für Brenner in Wärmeerzeugungsanlagen
DE3331625A1 (de) * 1982-09-03 1984-03-15 Hitachi, Ltd., Tokyo Diagnoseverfahren fuer den verbrennungszustand in einem ofen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN, Band 9, Nr. 11 (M-351)[1734], 18. Januar 1985; & JP-A-59 158 913 (CHIYUUGAI RO KOGYO K.K.) 08-09-1984 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0655583A1 (de) * 1993-11-29 1995-05-31 ABBPATENT GmbH Verfahren zur Regelung und Überwachung
DE4340534A1 (de) * 1993-11-29 1995-06-01 Abb Patent Gmbh Verfahren zur Regelung und Überwachung
WO1996025628A1 (en) * 1995-02-16 1996-08-22 British Gas Plc Apparatus for providing an air/fuel mixture to a fully premixed burner
WO1996025627A1 (en) * 1995-02-16 1996-08-22 British Gas Plc Apparatus for providing an air/fuel mixture to a fully premixed burner
WO1996025626A1 (en) * 1995-02-16 1996-08-22 British Gas Plc Apparatus for providing an air/fuel mixture to a fully premixed burner
US5984664A (en) * 1995-02-16 1999-11-16 Bg Plc Apparatus for providing an air/fuel mixture to a fully premixed burner
DE19749506C1 (de) * 1997-11-08 1999-01-07 Hartmuth Dipl Phys Dambier Verfahren zur laufenden Optimierung der Luftzufuhr bei Feuerungsanlagen
DE19923059A1 (de) * 1999-05-20 2000-12-07 Steag Ag Verfahren zum Regeln eines Verbrennungsprozesses
WO2001098711A1 (de) * 2000-06-19 2001-12-27 Honeywell B.V. Regelungsverfahren für gasbrenner
AT412903B (de) * 2000-10-02 2005-08-25 Herz Feuerungstechnik Ges M B Verfahren zur steuerung bzw. regelung von feuerungsanlagen sowie danach regelbare feuerungsanlage
EP1239220A2 (de) * 2001-03-08 2002-09-11 Robert Bosch Gmbh Gasverbrennungsgerät, insbesondere Gasheizgerät
EP1239220A3 (de) * 2001-03-08 2002-10-30 Robert Bosch Gmbh Gasverbrennungsgerät, insbesondere Gasheizgerät
EP1467149A1 (de) * 2003-04-11 2004-10-13 E.ON Ruhrgas AG Verfahren zum Überwachen der Verbrennung in einer Verbrennungseinrichtung
DE102004013971A1 (de) * 2004-03-19 2005-10-06 Rational Ag Brennereinrichtung für ein Gargerät und Gargerät mit solch einer Brennereinrichtung
DE102004013971B4 (de) * 2004-03-19 2008-07-17 Rational Ag Brennereinrichtung für ein Gargerät und Gargerät mit solch einer Brennereinrichtung
EP3156729A3 (de) * 2015-10-12 2017-04-26 MHG Heiztechnik GmbH Verfahren zur nachkalibrierung einer brennervorrichtung für flüssigbrennstoffe
EP3156730A3 (de) * 2015-10-12 2017-08-16 MHG Heiztechnik GmbH Verfahren zur kalibrierung einer brennervorrichtung für flüssigbrennstoffe

Also Published As

Publication number Publication date
DE3526384A1 (de) 1987-02-12
DE3526384C2 (de) 1989-12-07

Similar Documents

Publication Publication Date Title
EP0209771A1 (de) Verfahren und Anordnung zur Feinregulierung des Brennstoffmengenstromes an brennerbetriebenen Feuerungsanlagen durch Messung des Restsauerstoffes und des Kohlenmonoxidgehaltes in den Abgasen
EP2005066B1 (de) Verfahren zum starten einer feuerungseinrichtung bei unbekannten rahmenbedingungen
EP0259382B1 (de) Einrichtung zur regelung des verbrennungsgas-luftverhältniss
DE3500594C2 (de) Zumeßsystem für eine Brennkraftmaschine zur Beeinflussung des Betriebsgemisches
DE3740527C2 (de) Vorrichtung zum Regeln des Luft-Brennstoff-Gemischs eines Verbrennungsmotors an der Magergrenze
EP1331444B1 (de) Verfahren zur Regelung eines Gasbrenners
DE3424088C2 (de)
DE3208567A1 (de) Regeleinrichtung fuer eine dampfkesselfeuerung
DE2245029B2 (de) Verfahren und Vorrichtung zur Abgasentgiftung von Brennkraftmaschinen
DE102009032064B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE69910126T2 (de) Verbrennunungsverfahren eines Brennstoffes mit einem sauerstoffreichen Oxidationsmittel
EP0499976B1 (de) Verfahren zum Betreiben einer Müllverbrennungsanlage
EP0615095B1 (de) Brennerregler
DE19935968B4 (de) Steuereinheit für das Luft-/Kraftstoffverhältnis eines Motors
DE4002803C2 (de)
DE10300602B4 (de) Verfahren zur Regelung eines Gasbrenners
EP0711908A2 (de) Regelungsverfahren zur Optimierung der Schadstoffemission einer Verbrennungsanlage
EP0655583B1 (de) Verfahren zur Regelung und Überwachung von Verbrennung
DE3607386A1 (de) Verfahren und vorrichtung zur gas-luft-mengenregelung fuer gasgeblaesebrenner
DE4428952C2 (de) Verfahren und Vorrichtung zur Regelung und Überwachung der Verbrennung einer Feuerungsanlage
DE3617048C2 (de)
DE3204842A1 (de) Einrichtung zur regelung einer otto-brennkraftmaschine
EP0644376B1 (de) Verfahren und Vorrichtung zur Regelung eines Brenners
EP0352619A2 (de) Verfahren zur Regelung der Feuerleistung bei Verbrennungsanlagen
EP0427087B1 (de) Nachrüstsatz für Otto-Motoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870312

17Q First examination report despatched

Effective date: 19881109

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19910201

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHALL, MICHAEL

Inventor name: DITTRICH, JUERGEN