EP0204652B1 - Schachtschmelzofen zum Schmelzen von Metallen - Google Patents

Schachtschmelzofen zum Schmelzen von Metallen Download PDF

Info

Publication number
EP0204652B1
EP0204652B1 EP86730066A EP86730066A EP0204652B1 EP 0204652 B1 EP0204652 B1 EP 0204652B1 EP 86730066 A EP86730066 A EP 86730066A EP 86730066 A EP86730066 A EP 86730066A EP 0204652 B1 EP0204652 B1 EP 0204652B1
Authority
EP
European Patent Office
Prior art keywords
smelting
melting
shaft
ramp
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86730066A
Other languages
English (en)
French (fr)
Other versions
EP0204652A1 (de
Inventor
Günther Schmidt
W.M. Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Strikfeld W and Koch GmbH
Original Assignee
Strikfeld W and Koch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6268915&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0204652(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Strikfeld W and Koch GmbH filed Critical Strikfeld W and Koch GmbH
Priority to AT86730066T priority Critical patent/ATE48693T1/de
Publication of EP0204652A1 publication Critical patent/EP0204652A1/de
Application granted granted Critical
Publication of EP0204652B1 publication Critical patent/EP0204652B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/02Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey
    • F27B1/04Combinations or arrangements of shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/02Shaft or like vertical or substantially vertical furnaces with two or more shafts or chambers, e.g. multi-storey

Definitions

  • the invention relates to a shaft melting furnace for melting metals, in particular non-ferrous metals, after the introduction of the main claim.
  • Shaft melting furnaces are known (US Pat. No. 2,991,060), in which an essentially vertically arranged feed shaft leads directly into a trough-shaped interior that holds the melting bath.
  • a burner is arranged opposite the feed shaft, the heat of the burner being conducted through the interior of the furnace in such a way that it becomes effective particularly at the lower end of the feed shaft and melts the metal present there, so that it melts into the molten bath present in the interior flows.
  • DE-A 252 457 describes a cupola furnace with a 01 or gas firing nozzle which can be adjusted in different directions, in the shaft of which three prismatic bodies are installed at the lower end above the cooker, which are offset one above the other and on the one hand have sliding surfaces for the melting material and on the other hand baffle and guide surfaces for form the stinging flames.
  • the melting material slides or flows through an intermediate space formed by two prismatic bodies into the melting bath, whereby it cannot be ruled out that impurities or particles adhering to the melting material that are difficult to melt get into the melt and alloy or falsify it.
  • the present invention is therefore based on the object of creating a shaft melting furnace which has defined and constant (safe) operating conditions and can therefore be incorporated into an automatically guided melting operation and which works more economically on account of better energy utilization, the melting bath being to be free of impurities .
  • the funnel-shaped feed chute merges into a melting cross section, which is followed by a first section of a horizontal or slightly inclined melting ramp and the burner device is directed to the area of the transition between the melting section and the first section of the melting ramp, defined and constant Melting and operating conditions are provided, so that no manual operation is necessary during the desired melting operation, since the shaft melting furnace can be equipped with an automatic loading device and thus can be integrated into a fully automatic melting process and continuous melting operation is possible.
  • the arrangement according to the invention results in high energy savings.
  • the funnel-shaped feed chute shape causes chunks of melt material to slide better, whereby the melt material is strongly preheated by the hot exhaust gases flowing upwards and slides down into the melting chamber.
  • the speed of the upward-flowing exhaust gases which have relatively defined flow conditions in the melting chamber, is reduced not only as a result of the heat exchange to the melting material coming down, but also as a result of the funnel-shaped design of the charging shaft and the resulting increase in cross-section of the shaft, so that the exhaust gases last longer stay in the shaft and there is better heat utilization, which ensures consistently low exhaust gas temperatures during the entire melting process.
  • the reduction in speed contributes to the fact that dust particles adhering to the melting material are not taken into the upper shaft part and ejected, but are burned in the lower region.
  • the melted material constantly slides into the active chamber and closes it until the melted material has completely melted.
  • the melting ramp adjoining the active space which is designed as a "dry bridge”
  • the melt material cannot fall into the melt bath, but is completely melted off in the active space with the subsequent melting ramp, via which the melt material as a liquid melt the melt pool flows.
  • adhering particles, emulsions and the like also burn before they can get into the molten bath and can lead to contamination of the melt.
  • parts containing metals with a higher melting point for example iron-containing aluminum parts
  • parts containing metals with a higher melting point for example iron-containing aluminum parts
  • the size of the melting chamber i.e. its height and its cross-sectional area is determined according to the burner flame of the selected burner device, taking into account the required burner output, i.e. Melting capacity of the shaft melting furnace set. In this way, the efficiency of the plant is maximized, i.e. that no melting material remains unmelted in the working space or at the transition area of the working space to the melting ramp during melting, so that the melting material can continuously slide out of the loading shaft.
  • the invention is shown in the drawing and is explained in more detail in the description below.
  • the figure shows: a section through the shaft melting furnace according to the invention with an exhaust hood.
  • the shaft melting furnace 1 has a loading shaft 2 which is funnel-shaped. Adjoining the feed chute 2 is a melting-active space 3, which has a constant cross-section and is slightly inclined to the vertical. A melting ramp 4 adjoins the effective space 3, which preferably has a slight inclination e.g. of 8 degrees to the horizontal. Arranged underneath the melting ramp 4 is an interior of the furnace designed as a warming space 5, which receives the melting bath. In the area of the effective space 3 and the melting ramp 4, a burner device 6 arranged as an oil or gas burner is arranged, which is directed towards the transition area between the effective space and the melting ramp 4, so that the lower end of the effective space 3 lies fully in the effective range of the burner device 6. In the vicinity of the melting ramp 4, a cleaning opening 7a, b is provided, through which the impurities or the like lying on the melting ramp 4 can be removed. A holding burner 8 directed towards the molten bath is arranged in the side walls of the holding space 5.
  • the warming room 5 is provided below the melting ramp 4.
  • this warming room can also be arranged in front of or to the side of the melting ramp, depending on the design of the melting shaft furnace.
  • the arrangement of the burner device 6 and the effective space 3 can also be changed in accordance with the design conditions of the shaft melting furnace, i.e. depending on the operating conditions, the effective space can continue directly vertically under the funnel-shaped loading shaft 2.
  • the burner device 6 can be arranged approximately at the height of the effective space 3 at different locations in the circumference of the furnace.
  • An exhaust hood 9 which is provided with a sliding door 10, adjoins the funnel-shaped loading shaft 2.
  • a temperature measuring point 11 is provided above the exhaust hood 9.
  • a shaft cover 13 which can be driven by a motor 12 and which is pivoted depending on the desired operating states.
  • the feed chute 2 When the feed chute 2 is loaded with melt material, it slides into the melting chamber 3, its packing density being very high.
  • the burner 6, which is possibly directed via deflections onto the transition region between the effective space 3 and the melting ramp 4, melts the melting material which flows down the melting ramp and flows into the interior 5.
  • the hot exhaust gases of the burner 6 rise in the effective space and also melt the melting material. Since the size of the effective space 3 is adapted in accordance with the burner flame of the burner device, taking into account the required melting or burner output, the lower part of the effective space is melted free, so that the melt material present in the funnel-shaped loading shaft 2 can slide on, the effective space being closed for so long, until the melting material has completely melted.
  • the inclined surfaces of the funnel-shaped loading chute 3 promote slipping.
  • the exhaust gases continue to flow upward and at least melt the melted material and then, after they have given off their heat, leave the feed chute 2 at the upper end and reach the exhaust gas hood 9.
  • the exhaust gas temperature is monitored at the temperature measuring point 11 during the melting operation.
  • the exhaust gas temperature rises, which indicates that the loading shaft 2 is free for a further loading process.
  • the do not represent provided loading device consists of a loading container and a lifting device.
  • the sliding door 10 is opened by a motor 14, and the loading container starts up and at the same time passes an electromechanical control point which indicates the opened sliding door 10.
  • a cycle feed is initiated at the same time via a switch, ie the filled container moves to the end position with the pauses and running times set. After the container is emptied, it moves back and down by means of the lifting device and the sliding door 10 closes automatically.
  • the melting burner is switched off via a preselected and set maximum exhaust gas temperature and after a time set on a timer, and an optical or acoustic signal is provided which indicates the need for recharging.
  • the melting space and the holding space are arranged one above the other.
  • the melting space and the holding space lie side by side, the two spaces being separated by a wall and the transition is only a small opening for the passage of the molten metal in the holding space:
  • the drawing shows a shaft melting furnace with a rectangular version of the furnace jacket, of course other shapes, for example round or oval furnace jacket versions, can also be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Description

  • Die Erfindung betrifft einen Schachtschmelzofen zum Schmelzen von Metallen, insbesondere Nichteisenmetallen, nach der Einleitung des Hauptanspruchs.
  • Es sind Schachtschmelzöfen bekannt (US-PS 2 991 060), bei denen ein im wesentlichen senkrecht angeordneter Beschickungsschacht direkt in einen das Schmelzbad aufnehmenden wannenförmigen Innenraum führt. Ein Brenner ist dem Beschickungsschacht gegenüberliegend angeordnet, wobei die Wärme des Brenners in der Weise durch den Innenraum des Ofens geleitet wird, daß sie insbesondere am unteren Ende des Beschickungsschachtes wirksam wird und das dort vorhandene Metall schmilzt, so daß es in das im Innenraum vorhandene Schmelzbad fließt.
  • Bei diesem bekannten Schachtschmelzofen kann es vorkommen, daß beim Beschicken oder auch während des Schmelzvorganges das feste bzw. angeschmolzene Schmelzgut in das Schmelzbad fällt, bevor es vollständig geschmolzen ist, so daß sich in dem Schmelzbad möglicherweise festere Bestandteile sammeln. Gleichzeitig können mit den festen Bestandteilen des Schmelzgutes Verunreinigungen in das Schmelzbad gelangen, die bei einem vollständigen Schmelzvorgang verbrennen würden. Weiterhin kommt es bei den bekannten Schachtschmelzöfen vor, daß sich das Schmelzgut in dem Beschickungsschacht verhakt, so daß der untere Bereich des Beschickungsschachtes freigeschmolzen wird, wobei dann die Brennerenergie nicht mehr ausreicht, um das darüberliegende verhakte Schmelzgut loszuschmelzen. Das Schmelzgut muß dann mittels Werkzeugen per Hand nachgeschoben werden. Somit sind diese bekannten Öfen nicht in einem automatischen Schmelzverfahren anwendbar.
  • Die DE-A 252 457 beschreibt einen Kupolofen mit in verschiedener Richtung einstellbarer 01- oder Gasfeuerungsdüse, in dessen Schacht am unteren Ende oberhalb des Herdes drei prismatische Körper eingebaut sind, die versetzt übereinanderliegen und einerseits Rutschflächen für das Schmelzgut und andererseits Prall- und Leitflächen für die Stichflammen bilden. Das Schmelzgut rutscht oder fließt durch einen von zwei prismatischen Körpern gebildeten Zwischenraum in das Schmelzbad, wobei nicht ausgeschlossen ist, daß Verunreinigungen oder an dem Schmelzgut anhaftende Teilchen, die schwer schmelzbar sind, in die Schmelze gelangen und diese auflegieren oder verfälschen. Bei dieser Anordnung treten in dem oberhalb des schmalen Zwischenraums gebildeten Schmelzraum durch die Absenkung der Stichflamme und die Ausbildung des Schmelzraumes Verwirbelungen auf, durch die aufgrund unterschiedlicher Temperaturen Verklebungen des Schmelzgutes hervorgerufen werden. Dies führt zu einem Verhaken des Schmelzgutes, zu einem ungleichmäßigen Abschmelzen mit der Gefahr der Kaminbildung im Schmelzgut, wodurch die Energie des Brenners ungenutzt nach oben weggeführt wird und der Wirkungsgrad der Anlage verschlechtert wird. Darüber hinaus kann die Metallschmelze überhitzt werden, da die Brennerflamme über die Schmelze geleitet wird.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, einen Schachtschmelzofen zu schaffen, der definierte und konstante (sichere) Betriebsverhältnisse aufweist und dadurch in einen automatisch geführten Schmelzbetrieb einbezogen werden kann und der aufgrund einer besseren Energieausnutzung wirtschaftlicher arbeitet, wobei das Schmelzbad frei von Verunreinigungen sein soll.
  • Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Hauptanspruchs gelöst.
  • Dadurch, daß der trichterförmige Beschickungsschacht in einen Schmelzwirkraum konstanten Querschnitts übergeht, an den sich ein erster Abschnitt einer horizontalen oder leicht geneigten Schmelzrampe anschließt und die Brennervorrichtung auf den Bereich des Überganges zwischen dem Schmelzwirkraum und dem ersten Abschnitt der Schmelzrampe gerichtet ist, werden definierte und konstante Schmelz- und Betriebsverhältnisse erbracht, so daß während des gewünschten Schmelzbetriebes keine Bedienungsarbeiten von Hand mehr notwendig sind, da der Schachtschmelzofen mit einer automatischen Beschickungsvorrichtung versehen werden kann und somit in einen vollautomatischen Schmelzablauf integrierbar ist und ein kontinuierlicher Schmelzbetrieb möglich wird. Außerdem bringt die erfindungsgemäße Anordnung eine hohe Energieeinsparung mit sich. Die trichterförmige Beschickungsschachtform bewirkt, daß Schmelzgutbrocken besser nachrutschen, wobei das Schmelzgut von den aufwärts strömenden heißen Abgasen stark vorgewärmt wird und nach unten in den Schmelzwirkraum hineinrutscht. Die Geschwindigkeit der aufwärts strömenden Abgase, die in dem Schmelzwirkraum relativ definierte Strömungsverhältnisse haben, verringert sich nicht nur infolge des Wärmeaustausches an das herunterkommende Schmelzgut, sondern auch infolge der trichterförmigen Ausbildung des Beschickungsschachtes und dadurch erreichten Querschnittsvergrößerung des Schachtes nach oben, so daß die Abgase länger in dem Schacht verweilen und eine bessere Wärmeausnutzung gegeben ist, wodurch während des gesamten Schmelzvorganges konstant niedrige Abgastemperaturen gewährleistet werden. Außerdem trägt die Geschwindigkeitsverringerung dazu bei, daß an dem Schmelzgut anhaftende Staubteilchen nicht in den oberen Schachtteil mitgenommen und ausgeworfen werden, sondern im unteren Bereich verbrannt werden.
  • Durch die Ausbildung des trichterförmigen Beschickungsschachtes mit dem sich erfindungsgemäß anschließenden Schmelzwirkraum konstanten Querschnitts rutscht das Schmelzgut ständig in den Wirkraum hinein und verschließt diesen solange, bis das Schmelzgut restlos geschmolzen ist. Durch die sich an den Wirkraum anschließende Schmelzrampe, die als "trockene Brücke" ausgebildet ist, kann das Schmelzgut nicht in das Schmelzbad fallen, sondern wird vollständig im Wirkraum mit der anschließenden Schmelzrampe abgeschmolzen, über die das Schmelzgut als flüssige Schmelze in das Schmelzbad fließt. Dabei verbrennen auch anhaftende Teilchen, Emulsionen und dergleichen, bevor sie in das Schmelzbad gelangen können und hier zu Verunreinigungen der Schmelze führen können.
  • Weiterhin ist im Gegensatz zum Stand der Technik der Einsatz von feuchtem Schmelzgut möglich, da dieses nicht in das Schmelzbad gelangt und dort zu Explosionen führen könnte. Entsprechend ist eine Badunterkühlung durch kaltes Schmelzgut nicht möglich.
  • Bei Schmelzgut mit niedrigem Schmelzpunkt, zum Beispiel Aluminium, können auch Teile, die Metalle mit höherem Schmelzpunkt enthalten, zum Beispiel eisenhaltige Aluminiumteile, problemlos eingeschmolzen werden, da die anfallenden Eisenteile auf der Schmelzrampe liegen bleiben und später leicht entfernt werden können. Entsprechendes gilt für die vorhandene Krätze und andere Verunreinigungen wie Formsandrückstände. Somit entsteht keine Auflegierung bzw. ein Verfälschen der Schmelze bis zur Unbrauchbarkeit.
  • Durch die klare Trennung von Schmelzwirkraum und Schmelzbad bzw. Warmhalteraum und die Anordnung der Schmelz-Brennvorrichtung in der Nähe des Schmelz-Wirkraumes ist eine Überhitzung des Schmelzbades nicht möglich, da die Brennerflamme nicht, wie im Stand der Technik, über das erschmolzene Metall des Schmelzbades in den Schmelzschacht gelangt. Die Größe des Schmelz- Wirkraumes, d.h. seine Höhe und seine Querschnittsfläche wird entsprechend der Brennerflamme der ausgewählten Brennervorrichtung unter Berücksichtigung der geforderten Brennerleistung, d.h. Schmelzleistung des Schachtschmelzofens festgelegt. Auf diese Weise wird der Wirkungsgrad der Anlage maximiert, d.h. daß beim Schmelzen kein Schmelzgut im Wirkraum bzw. am Übergangsbereich des Wirkraumes zur Schmelzrampe ungeschmolzen liegenbleibt, so daß kontinuierlich das Schmelzgut aus dem Beschickungsschacht nachrutschen kann.
  • Vorteilhafte Weiterbildungen und Verbesserungen ergeben sich aus den Unteransprüchen.
  • I'")ie Erfindung ist in der Zeichnung dargestellt to wird in der nachfolgenden Beschreibung näher erläutert. Die Figur zeigt: einen Schnitt durch den erfindungsgemäßen Schachtschmelzofen mit Abgashaube.
  • Der Schachtschmelzofen 1 nach der Figur weist einen Beschickungsschacht 2 auf, der trichterförmig ausgebildet ist. An den Beschickungsschacht 2 schließt sich ein Schmelz-Wirkraum 3 an, der einen konstanten Querschnitt aufweist und leicht gegen die Senkrechte geneigt ist. An den Wirkraum 3 schließt sich eine Schmelzrampe 4 an, die vorzugsweise eine leichte Neigung z.B. von 8 Grad gegen die Horizontale aufweist. Unterhalb der Schmelzrampe 4 ist ein als Warmhalteraum 5 ausgebildeter Innenraum des Ofens angeordnet, der das Schmelzbad aufnimmt. Im Bereich des Wirkraumes 3 und der Schmelzrampe 4 ist eine als ÖI- oder Gasbrenner angeordnete Brennervorrichtung 6 angeordnet, die auf den Übergangsbereich zwischen Wirkraum und Schmelzrampe 4 gerichtet ist, so daß das untere Ende des Wirkraumes 3 voll im Wirkbereich der Brennervorrichtung 6 liegt. In der Nähe der Schmelzrampe 4 ist eine Reinigungsöffnung 7a,b vorgesehen, über die die auf der Schmelzrampe 4 liegenden Verunreinigungen oder dergleichen entfernt werden können. Ein auf das Schmelzbad gerichteter Warmhaltebrenner 8 ist in den Seitenwänden des Warmhalteraumes 5 angeordnet.
  • In dem dargestellten Ausführungsbeispiel ist der Warmhalteraum 5 unterhalb der Schmelzrampe 4 vorgesehen. Selbstverständlich kann entsprechend der Konstruktion des Schmelzschachtofens dieser Warmhalteraum auch vor oder seitlich der Schmelzrampe angeordnet sein. Auch die Anordnung der Brennervorrichtung 6 und des Wirkraumes 3 kann entsprechend den Konstruktionsbedingungen des Schachtschmelzofens verändert werden, d.h. entsprechend den Betriebsverhältnissen kann der Wirkraum sich direkt senkrecht unter dem trichterförmigen Beschickungsschacht 2 fortsetzen. Je nach Ofenform kann die Brennervorrichtung 6 in etwa der Höhe des Wirkraumes 3 an unterschiedlichen Stellen im Umfang des Ofens angeordnet sein.
  • An den trichterförmigen Beschickungsschacht 2 schließt sich eine Abgashaube 9 an, die mit einer Schiebetür 10 versehen ist. Oberhalb der Abgashaube 9 ist eine Temperaturmeßstelle 11 vorgesehen. Zwischen Abgashaube 9 und Beschickungsschacht 2 befindet sich eine durch einen Motor 12 antreibbare Schachtabdeckung 13, die abhängig von den gewünschten Betriebszuständen geschwenkt wird.
  • Bei der Beschickung des Beschickungsschachtes 2 mit Schmelzgut rutscht dieses in den Schmelz- wirkraum 3,wobei seine Packungsdichte sehr groß ist. Der auf den Übergangsbereich zwischen Wirkraum 3 und Schmelzrampe 4 gegebenenfalls über Ümlenkungen gerichtete Brenner 6 schmilzt das Schmelzgut, das die schmelzrampe herunterfließt, und in den Innenraum 5 fließt. Die heißen Abgase des Brenners 6 steigen im Wirkraum hoch und schmelzen ebenfalls das engliegende Schmelzgut. Da die Größe des Wirkraumes 3 entsprechend der Brennerflamme der Brennervorrichtung unter Berücksichtigung der geforderten Schmelz- oder Brennerleistung angepaßt ist, wird der untere Teil des Wirkraumes freigeschmolzen, so daß das im trichterförmigen Beschickungsschacht 2 vorhandene Schmelzgut nachrutschen kann, wobei der Wirkraum so lange verschlossen wird, bis das Schmelzgut restlos geschmolzen ist. Die schrägen Flächen des trichterförmigen Beschickungsschachtes 3 begünstigen das Nachrutschen. Die Abgase strömen weiter nach oben und schmelzen das Schmelzgut zumindest an und verlassen dann, nachdem sie ihre Wärme abgegeben haben, den Beschickungsschacht 2 am oberen Ende und gelangen in die Abgashaube 9.
  • Während des Schmelzbetriebes wird an der Temperaturmeßstelle 11 die Abgastemperatur überwacht. Wenn der Wirkraum 3 freigeschmolzen ist, steigt die Abgastemperatur an, wodurch angezeigt wird, daß der Beschickungsschacht 2 für einen weiteren Beschickungsvorgang frei ist. Die nicht dargestellte Beschickungsvorrichtung besteht aus einem Beschickungsbehälter und einer Hubvorrichtung. Bei Erreichen der vorgewählten Abgastemperatur wird die Schiebetür 10 über einen Motor 14 geöffnet, und der Beschickungsbehälter fährt hoch und passiert gleichzeitig eine elektromechanische Kontrollstelle, die die geöffnete Schiebetür 10 anzeigt. Über einen Schalter wird gleichzeitig eine Taktbeschickung eingeleitet, d.h. der gefüllte Behälter fährt mit eingestellten Pausen und Laufzeiten in die Endkippstellung. Nachdem der Behälter entleert ist, fährt er zurück und mittels der Hubvorrichtung nach unten und die Schiebetür 10 schließt sich automatisch.
  • Sollte aus irgend welchen Gründen der Beschickungsvorgang nicht eingeleitet werden, so wird über eine vorgewählte und eingestellte maximale Abgastemperatur und nach Ablauf einer an einem Zeitglied eingestellten Zeit der Schmelzbrenner abgeschaltet, und es wird ein optisches oder akustisches Signal geliefert, das die Notwendigkeit des Nachchargierens anzeigt.
  • In dem gezeigten Ausführungsbeispiel ist der Schmelzraum und der Warmhalteraum übereinander angeordnet. In einer anderen Ausführungsform liegen Schmelzraum und Warmhalteraum nebeneinander, wobei die beiden Räume durch eine Wand getrennt sind und der Übergang ist nur als kleine Offnung für den Durchlaß des geschmolzenen Metalls in dem Warmhalteraum:
  • Die Zeichnung zeigt einen Schachtschmelzofen mit einer rechteckigen Ausführung des Ofenmantels, selbstverständlich können auch andere Formen beispielsweise runde oder ovale Ofenmantelausführungen vorgesehen werden.

Claims (8)

1. Schachtschmelzofen zum Schmelzen von Metallen mit einem das Schmelzbad aufnehmenden Warmhalteraum, einem zur Zuführung des Schmelzgutes dienenden trichterförmigen Beschickungsschacht (2), einem daran anschließenden Schmelz- wirkraum (3) sowie mit einer das Schmelzgut beaufschlagenden Brennereinrichtung (6), wobei der Schmelzwirkraum (3) einen konstanten Querschnitt aufweist und an einen ersten Abschnitt einer horizontalen oder leicht geneigten Schmelzrampe (4) anschließt und die Brennereinrichtung (6) auf den Bereich des Überganges zwischen dem Schmelz- wirkraum (3) und dem ersten Abschnitt der Schmelzrampe (4) gerichtet ist, so daß das Schmelzgut über die ganze Schmelzrampe (4) laufen muß und Fremdkörper auf der Schmelzrampe (4) liegen bleiben und vom Schmelzgut abgetrennt werden.
2. Schachtschmelzofen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß im Bereich der Schmelzrampe (4) eine Reinigungstür (7) zum Entfernen von Rückständen vorgesehen ist.
3. Schachtschmelzofen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Schmelzwirkraum (3) zur Senkrechten geneigt ist.
4. Schachtschmelzofen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß oberhalb des Beschickungsschachtes (2) eine Meßstelle zur Erfassung der Abgastemperatur vorgesehen ist.
5. Schachtschmelzofen nach Anspruch 4, dadurch gekennzeichnet, daß eine automatische Beschickungsvorrichtung vorgesehen ist, die abhängig von der Abgastemperatur gesteuert wird.
6. Schachtschmelzofen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Schmelzwirkraum (3) mit Schmelzrampe (4) und der Warmhalteraum (5) übereinander angeordnet sind.
7. Schachtschmelzofen nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Schmelzwirkraum (3) mit Schmelzrampe (4) und der Warmhalteraum (5) nebeneinander angeordnet sind, wobei die Rampe durch eine Wand mit Öffnung als Durchlaß des geschmolzenen Metalls getrennt ist.
8. Schachtschmelzofen nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Größe des Schmelzwirkraumes (3) unter Berücksichtigung der verwendeten Brennervorrichtung (6) auf die geforderte Schmelzleistung angepaßt ist.
EP86730066A 1985-04-19 1986-04-15 Schachtschmelzofen zum Schmelzen von Metallen Expired EP0204652B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86730066T ATE48693T1 (de) 1985-04-19 1986-04-15 Schachtschmelzofen zum schmelzen von metallen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3514681 1985-04-19
DE3514681 1985-04-19

Publications (2)

Publication Number Publication Date
EP0204652A1 EP0204652A1 (de) 1986-12-10
EP0204652B1 true EP0204652B1 (de) 1989-12-13

Family

ID=6268915

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86730066A Expired EP0204652B1 (de) 1985-04-19 1986-04-15 Schachtschmelzofen zum Schmelzen von Metallen

Country Status (6)

Country Link
US (1) US4687438A (de)
EP (1) EP0204652B1 (de)
AT (1) ATE48693T1 (de)
CA (1) CA1280593C (de)
DE (1) DE3667533D1 (de)
ES (1) ES8704620A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10325153A1 (de) * 2003-05-30 2004-12-30 Strikowestofen Gmbh Vorrichtung zum Schmelzen und Warmhalten von Metallen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8527603U1 (de) * 1985-09-27 1985-12-12 Bleiwenz GmbH, 6920 Sinsheim Schmelz- und Warmhalteofen
US5236352A (en) * 1992-10-08 1993-08-17 Carpenter Roland K Apparatus and methods for processing scrap tires
CA2086879A1 (en) * 1993-01-07 1994-07-08 Henry Meyer Process and apparatus for delivering a metered shot

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1143745A (de) * 1900-01-01
US1092938A (en) * 1912-10-10 1914-04-14 United Aluminum Ingot Company Melting-furnace.
GB252457A (en) * 1925-02-27 1926-05-27 David Mackintosh Shaw Improvements relating to artificial teeth
US1638812A (en) * 1926-08-05 1927-08-09 Maehler Drying and enameling oven
US1796871A (en) * 1928-03-03 1931-03-17 Gathmys Res Corp Method of reduction and reducing furnaces
US2161181A (en) * 1936-11-12 1939-06-06 Marx Peter Melting furnace
US2436124A (en) * 1946-08-29 1948-02-17 John H Ehardt Reverberatory furnace
US2527144A (en) * 1949-09-21 1950-10-24 Chicago Vitreous Enamel Produc Smelter and method of smelting frit
US2991060A (en) * 1958-04-16 1961-07-04 Sklenar Wenzeslaw Frank Reverberatory furnace
US3129932A (en) * 1961-05-05 1964-04-21 Lafarge Ciments Sa Means for continuously treating divided materials
DE1176682B (de) * 1962-03-15 1964-08-27 Beteiligungs & Patentverw Gmbh Schmelzofen, insbesondere zur Stahlerzeugung aus Schrott und Kohlungsmitteln
US3317310A (en) * 1964-06-05 1967-05-02 Jr Carl George Delaval Method of making cast iron
GB1172863A (en) * 1966-01-27 1969-12-03 Gas Council Improvements in or relating to Melting Furnaces
US3379424A (en) * 1966-07-05 1968-04-23 Modern Equipment Co Scrap metal preheaters
JPS6055755B2 (ja) * 1981-11-05 1985-12-06 宇部興産株式会社 二重傾斜炉

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10325153A1 (de) * 2003-05-30 2004-12-30 Strikowestofen Gmbh Vorrichtung zum Schmelzen und Warmhalten von Metallen

Also Published As

Publication number Publication date
EP0204652A1 (de) 1986-12-10
ES554161A0 (es) 1987-04-01
ES8704620A1 (es) 1987-04-01
DE3667533D1 (de) 1990-01-18
ATE48693T1 (de) 1989-12-15
CA1280593C (en) 1991-02-26
US4687438A (en) 1987-08-18

Similar Documents

Publication Publication Date Title
EP1146304B1 (de) Zweikammerofen zum Tauchschmelzen von kontaminiertem Aluminiumschrott
EP0483322A1 (de) Einschmelzaggregat mit zwei nebeneinander angeordneten schmelzöfen.
DE2804057C2 (de) Verfahren zur Beseitigung von beim Einschmelzen verschmutzten Leichtmetallschrotts freigesetzten Verunreinigungen
DE2226857A1 (de) Elektrischer aufheiz- und schmelzofen fuer stahl- und eisenschrott
EP0204652B1 (de) Schachtschmelzofen zum Schmelzen von Metallen
DE2332093B2 (de) Beschickungs- und Entleerungsvorrichtung für einen Drehschmelzofen zur Abtrennung und Wiedergewinnung metallischen Zinks
DE3004906C2 (de) Schmelzofen für Metalle und Metallegierungen mit einer über einen Abgaskanal verbundenen wärmeisolierten Kammer und Verfahren zum Schmelzen
EP0799323A1 (de) Kippbares metallurgisches aggregat bestehend aus mehreren gefässen
WO1987002124A1 (en) Melting and holding furnace
DE1083509B (de) Elektrischer Mehrkammer-Schmelzofen zum Einschmelzen von Metallen mit einer Schmelzkammer und einer Warmhalte- und Entnahmekammer
DE588316C (de) Verfahren und Vorrichtung zum Einschmelzen von Folien
DE3247023A1 (de) Einrichtung zur beschickung von industrieoefen, insbesondere metallschmelzoefen, mit vorwaermung des beschickungsguts durch ausnutzung der abgaswaerme
DE596282C (de) Vorrichtung zum Einschmelzen von Teilchen aus leicht oxydierbarem Leichtmetall, z. B. Aluminium
DE9302137U1 (de) Schmelzvorrichtung für Materialien mit hohen brennbaren Anteilen
DE60314780T2 (de) Drehtrommelofenwerke zum aufschmelzen von aluminium, mit sortierung und rückgewinnung von schlacke
DE200668C (de)
DE546527C (de) Gasbefeuerter Schmelzofen fuer Aluminium
DE490025C (de) Lichtbogenwiderstandsofen
DE1210132B (de) Tiegelschoepfofen zum Schmelzen von Nichteisenmetallen
DE972075C (de) Schwenkbarer Schachtofen, insbesondere zum Einschmelzen von Leichtmetallschrott
EP0154176B1 (de) Schmelzofen
DE886530C (de) Verfahren zum Trennen von Metallen und Rueckstaenden im Schmelzfluss
DE102019126503A1 (de) Metallurgische Schmelzeinrichtung sowie Verfahren zum Schmelzen eines Metalls
DE316953C (de)
DE947104C (de) Induktionsofen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19861114

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19871119

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19891213

REF Corresponds to:

Ref document number: 48693

Country of ref document: AT

Date of ref document: 19891215

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3667533

Country of ref document: DE

Date of ref document: 19900118

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: DIDIER-WERKE AG

Effective date: 19900909

NLR1 Nl: opposition has been filed with the epo

Opponent name: DIDIER-WERKE AG

ITTA It: last paid annual fee
PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19920625

NLR2 Nl: decision of opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940425

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940427

Year of fee payment: 9

EAL Se: european patent in force in sweden

Ref document number: 86730066.7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950430

Ref country code: CH

Effective date: 19950430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040415

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040416

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040428

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040429

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040430

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050415

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051230

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20051101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20051230