EP0200644B1 - Procédé pour la combustion de combustibles fluides et brûleur à turbulence adapté à sa mise en oeuvre - Google Patents

Procédé pour la combustion de combustibles fluides et brûleur à turbulence adapté à sa mise en oeuvre Download PDF

Info

Publication number
EP0200644B1
EP0200644B1 EP86400901A EP86400901A EP0200644B1 EP 0200644 B1 EP0200644 B1 EP 0200644B1 EP 86400901 A EP86400901 A EP 86400901A EP 86400901 A EP86400901 A EP 86400901A EP 0200644 B1 EP0200644 B1 EP 0200644B1
Authority
EP
European Patent Office
Prior art keywords
air
burner
combustion
tertiary air
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86400901A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0200644A1 (fr
Inventor
Gérard Flament
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Charbonnages de France CDF
Original Assignee
Charbonnages de France CDF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Charbonnages de France CDF filed Critical Charbonnages de France CDF
Priority to AT86400901T priority Critical patent/ATE45621T1/de
Publication of EP0200644A1 publication Critical patent/EP0200644A1/fr
Application granted granted Critical
Publication of EP0200644B1 publication Critical patent/EP0200644B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • F23D1/02Vortex burners, e.g. for cyclone-type combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes

Definitions

  • the invention relates to a method for the combustion of fluid fuels, such as coal pulverized in suspension in air, and a combustion device with a turbulence burner adapted to the implementation of this method;
  • turbulence burners designates burners in which a fluid fuel, such as coal pulverized in suspension in a stream of primary air, is introduced into a hearth by means of a nozzle and in which secondary air, necessary for the combustion of the fuel, is rotated around the end of the nozzle, for example by means of deflector flaps commonly called louvers.
  • a fluid fuel such as coal pulverized in suspension in a stream of primary air
  • secondary air necessary for the combustion of the fuel
  • this type of burner can in certain cases pose problems difficult to solve in order to obtain a flame which is stable and which is not excessively cooled by radiation towards the walls of the hearth and by recirculation of the external gases in the flame, with the consequence of a reduction in the combustion efficiency.
  • the flame obtained extends over a relatively large diameter and it may be desirable to confine it in as small a volume as possible, especially if the burner is used in a stove of reduced dimensions, such as a drum dryer. .
  • the walls of such a chamber can be brought to a temperature which causes both their fouling by the bonding of hot ash particles and their rapid deterioration, despite the use of refractory materials.
  • Also known from document FR-A-1 057 305 is a fuel combustion device comprising an elongated combustion chamber at the base of which the fuel and rotating secondary air are injected.
  • a complementary supply of combustion air is made tangentially in rotation at the base of the wall of the combustion chamber, through an annular slot opening radially.
  • the combustion chamber is of reduced section to prevent combustion gases from returning to the chamber.
  • the object of the present invention is to propose a combustion method and a combustion device implementing this method, which make it possible to avoid the above drawbacks and therefore to carry out a substantially complete combustion of the fuel in a flame of great stability. and of limited volume, avoiding deposits of solid matter on the walls of the chamber and the hearth.
  • Another object of the invention is to provide a combustion device which can operate without additional fuel and without preheating the combustion air, that is to say in which the flame stability is independent of the conditions imposed by the combustion chamber.
  • the subject of the invention is a combustion process according to which a fluid fuel formed from pulverized coal mixed with primary air is injected along an axis, secondary air is introduced through the neck of a burner along a helical path around said axis, and tertiary air is injected around the combustible fluid and secondary air in a coaxial ring which is substantially continuous circumferentially and laterally confined downstream of the injection by the wall of a coaxial combustion chamber, characterized in that this cold tertiary air is injected in substantially the same direction as the combustible fluid, and in that this tertiary air opens out along said wall, which has a constant diameter and extends downstream over a length of between 0.2 and 1 times its diameter.
  • the tertiary air flow must be of the same order of magnitude as the secondary air flow because its function is to create a cold air jacket between the jet of gas in combustion and the wall of the combustion chamber so that combustion can take place in this chamber without damaging the walls.
  • this cold tertiary air jacket must cool the ash particles in the vicinity of the wall and prevent them from coming into contact with this wall and sticking to it.
  • This parietal cold air flow also has. ment a cooling effect of the wall which will be beneficial for the holding thereof. This flow prevents in particular the recirculation of combustion gases laden with particles between this air and this wall.
  • the length of the combustion chamber is sufficient to allow most of the combustion to take place there and at least to allow stable attachment of the flame regardless of the conditions and geometry of the space in which the burner leads.
  • a substantially adiabatic enclosure is thus produced from the fuel injection point in which the flame is stabilized and 10qa most of the combustion carried out.
  • the quantity of tertiary air required to protect the walls of the combustion chamber can be such that, if it is desired to keep an overall excess of air not too high (ie an air factor less than 1.6), it is necessary to operate in the event of an air fault before injecting the air.
  • This is not necessarily necessary but can be accepted advantageously because a sub-stoichiometric combustion in its first phase can be beneficial both from the point of view of inflammation when it is not favored elsewhere (cold combustion air , fuel difficult to ignite) only from the point of view of NO x emissions which will be reduced in this case.
  • This sub-stoichiometric combustion will even generally be necessary when working under conditions making ignition difficult, that is to say for example: cold combustion air (especially in winter), coarse particle size, fuel with low content volatile matter, very ashy or humid fuel.
  • the “swirl number” of the flow produced by the primary and secondary air is moderate (0.3 to 2) but sufficient to create an internal recirculation zone of hot burnt gases which allows heating and therefore rapid ignition of the fuel. as soon as it comes into contact with secondary air.
  • the invention also proposes a combustion device comprising a turbulence burner and a coaxial cylindrical combustion chamber which extends downstream, suitable for implementing the method, this burner comprising a pipe for the supply of fluid. fuel and primary air along an axis (XX), a supply device for injecting secondary air through the burner neck following a helical path around said axis and a device located near the wall of the combustion chamber for the injection of tertiary air in a ring around said axis, characterized in that the tertiary air injection device is adapted to inject this tertiary air substantially parallel to the direction of fuel injection and in that, the combustion chamber being connected to the neck of the burner by a frustoconical opening in refractory material, the wall of this chamber extends downstream of the opening over a length of between 0.2 and 1 time its diameter.
  • this tertiary air injection device is in a plane perpendicular to the axis located at a distance from the nose of the burner of between 0.5 and 1.5 times the diameter of the neck of the burner and has a diameter between 1.8 and 3.6 times the diameter of the burner neck.
  • the burner neck is connected to the combustion chamber by a frustoconical opening in refractory material resistant to a temperature of 1400 ° C with a half-angle at the top advantageously between 10 and 35 °.
  • the device for injecting tertiary air can be constituted by any means capable of creating a continuous air curtain between the flame and the combustion chamber. According to one embodiment, it consists of an annular slot placed in a plane perpendicular to the axis, which may optionally include a grid pierced with holes or made of porous material, which allows this air to be better distributed.
  • it is constituted by a multiplicity of nozzles opening substantially parallel to the axis or in the vicinity of the periphery of the combustion chamber.
  • the number of these nozzles, when they are cylindrical, must be high (greater than or equal to 16, for example) so that the air curtain formed is continuous.
  • the free spacing between the axes of two consecutive nozzles must be limited, that is to say preferably less than 2 times their diameter.
  • the single figure appended hereto represents, by way of nonlimiting example, a schematic view in longitudinal section of a burner according to the invention.
  • This burner is of the turbulence type.
  • it includes a device for injecting a fluid fuel such as, for example, pulverized coal suspended in a stream of primary air as well as a device for injecting secondary air suitable for injecting l secondary air along a helical path around the fluid fuel.
  • first pipe 1 for supplying the fluid fuel into an annular duct 2 oriented along an axis XX and terminated by an injection nozzle 3.
  • This annular duct 2 is delimited internally by a generally hollow bar 2A in which one for example has an ignition torch not shown (or a flame detector, or an auxiliary fuel injection pipe ...
  • This burner also comprises at least a second pipe 4 for supplying a neck rant of secondary air in a wind box 5, here arranged around the annular duct 2.
  • This wind box has a volume large enough to allow good homogenization of the secondary air supplied by the pipes 4. It is delimited axially between a fixed wall 5A and a flange 5B which can slide axially along the duct 2 under the action of a control linkage shown here in simplified form by a line 5C.
  • This wind box is radially limited by a cylindrical wall 5D, composed of successive sections provided with connection flanges, which extends axially beyond the movable flange to a second fixed wall 5E which progressively connects to a portion tubular 5F surrounding the injection nozzle 3.
  • This second fixed wall 5E carries in axial projection, in the direction of the movable flange 5B, a plurality of deflector flaps or louvers 6 parallel to the axis XX but having a given angle relative to planes containing the axis XX and intersecting these louvers.
  • lights 6A are arranged axially in the movable flange so as to allow the movable flange to be brought closer to the fixed wall 5E.
  • a secondary air stream is thus injected around the combustible fluid stream with a rotational movement defined by the inclination of the louvers, with a flow rate regulated as a function of the axial position of the movable flange.
  • sleeves of selected thickness are arranged in the annular conduit 2 or in the tubular portion 5F so as to allow adjustment of the flow rates in these conduits.
  • the tubular portion 5F in fact here consists of two sections, the first 5F 'of which is integral with the wall 5E and the second 5F "is connected to the first by securing two transverse walls 5G and 10A by means of any type of connection.
  • the walls 5E and 5G are kept parallel by spacers 5H.
  • the tubular section 5F "extends axially approximately up to the level of the end of the nozzle 3 for injecting fluid fuel, and defines a nozzle 7 for injecting secondary air into a zone called" burner nose " .
  • This tubular section 5F is preferably connected in a zone 8 called” burner neck ", to an opening 14 progressively opening away from the nozzles 3 and 7, here of frustoconical shape.
  • This opening is advantageously made in a refractory material, such as refractory concrete resistant, preferably up to 1400 ° C.
  • This refractory material is here engaged in a cylindrical bowl 14A in which it is fixed by means shown diagrammatically in 14B.
  • the bowl 14A can have a frustoconical shape, or be partially cylindrical and partially frustoconical.
  • annular stream of tertiary air is injected around the combustible fluid and the secondary air, substantially in the direction of the axis X-X, along an axial ring.
  • the burner according to the invention in fact comprises a device for injecting a stream of tertiary air around the axis XX, around the flue 14.
  • This device comprises at least one supply pipe 9 of tertiary air emerging in a wind box 10 delimited in particular by the wall 10A and the section 5F "mentioned above as well as the bowl 14A receiving said refractory material.
  • This wind box is further delimited by a cylindrical wall 10B radially external extended axially around the shutter 14 by a cylindrical section 12A which defines with this shutter a substantially continuous annular nozzle of tertiary air.
  • This section 12A is preferably extended axially by a cylindrical confinement wall 13, here made up of three modular elements, which delimits a combustion chamber 11 in front of the shutter.
  • This confinement wall 13 is in practice internally coated with a refractory layer, for example of a material identical to that of the quill, preferably lined with an insulating layer 13A, such as an insulating wool, intended to make the combustion chamber 11 substantially adiabatic.
  • This burner can be connected by any known means, to a hearth wall for example, the pipes 4 and 9 then being advantageously arranged on the same side of this wall, away from the flame.
  • the speed of the tertiary air as it enters the combustion chamber is of the same order of magnitude as the average speed of the combustion gases circulating in the same area;
  • the mass flow of tertiary air is preferably between 0.2 and 1.0 times the total mass flow of primary and secondary air, which is advantageously between 0.7 and 1.2 times the mass flow of air required to the complete combustion of the fuel (so-called “stoichiometric” flow).
  • This annular current forms a thermal protection ply of the confinement wall 13 and provides a kind of sheathing of the mixture of gases in the combustion chamber.
  • This annular current is, in the example shown, obtained from a circumferentially continuous nozzle (or slot).
  • the shutter 14 and the section 12A are connected by substantially radial fins channeling the tertiary air by imposing, if necessary, a slight rotational movement, either by a perforated grid or by a plurality of adjacent nozzles, for example oval or elliptical, which, when they are cylindrical, are separated circumferentially by a distance advantageously less than or equal to their diameter: such nozzles are thus generally in a number greater than or equal to 16.
  • the diameter of the crown according to which the tertiary air is injected is advantageously between 1 , 8 and 3.6 times the diameter of the burner neck (at 8), and the tertiary air is injected downstream of this neck at a distance preferably between 0.5 and 1.5 times this neck diameter.
  • the number of swirls at the outlet of the burner neck is preferably chosen between 0.3 and 2, just sufficient to allow the creation of a closed internal recirculation zone favorable to inflammation.
  • the combustion chamber preferably extends over a length of between 0.2 and 1 times its diameter (it allows flame protection).
  • the ratio of the inlet and outlet diameters of the outlet is preferably chosen between 1.5 and 2.
  • the length of the burner is to be chosen according to the desired residence time for the fluid fuel, which varies for example with the particle size of the pulverized coal, while the ratio of its inlet and outlet diameters is to be chosen according to the desired aerodynamic characteristics.
  • the overall air flow (primary + secondary + tertiary) is preferably chosen to be 1.2 to 1.6 times the aforementioned stoichiometric flow.
  • the injection speed of the fluid fuel is around 20m / s
  • that of the secondary air can vary between 15 and 35-40m / s
  • that of the tertiary air can vary between 5 and 20-30m / s.
  • the diameter of the burner neck is for example from 0.20 m to 0.60 m approximately.
  • Secondary air and tertiary air can come from the same wind box fitted with a suitable distributor.
  • a burner according to the invention can be mounted for example in a drum-dryer of a coating station.
  • the combustion chamber may contain a cooling system, which may prove to be advantageous in the case of boilers; the heat collected by the cooling fluid is then advantageously recovered.
  • Another important advantage of the burner according to the invention lies in the fact that it can operate in any position, while many burners of this type can only be used in the vertical position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Polymerisation Methods In General (AREA)
  • Gas Burners (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
EP86400901A 1985-05-03 1986-04-24 Procédé pour la combustion de combustibles fluides et brûleur à turbulence adapté à sa mise en oeuvre Expired EP0200644B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86400901T ATE45621T1 (de) 1985-05-03 1986-04-24 Verfahren zur verbrennung von fliessfaehigen brennstoffen und wirbelbrenner zur durchfuehrung des verfahrens.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8506750 1985-05-03
FR8506750A FR2581444B1 (fr) 1985-05-03 1985-05-03 Procede pour la combustion de combustibles fluides et bruleur a turbulence adapte a sa mise en oeuvre

Publications (2)

Publication Number Publication Date
EP0200644A1 EP0200644A1 (fr) 1986-11-05
EP0200644B1 true EP0200644B1 (fr) 1989-08-16

Family

ID=9318931

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86400901A Expired EP0200644B1 (fr) 1985-05-03 1986-04-24 Procédé pour la combustion de combustibles fluides et brûleur à turbulence adapté à sa mise en oeuvre

Country Status (14)

Country Link
US (2) US4838185A (fi)
EP (1) EP0200644B1 (fi)
JP (1) JPS61256108A (fi)
AT (1) ATE45621T1 (fi)
AU (1) AU582647B2 (fi)
CA (1) CA1289416C (fi)
DE (1) DE3665097D1 (fi)
DK (1) DK165707C (fi)
ES (1) ES8708258A1 (fi)
FI (1) FI861783A (fi)
FR (1) FR2581444B1 (fi)
IN (1) IN167334B (fi)
PT (1) PT82483B (fi)
ZA (1) ZA863209B (fi)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161967A (en) * 1986-12-24 1992-11-10 Georg Fischer Ag Process and device to feed additives into a shaft or cupola furnace
AU612007B2 (en) * 1988-03-10 1991-06-27 Blackwall Reach Nominees Pty Ltd Reactor furnace
US5044552A (en) * 1989-11-01 1991-09-03 The United States Of America As Represented By The United States Department Of Energy Supersonic coal water slurry fuel atomizer
DE69105535T2 (de) * 1990-01-30 1995-04-13 Cyclean Inc Trommeltrockner für die Wiederaufbereitung von aufgebrochenem Altasphalt.
EP0445938B1 (en) * 1990-03-07 1996-06-26 Hitachi, Ltd. Pulverized coal burner, pulverized coal boiler and method of burning pulverized coal
WO1992006328A1 (en) * 1990-10-05 1992-04-16 Massachusetts Institute Of Technology Combustion system for reduction of nitrogen oxides
US5334012A (en) * 1990-12-27 1994-08-02 Astec Industries, Inc. Combustion chamber having reduced NOx emissions
US5588379A (en) * 1991-03-20 1996-12-31 Witteveen; Gustaaf J. Mixing device and method for gaseous liquid of pulverised substances
US5333574A (en) * 1991-09-11 1994-08-02 Mark Iv Transportation Products Corporation Compact boiler having low NOX emissions
US5199867A (en) * 1991-09-30 1993-04-06 The Boc Group, Inc. Fuel-burner apparatus and method for use in a furnace
DE4217879A1 (de) * 1992-05-29 1993-12-02 Babcock Energie Umwelt Brenner für staubförmigen Brennstoff
DE4325643A1 (de) * 1993-07-30 1995-02-02 Lentjes Kraftwerkstechnik Brenner zum Verbrennen von staubförmigem Brennstoff
RU2104443C1 (ru) * 1993-11-08 1998-02-10 Иво Интернэшнл ОЙ Способ и устройство для сжигания пылевидного топлива
CA2151308C (en) * 1994-06-17 1999-06-08 Hideaki Ohta Pulverized fuel combustion burner
ES2117919B1 (es) * 1994-10-18 1999-03-16 Proyce S A Quemador de aire total mejorado.
US6837702B1 (en) 1994-12-01 2005-01-04 Wartsila Diesel, Inc. Method of operating a combined cycle power plant
US5525053A (en) * 1994-12-01 1996-06-11 Wartsila Diesel, Inc. Method of operating a combined cycle power plant
EP0754908B2 (de) * 1995-07-20 2001-04-18 DVGW Deutscher Verein des Gas- und Wasserfaches -Technisch-wissenschaftliche Vereinigung- Verfahren und Vorrichtung zur Unterdrückung von Flammen-/Druckschwingungen bei einer Feuerung
JP3492099B2 (ja) * 1995-10-03 2004-02-03 三菱重工業株式会社 バーナ
DK0856700T3 (da) * 1996-08-22 2004-05-17 Babcock Hitachi Kk Brænder og forbrændingsenhed forsynet med denne
DE19749431C1 (de) * 1997-11-08 1999-03-18 Steinmueller Gmbh L & C Verfahren zum Verbrennen von Brennstoffstaub in einer Tangentialfeuerung und Tangentialfeuerung zur Durchführung des Verfahrens
AT408796B (de) * 1999-04-29 2002-03-25 Dumag Ohg Brenner
US6347937B1 (en) 2000-01-21 2002-02-19 Ats Spartec Inc. Rotary kiln burner
FR2848641B1 (fr) * 2002-12-11 2005-12-16 Alstom Switzerland Ltd Systeme de chauffe indirecte avec valorisation des particules de combustible ultra fines
EP1869307B1 (en) * 2005-04-12 2010-08-18 Zilkha Biomass Energy LLC Integrated biomass energy system
US8308477B2 (en) * 2006-03-01 2012-11-13 Honeywell International Inc. Industrial burner
BRPI0719436A2 (pt) * 2006-09-29 2013-12-10 Zilkha Biomass Energy Llc Sistema de energia de biomassa integrado
US7865271B2 (en) * 2006-11-02 2011-01-04 General Electric Company Methods and systems to increase efficiency and reduce fouling in coal-fired power plants
US20090084346A1 (en) * 2007-09-28 2009-04-02 General Electric Company Gas flow injector and method of injecting gas into a combustion system
US20090297996A1 (en) * 2008-05-28 2009-12-03 Advanced Burner Technologies Corporation Fuel injector for low NOx furnace
GB201202907D0 (en) * 2012-02-21 2012-04-04 Doosan Power Systems Ltd Burner
CN102809147B (zh) * 2012-06-04 2015-07-29 中国科学院广州能源研究所 一种立式向下液排渣煤粉燃烧装置
CN104379997B (zh) * 2012-07-19 2016-11-02 住友大阪水泥股份有限公司 燃料燃烧装置
EP3026339B1 (de) * 2014-11-27 2019-02-27 Loesche GmbH Feststoffgefeuerter Brenner
US10598285B2 (en) 2017-03-30 2020-03-24 Quest Engines, LLC Piston sealing system
US10465629B2 (en) 2017-03-30 2019-11-05 Quest Engines, LLC Internal combustion engine having piston with deflector channels and complementary cylinder head
US10753308B2 (en) 2017-03-30 2020-08-25 Quest Engines, LLC Internal combustion engine
US10590834B2 (en) 2017-03-30 2020-03-17 Quest Engines, LLC Internal combustion engine
US10590813B2 (en) 2017-03-30 2020-03-17 Quest Engines, LLC Internal combustion engine
US10526953B2 (en) 2017-03-30 2020-01-07 Quest Engines, LLC Internal combustion engine
US11041456B2 (en) 2017-03-30 2021-06-22 Quest Engines, LLC Internal combustion engine
US10989138B2 (en) 2017-03-30 2021-04-27 Quest Engines, LLC Internal combustion engine
JP6894981B2 (ja) 2017-04-28 2021-06-30 クエスト エンジンズ,エルエルシー 可変容積室デバイス
WO2018204684A1 (en) 2017-05-04 2018-11-08 Quest Engines, LLC Variable volume chamber for interaction with a fluid
CN107255272A (zh) * 2017-07-31 2017-10-17 中煤科工清洁能源股份有限公司 一种煤粉燃烧器
CN107559820A (zh) * 2017-09-21 2018-01-09 哈尔滨工业大学 一种适用于旋流煤粉燃烧器的带有周界风的预燃室
US11060636B2 (en) 2017-09-29 2021-07-13 Quest Engines, LLC Engines and pumps with motionless one-way valve
US11134335B2 (en) 2018-01-26 2021-09-28 Quest Engines, LLC Audio source waveguide
US10753267B2 (en) 2018-01-26 2020-08-25 Quest Engines, LLC Method and apparatus for producing stratified streams
CN109595548B (zh) * 2018-12-04 2020-05-01 清华大学 浓淡返混式旋流煤粉燃烧器
CN111351035A (zh) * 2020-03-14 2020-06-30 王永 一种等离子通用燃煤裂化燃烧方法和装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH251223A (de) * 1946-07-11 1947-10-15 Escher Wyss Maschf Ag Gaserhitzer.
FR1057305A (fr) * 1952-05-23 1954-03-08 Bataafsche Petroleum Dispositif de combustion de combustibles liquides ou solides pulvérisés
US4147116A (en) * 1977-09-19 1979-04-03 Coal Tech Inc. Pulverized coal burner for furnace and operating method
US4270895A (en) * 1978-06-29 1981-06-02 Foster Wheeler Energy Corporation Swirl producer
US4303386A (en) * 1979-05-18 1981-12-01 Coen Company, Inc. Parallel flow burner
DE2933060C2 (de) * 1979-08-16 1987-01-22 L. & C. Steinmüller GmbH, 5270 Gummersbach Brenner zur Verbrennung von staubförmigen Brennstoffen
US4551090A (en) * 1980-08-25 1985-11-05 L. & C. Steinmuller Gmbh Burner
US4381718A (en) * 1980-11-17 1983-05-03 Carver George P Low emissions process and burner
FR2496844A1 (fr) * 1980-12-18 1982-06-25 Cote Jean Bruleur a dissociation moleculaire de l'eau
FR2499681A1 (fr) * 1981-02-06 1982-08-13 Stein Industrie Dispositif d'allumage direct de combustibles solides pulverises pauvres dans des chambres de combustion froides
JPS57155004A (en) * 1981-03-20 1982-09-25 Sanree Reinetsu Kk Fuel hole in internal combustion burner of small diameter combustion cylinder
DE3125901A1 (de) * 1981-07-01 1983-01-20 Deutsche Babcock Ag, 4200 Oberhausen Brenner zum verbrennen von staubfoermigen brennstoffen
DE3131962C2 (de) * 1981-08-13 1985-07-25 Steag Ag, 4300 Essen Leistungsbrenner für staubförmige Brennstoffe
DE3140798C2 (de) * 1981-10-14 1983-12-22 Rheinisch-Westfälisches Elektrizitätswerk AG, 4300 Essen Zündbrenner für eine Kraftwerkskesselfeuerung
US4457241A (en) * 1981-12-23 1984-07-03 Riley Stoker Corporation Method of burning pulverized coal
US4523530A (en) * 1982-02-26 1985-06-18 Sumitomo Metal Industries, Ltd. Powdery coal burner
DE3310500C2 (de) * 1983-03-23 1985-04-04 Steag Ag, 4300 Essen Brenner zur Verbrennung von staubförmigen Brennstoffen, insbesondere Kohlenstaub
JPS6011617A (ja) * 1983-06-30 1985-01-21 Mitsubishi Electric Corp 車載用燃焼装置
US4512267A (en) * 1984-01-24 1985-04-23 John Zink Company Methods and apparatus for combusting ash producing solids
JPS60226609A (ja) * 1984-04-23 1985-11-11 Babcock Hitachi Kk 燃焼装置
US4602571A (en) * 1984-07-30 1986-07-29 Combustion Engineering, Inc. Burner for coal slurry

Also Published As

Publication number Publication date
DK165707B (da) 1993-01-04
ES554556A0 (es) 1987-10-01
ATE45621T1 (de) 1989-09-15
US4919611A (en) 1990-04-24
PT82483A (fr) 1986-05-01
EP0200644A1 (fr) 1986-11-05
DK202686D0 (da) 1986-05-02
ZA863209B (en) 1986-12-30
FI861783A (fi) 1986-11-04
DK202686A (da) 1986-11-04
US4838185A (en) 1989-06-13
FI861783A0 (fi) 1986-04-28
PT82483B (pt) 1988-04-21
CA1289416C (en) 1991-09-24
AU5708286A (en) 1986-11-06
IN167334B (fi) 1990-10-06
FR2581444A1 (fr) 1986-11-07
AU582647B2 (en) 1989-04-06
FR2581444B1 (fr) 1988-11-10
ES8708258A1 (es) 1987-10-01
JPS61256108A (ja) 1986-11-13
DK165707C (da) 1993-05-24
DE3665097D1 (en) 1989-09-21

Similar Documents

Publication Publication Date Title
EP0200644B1 (fr) Procédé pour la combustion de combustibles fluides et brûleur à turbulence adapté à sa mise en oeuvre
CA1253745A (fr) Bruleur a charbon pulverise
CA2593186C (fr) Dispositif d'injection d'un melange d'air et de carburant, chambre de combustion et turbomachine munies d'un tel dispositif
EP0312428B1 (fr) Dispositif d'injection d'une charge d'hydrocarbures dans un réacteur de craquage catalytique
EP0421903B1 (fr) Procédé d'exploitation d'un brûleur et brûleurs pour four tubulaire tournant
EP0223718B1 (fr) Dispositif pour la mise en contact de fluides se présentant sous la forme de phases différentes
EP1770333A1 (fr) Bras d'injecteur anti-cokéfaction
FR2533036A1 (fr) Periscope pour reacteurs a haute temperature
EP0216677A1 (fr) Chaudière à lit fluidisé circulant
EP0967434B1 (fr) Brûleur à conduits concentriques d'alimentation en air et à stabilisateur central
EP0686686B1 (fr) Four de traitement thermique de déchets et procédé associé
EP1074790B1 (fr) Brûleur à recirculation de fumées
FR2772887A1 (fr) Bruleur a faible emission d'oxyde d'azote avec circuit de gaz recycle
EP0003000A1 (fr) Tête de combustion destinée à une chambre de combustion
WO2002097327A1 (fr) Generateur thermique et procede de combustion permettant de limiter les emissions d'oxydes d'azote par recombustion des fumees
EP1045203B1 (fr) Brûleur à plusieurs combustibles
FR2772888A1 (fr) Amelioration aux bruleurs a combustible solide
EP0660039B1 (fr) Tête de combustion perfectionnée pour brûleur à gaz, brûleur équipé d'une telle tête et procédé de combustion
FR2521548A1 (fr) Procede pour la calcination de matieres brutes minerales et dispositif pour la mise en oeuvre d'un tel procede
FR2955917A1 (fr) Chambre de combustion pour combustibles solides, liquides, gazeux ou un melange de ceux-ci, du type torsionnelle a axe d'inclinaison variable
FR2564181A1 (fr) Bruleur pour foyer a grande souplesse de fonctionnement
FR2564950A1 (fr) Procede d'obtention d'une flamme et un bruleur a turbulence associe
BE633941A (fi)
FR2774454A1 (fr) Dispositif d'auto-combustion de dechets heterogenes et/ou graisseux et appareil de production d'eau chaude associe
FR2477674A1 (fr) Dispositif aerodynamique de melange de composants pour l'obtention de melanges combustibles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870323

17Q First examination report despatched

Effective date: 19870819

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 45621

Country of ref document: AT

Date of ref document: 19890915

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3665097

Country of ref document: DE

Date of ref document: 19890921

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910405

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910411

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19910419

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19910425

Year of fee payment: 6

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19920424

Ref country code: AT

Effective date: 19920424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19920425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920430

Ref country code: CH

Effective date: 19920430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940412

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940426

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19940430

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940510

Year of fee payment: 9

EUG Se: european patent has lapsed

Ref document number: 86400901.4

Effective date: 19921108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950430

BERE Be: lapsed

Owner name: CHARBONNAGES DE FRANCE

Effective date: 19950430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19951101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950424

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19951101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970425

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050424