EP0180912B1 - Fluidische Radialkolbenmaschine - Google Patents

Fluidische Radialkolbenmaschine Download PDF

Info

Publication number
EP0180912B1
EP0180912B1 EP85113805A EP85113805A EP0180912B1 EP 0180912 B1 EP0180912 B1 EP 0180912B1 EP 85113805 A EP85113805 A EP 85113805A EP 85113805 A EP85113805 A EP 85113805A EP 0180912 B1 EP0180912 B1 EP 0180912B1
Authority
EP
European Patent Office
Prior art keywords
machine
longitudinal axis
mla
machine according
abutment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85113805A
Other languages
English (en)
French (fr)
Other versions
EP0180912A3 (en
EP0180912A2 (de
Inventor
Dieter Schneeweiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G Duesterloh GmbH
Original Assignee
G Duesterloh GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G Duesterloh GmbH filed Critical G Duesterloh GmbH
Publication of EP0180912A2 publication Critical patent/EP0180912A2/de
Publication of EP0180912A3 publication Critical patent/EP0180912A3/de
Application granted granted Critical
Publication of EP0180912B1 publication Critical patent/EP0180912B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/0447Controlling
    • F03C1/0457Controlling by changing the effective piston stroke
    • F03C1/046Controlling by changing the effective piston stroke by changing the excentricity of one element relative to another element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members
    • F04B49/123Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members by changing the eccentricity of one element relative to another element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/053Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement the pistons co-operating with an actuated element at the inner ends of the cylinders
    • F03C1/0538Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement the pistons co-operating with an actuated element at the inner ends of the cylinders the piston-driven cams being provided with inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/06Control
    • F04B1/07Control by varying the relative eccentricity between two members, e.g. a cam and a drive shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2101Cams
    • Y10T74/2102Adjustable

Definitions

  • the invention is directed to a fluidic radial piston machine, in particular a hydraulic radial piston machine, according to the features in the preamble of claim 1, see FR-A-2 472119.
  • a radial piston machine belongs to the prior art, which has an eccentric adjustment with hydraulically actuated adjusting pistons provided within the eccentric ring.
  • Such a design has proven itself wherever the eccentric ring could be dimensioned large enough due to the construction volume of the machine to accommodate adjusting pistons with a still satisfactory adjusting force.
  • it can only run reliably in the eccentricity end positions because the adjusting pistons cannot be fixed in intermediate positions. It is therefore a machine that can be switched in two stages.
  • Eccentric adjustments with continuously working adjusting pistons within an eccentric ring are known from DE-PS 26 54 526.
  • additional installation space is required to accommodate double-acting, non-return valves which are arranged in a bearing journal of the machine in the immediate vicinity of the adjusting cylinders.
  • the stepless adjustability with stable intermediate positions is therefore also limited to machine sizes whose volume (displacement volume in a radial piston motor, delivery volume in a radial piston pump) is limited to a minimum of approximately 500 cm 3 .
  • the invention has for its object to develop the hydraulic radial piston machine described in the preamble of claim 1 so that even with comparatively small sizes with a swallowing or delivery volume below about 500 cm 3, a continuous change in the swallowing or delivery volume can be guaranteed.
  • a longitudinal section of the machine shaft is now designed to be pivotable, as is known per se from FR-A-990 841.
  • the pivoting is based on a force-actuated, translationally effective sliding member, the translatory force direction of which is converted into a radial force direction via the swivel arm gear arranged next to the common transverse plane of the working piston.
  • the adjustment mechanism is now next to the row of pistons. Consequently, the support member can now be made very small.
  • the support member shrinks to a size that allows radial piston machines with a swallowing or delivery volume below about 500 cm 3 to be easily adjusted.
  • claim 2 embody an embodiment in which no fixed connection is provided between the swivel link transmission and the hydraulic cylinder which can be acted upon on one side.
  • the hydraulic cylinder therefore does not need to be rotatable. Nevertheless, the return spring in the swivel link mechanism ensures that the swiveling shaft section is shifted into the longitudinal axis of the machine, even when depressurized, so that the swallowing or delivery volume is zero.
  • the inclination of the pivotable shaft section relative to the longitudinal axis of the machine and thus the swallowing or delivery volume can be changed continuously.
  • a fixed connection of the double-acting hydraulic cylinder with the swivel link mechanism is provided.
  • a connection requires a rotatable connection between the hydraulic cylinder and the swivel link transmission.
  • This can e.g. the pivot axis between the piston rod and the compensating link.
  • the piston rod or the piston can also be rotatably supported, if necessary.
  • the piston rod space should always be acted upon by the pressure medium such that the pivotable shaft section is aligned in the longitudinal axis of the machine in the case of unpressurized working cylinders. This can also be brought about by a spring which is provided, for example, in the piston rod space.
  • the support member is arranged to be displaceable parallel to the machine longitudinal axis relative to the working piston. In this way, the fact is taken into account that the space joint between the pivotable shaft section and the support member is inclined Changes the shaft section to the machine longitudinal axis covers an arcuate path that no longer runs in the common transverse plane of the central axes of the working pistons.
  • the pivotable shaft section itself is designed as a sliding member.
  • the telescopic cylinder can be acted upon on one side or on both sides. Since the cylinder housing also carries out a pivoting movement about the articulation point on the axially non-displaceably mounted longitudinal section of the machine shaft, it is necessary to design the support member connected to the cylinder housing in such a way that the working pistons can be supported on the support member in a spatially articulated manner.
  • the support member can have spherical-segment-shaped surfaces on which connecting rod shoes connected in an articulated manner to the working pistons are supported.
  • the support member can also be used in the embodiments as described with reference to claims 2 to 4.
  • a force-actuated, translationally effective sliding member as has been previously described in the scope of a hydraulic cylinder that can be loaded on one or both sides.
  • the rigid or telescopic swivel shaft section penetrates the, for example, disk or plate-shaped abutment in such a way that the abutment can be carried in the sense of rotation, but it is nevertheless ensured that the shaft section in the abutment is the desired one can perform radial relative displacement.
  • the angle between the pivot links is changed and in this way also the angle of inclination of the pivotable shaft section to the longitudinal axis of the machine.
  • the support member is shifted accordingly, thereby changing the swallowing or delivery volume.
  • the swivel link transmission can also have only a single swivel link, which is articulated on the one hand to the abutment and on the other hand to the end of the shaft section which can be pivoted out of the machine longitudinal axis.
  • This embodiment of a swivel link transmission is preferably used, for example, if the pivotable shaft section is designed as a hydraulic cylinder and a further hydraulic cylinder acts as a sliding member on the swivel link transmission, directly or indirectly. It can also be used with advantage if a further pivotable shaft section of a second row of pistons is also struck on the pivoting link. This can be a rigid or telescopic shaft section.
  • a compensating link is provided between the pivot link transmission and the hydraulic cylinder as a sliding member, which compensates for the spatial changes of the pivot link relative to the machine longitudinal axis.
  • the rotating abutment is arranged to be axially displaceable. This can be practiced both in an embodiment with only one row of pistons and in an embodiment with two rows of pistons.
  • the abutment itself forms the sliding link to a certain extent, and the adjusting means for displacing the sliding link can be of a hydraulic, pneumatic, electrical or mechanical nature.
  • the adjusting means for displacing the sliding link can be of a hydraulic, pneumatic, electrical or mechanical nature.
  • this measure can be omitted if one of the shaft sections is designed to be telescopic.
  • Figures 1 to 6 show a schematic representation of various radial piston motors with swivel shaft adjustments.
  • the radial piston engine 1 illustrated in FIG. 1 comprises, for example, five working pistons 2, the central axes of which are arranged in a transverse plane QE common to the machine longitudinal axis MLA.
  • the working pistons 2 slide radially in working cylinders 3. They are supported on a supporting member 4, which is displaceable relative to the working pistons 2 parallel to the longitudinal axis MLA of the machine.
  • the support member 4 is radial via a space joint 5 with one from the machine longitudinal axis MLA pivotable rigid shaft section 6 connected.
  • the end 9 of the pivotable shaft section 6 opening into the machine longitudinal axis MLA is hinged in space-related fashion to a longitudinal section 7 of the machine shaft 8 which rotates about the machine longitudinal axis M LA but is axially immovable.
  • the slot-like bushing 11 in the abutment 12 for the shaft section 6 is dimensioned such that the abutment 12 can be taken along by the shaft section 6 in the correct direction of rotation and the shaft section 6 can be radially displaced in the slot 11.
  • the pivot axis 15 runs at a distance from the machine longitudinal axis MLA and perpendicular to this.
  • the swivel link transmission 14 comprises a further swivel link 16 which is articulated on the one hand to a bracket 17 connected to the abutment 12 and on the other hand to the swivel link 13.
  • Both the swivel axis 18 between the two swivel arms 13 and 16 and the swivel axis 19 between the bracket 17 and the swivel arm 16 extend next to the machine longitudinal axis MLA and perpendicular to it.
  • a slider 20 is also articulated to the pivot axis 18 and is under the influence of a spring 21 arranged between the abutment 12 and the pivot axis 18.
  • the slider 20 is supported in an unconnected manner on a plunger 22 of a hydraulic cylinder 23 which can be acted upon on one side and whose longitudinal axis 24 coincides with the machine longitudinal axis MLA.
  • the return spring 21 presses the plunger 22 into the cylinder housing 25 and thus also shifts the shaft section 6 into the machine longitudinal axis MLA.
  • the swallowing volume is then zero.
  • the plunger 22 can now be pushed out, the pivotable shaft section 6 and thereby also the support member 4 being radially displaced via the slide 20 and the swivel link mechanism 14. In this way, the swallowing volume of the radial piston motor 1 can be varied continuously.
  • the hydraulic cylinder 23 which can be acted on on one side has been replaced by a hydraulic cylinder 26 which can be acted on on both sides.
  • the hydraulic cylinder 26 comprises a piston 27 with a piston rod 28, which is articulated via a compensating link 29 to a swivel link transmission 14 according to FIG. 1.
  • the other components of this embodiment are designed in accordance with the embodiment of FIG. 1. A further explanation is therefore unnecessary.
  • the hydraulic cylinder 26 Due to the direct connection of the hydraulic cylinder 26 to the swivel link mechanism 14, however, it is necessary, for example, to mount the piston rod 28 or the piston 27 of the hydraulic cylinder 26 such that they can rotate. Such a connection can also be provided in the pivot axis 30 between the piston rod 28 and the compensating link 29.
  • a compression spring 32 it may be expedient to arrange a compression spring 32 in the piston rod space 31. This compression spring 32 has the purpose of displacing the pivotable shaft section 6 back into the machine longitudinal axis MLA when the radial piston motor 1 'is depressurized. However, this measure can also be carried out by correspondingly pressurizing the piston rod chamber 31.
  • the compensating link 29 can be used as a variable unbalance compensating member.
  • the pivotable shaft section is designed as a hydraulically actuatable telescopic cylinder 33.
  • the telescopic cylinder 33 can be acted on on one side or on both sides Conrod shoes 36, which are articulated to the working piston 2.
  • the end 9 of the shaft section 6 opening into the machine longitudinal axis MLA is connected in a spatially articulated manner to the axially immovable length section 7 of the machine shaft 8 rotating in the machine longitudinal axis MLA.
  • the telescopic longitudinal section 37 of the telescopic cylinder 33 passes through a disk-like abutment 38 which rotates about the machine longitudinal axis MLA, but is mounted immovably in the direction of the machine longitudinal axis MLA.
  • the abutment 38 has a slot 39, through which the telescopic part 37 passes so that the abutment 38 is carried along in the direction of rotation and the telescopic part 37 can be displaced radially.
  • the abutment 38 forms part of a swivel arm gear 40 which has a swivel arm 41 which is connected on the one hand via a swivel axis 42 to a bracket 43 connected to the abutment 38 and on the other hand via a swivel axis 44 to the telescopic part 37 of the telescopic cylinder 33.
  • Both pivot axes 42 and 44 extend laterally next to the machine longitudinal axis M LA and perpendicular to it.
  • a bracket 45 is fastened approximately in the middle of the swivel arm 41, to which a compensating arm is attached 46 is articulated.
  • the other end section of the compensating link 46 is articulated via a joint 30 to a piston rod 28 of a hydraulic cylinder 26, as has been described, for example, with reference to FIG. 2.
  • the hydraulic cylinder 26 forming the sliding member can also be acted upon mechanically by a spring 32 in the piston rod space 31 or hydraulically in the piston rod space 31 or, if appropriate, also in the piston space 47.
  • FIG. 4 shows an embodiment of a radial piston motor 1 '"with two rows of working pistons 2.
  • An arrangement of the adjustment as shown in FIG. 3 is selected, but with the exception of the hydraulic cylinder 26.
  • This is in the embodiment of the figure 4 can be dispensed with, since the inclination of the telescopic cylinder 33 towards the longitudinal axis MLA of the machine can be changed via the swivel link mechanism 40 and thus the swallowing volume by appropriate loading.
  • FIG. 5 shows a radial piston motor 1 "" with a rigid pivotable shaft section 6 and a row of pistons according to the embodiments of FIGS. 1 and 2.
  • the end 10 of the shaft section 6 which is pivotable from the machine longitudinal axis MLA is coupled to a swivel arm gear 40, as has been explained with reference to FIG. 3.
  • the difference is further that the abutment 38 is now axially displaceable.
  • the actuating means required for this can be of a hydraulic, pneumatic, electrical or mechanical nature. It can be seen that by adjusting the abutment 38 parallel to the machine longitudinal axis M LA in the operating position with broken lines, the inclination of the pivotable shaft section 6 to the machine longitudinal axis MLA and thus the displacement volume of the radial piston motor 1 "" can be changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hydraulic Motors (AREA)
  • Reciprocating Pumps (AREA)

Description

  • Die Erfindung richtet sich auf eine fluidische Radialkolbenmaschine, insbesondere hydraulische Radialkolbenmaschine, gemäss den Merkmalen im Oberbegriff des Anspruchs 1, siehe FR-A-2 472119.
  • Durch die DE-OS 22 03 054 zählt eine Radialkolbenmaschine zum Stand der Technik, die eine Exzenterverstellung mit innerhalb des Exzenterrings vorgesehenen hydraulisch beaufschlagbaren Verstellkolben besitzt. Eine solche Bauart hat sich überall dort bewährt, wo der Exzenterring aufgrund des Bauvolumens der Maschine gross genug bemessen werden konnte, um Verstellkolben mit noch befriedigender Verstellkraft unterbringen zu können. Sie kann indessen nur in den Exzentrizitätsendstellungen betriebssicher laufen, weil sich die Verstellkolben nicht in Zwischenstellungen fixieren lassen. Es handelt sich also um eine in zwei Stufen schaltbare Maschine.
  • Exzenterverstellungen mit stufenlos arbeitenden Verstellkolben innerhalb eines Exzenterrings sind durch die DE-PS 26 54 526 bekannt. Allerdings benötigt man hier zur Unterbringung von doppelt wirksamen entsperrbaren Rückschlagventilen, die in einem Lagerzapfen der Maschine in unmittelbarer Nähe der Verstellzylinder angeordnet sind, zusätzlichen Einbauraum. Mithin ist auch die stufenlose Verstellbarkeit mit stabilen Zwischenstellungen auf Maschinenbaugrössen beschränkt, deren Volumen (Schluckvolumen bei einem Radialkolbenmotor, Fördervolumen bei einer Radialkolbenpumpe) auf minimal etwa 500 cm3 beschränkt sind.
  • Bei Baugrössen mit einem Volumen unter etwa 500 cm3 hat man sich bislang ausschliesslich auf die stufenweise Verstellung beschränkt, wobei als Funktionsprinzip zumeist die Kolbenabschaltung angewendet wird (DE-OS 31 09 706). Schneidet man hierbei mit Hilfe vorgeschalteter Ventile einzelne Kolben völlig von der Druckversorgung ab, so erhält man eine in zwei oder auch mehr Verhältnissen schaltbare Maschine. Das Bauprinzip kann aber nicht auf Motoren angewendet werden, bei denen die Kolben formschlüssig auf der' Maschinenwelle (Kurbelwelle) gehalten werden. Auch können die Motoren normalerweise nicht während des Laufs umgeschaltet werden.
  • Der Erfindung liegt die Aufgabe zugrunde, die im Oberbegriff des Anspruchs 1 beschriebene hydraulische Radialkolbenmaschine so weiterzubilden, dass auch bei vergleichsweise kleinen Baugrössen mit einem Schluck- oder Fördervolumen unterhalb von etwa 500 cm3 eine stufenlose Veränderung des Schluck- oder Fördervolumens gewährleistet werden kann.
  • Die Lösung dieser Aufgabe besteht nach der Erfindung in den im kennzeichnenden Teil des Anspruchs 1 aufgeführten Merkmalen.
  • Zur stufenlosen radialen Verlagerung des von den Arbeitskolben belasteten Stützglieds wird jetzt ein Längenabschnitt der Maschinenwelle verschwenkbar ausgebildet, wie es per se aus FR-A-990 841 bekannt ist. Die Verschwenkung geht von einem kraftbeaufschlagten, translatorisch wirksamen Schiebeglied aus, dessen translatorische Kraftrichtung über das neben der gemeinsamen Querebene der Arbeitskolben angeordnete Schwenklenker-Getriebe in eine radiale Kraftrichtung umgesetzt wird. Der Verstellmechanismus liegt jetzt neben der Kolbenreihe. Folglich kann das Stützglied nunmehr sehr klein dimensioniert werden. Es ist lediglich erforderlich, dass es mit dem aus der Maschinenlängsachse schwenkbaren Längenabschnitt der Maschinenwelle derartig raumgelenkig gekuppelt werden kann, dass die Rotation, eine geringfügige Relativbewegung zu den Arbeitskolben aufgrund des schwenkenden Wellenabschnitts sowie die Schwenkbewegung des Wellenabschnitts relativ zum Stützglied gewährleistet ist. Dadurch schrumpft das Stützglied auf eine Grösse zusammen, welche es erlaubt, Radialkolbenmaschinen mit einem Schluck- oder Fördervolumen unterhalb von etwa 500 cm3 problemlos stufenlos verstellen zu können.
  • Die Merkmale des Anspruchs 2 verkörpern eine Ausführungsform, bei welcher zwischen dem Schwenklenker-Getriebe und den einseitig beaufschlagbaren Hydraulikzylinder keine feste Verbindung vorgesehen wird. Der Hydraulikzylinder braucht folglich nicht drehfähig ausgebildet zu werden. Dennoch sorgt die Rückstellfeder im Schwenklenker-Getriebe dafür, dass auch im drucklosen Zustand der schwenkbare Wellenabschnitt in die Maschinenlängsachse verlagert und damit das Schluck- oder Fördervolumen zu Null wird. Andererseits kann durch entsprechende Beaufschlagung des Hydraulikzylinders die Neigung des schwenkbaren Wellenabschnitts relativ zur Maschinenlängsachse und damit das Schluck-oder Fördervolumen stufenlos verändert werden.
  • Im Falle der Merkmale des Anspruchs 3 ist eine feste Verbindung des doppelseitig beaufschlagbaren Hydraulikzylinders mit dem Schwenklenker-Getriebe vorgesehen. Eine solche Verbindung erfordert jedoch eine rotationsfähige Verbindung zwischen dem Hydraulikzylinder und dem Schwenklenker-Getriebe. Diese kann z.B. die Schwenkachse zwischen der Kolbenstange und dem Ausgleichslenker sein. Auch die Kolbenstange oder der Kolben können ggf. drehbar gelagert sein. Bei dieser Ausführungsform sollte aber der Kolbenstangenraum stets so mit dem Druckmittel beaufschlagt sein, dass der schwenkbare Wellenabschnitt bei drucklosen Arbeitszylindern in der Maschinenlängsachse ausgerichtet ist. Dies kann auch durch eine Feder bewirkt werden, die beispielsweise im Kolbenstangenraum vorgesehen ist.
  • Ist der schwenkbare Wellenabschnitt entsprechend den Merkmalen des Anspruchs 4 über seine gesamte Länge starr ausgebildet, so ist es von Vorteil, wenn das Stützglied relativ zu den Arbeitskolben parallel zur Maschinenlängsachse verschiebbar angeordnet ist. Auf diese Weise wird der Tatsache Rechnung getragen, dass das Raumgelenk zwischen dem schwenkbaren Wellenabschnitt und dem Stützglied bei Neigungsveränderungen des Wellenabschnitts zur Maschinenlängsachse einen bogenförmigen Weg zurücklegt, der nicht mehr in der gemeinsamen Querebene der Mittelachsen der Arbeitskolben verläuft.
  • Die im Vorstehenden beschriebenen, kraftbeaufschlagten Schiebeglieder in Form von Hydraulikzylindern befinden sich mit ihren Längsachsen stets in Übereinstimmung mit der Maschinenlängsachse und sind auch in Verlängerung des schwenkbaren Wellenabschnitts angeordnet, wenn dieser sich in der Maschinenlängsachse befindet. Bei der im Anspruch 5 gekennzeichneten Ausführungsform ist der schwenkbare Wellenabschnitt selber als Schiebeglied gestaltet. Der Teleskopzylinder kann einseitig oder doppelseitig beaufschlagbar sein. Da das Zylindergehäuse ebenfalls eine Schwenkbewegung um den Anlenkpunkt an dem axial unverschiebbar gelagerten Längenabschnitt der Maschinenwelle vollführt, ist es erforderlich, das mit dem Zylindergehäuse verbundene Stützglied so auszubilden, dass sich die Arbeitskolben an dem Stützglied raumgelenkig abstützen können. Zu diesem Zweck kann das Stützglied kugelabschnittsförmige Oberflächen aufweisen, an denen sich mit den Arbeitskolben gelenkig verbundene Pleuelschuhe abstützen. Das Stützglied kann auch bei den Ausführungsformen verwendet werden, wie sie anhand der Ansprüche 2 bis 4 beschrieben worden sind.
  • Je nach Beaufschlagungsart des teleskopierbaren Wellenabschnitts kann es im Rahmen der Erfindung zweckmässig sein, zusätzlich noch ein kraftbeaufschlagtes, translatorisch wirksames Schiebeglied vorzusehen, wie es voraufgehend im Umfang eines einseitig oder doppelseitig beaufschlagbaren Hydraulikzylinders beschrieben worden ist.
  • Bei der Verwendung eines Widerlagers gemäss den Merkmalen im Anspruch 6 durchsetzt der starr oder teleskopierbar ausgebildete schwenkbare Wellenabschnitt das beispielsweise scheiben- oder plattenartig gestaltete Widerlager so, dass das Widerlager im Rotationssinn mitgenommen werden kann, aber dennoch sichergestellt ist, dass der Wellenabschnitt im Widerlager die gewünschte radiale Relativverlagerung durchführen kann. Bei Krafteinwirkung auf das Gelenk zwischen den beiden miteinander verbundenen Schwenklenkern wird der Winkel zwischen den Schwenklenkern verändert und auf diese Weise auch der Neigungswinkel des schwenkbaren Wellenabschnitts zur Maschinenlängsachse. Entsprechend wird das Stützglied verlagert und dadurch das Schluck- oder Fördervolumen verändert.
  • Nach den Merkmalen des Anspruchs 7 kann das Schwenklenker-Getriebe auch nur einen einzigen Schwenklenker aufweisen, der einmal an das Widerlager und zum anderen an das aus der Maschinenlängsachse verschwenkbare Ende des Wellenabschnitts angelenkt ist. Diese Ausführungsform eines Schwenklenker-Getriebes findet beispielsweise dann bevorzugt Anwendung, wenn der schwenkbare Wellenabschnitt als Hydraulikzylinder ausgebildet ist und ein weiterer Hydraulikzylinder als Schiebeglied auf das Schwenklenker-Getriebe direkt oder indirekt einwirkt. Es ist ferner mit Vorteil einsetzbar, wenn ein weiterer schwenkbarer Wellenabschnitt einer zweiten Kolbenreihe ebenfalls an den Schwenklenker angeschlagen ist. Hierbei kann es sich um einen starren oder teleskopierbaren Wellenabschnitt handeln.
  • Ist nur ein schwenkbarer Wellenabschnitt vorgesehen, so ist es nach Anspruch 8 vorteilhaft, dass zwischen dem Schwenklenker-Getriebe und dem Hydraulikzylinder als Schiebeglied ein Ausgleichslenker vorgesehen ist, der die räumlichen Veränderungen des Schwenklenkers relativ zur Maschinenlängsachse ausgleicht.
  • Werden zwei Kolbenreihen mit zwei schwenkbaren und teleskopierbaren Wellenabschnitten mit einem Schwenklenker-Getriebe mit nur einem Schwenklenker gekoppelt, so ist das rotierende Widerlager zweckmässig axial unverschiebbar gelagert (Anspruch 9). Da ein Längenausgleich innerhalb der teleskopierbaren Wellenabschnitte erfolgt, brauchen auch die Anlenkpunkte an den in der Maschinenlängsachse rotierenden Längenabschnitten der Maschinenwellen nicht in ihrer Betriebslage verändert zu werden.
  • Vorstellbar ist es aber auch gemäss den Merkmalen des Anspruchs 10, dass das rotierende Widerlager axial verschiebbar angeordnet ist. Dies kann sowohl bei einer Ausführungsform mit nur einer Kolbenreihe als auch bei einer Ausführungsform mit zwei Kolbenreihen praktiziert werden. In diesem Fall bildet das Widerlager gewissermassen selber das Schiebeglied, wobei die Stellmittel zur Verlagerung des Schiebeglieds hydraulischer, pneumatischer, elektrischer oder mechanischer Natur sein können. Allerdings ist es bei der Ausführungsform mit zwei Kolbenreihen erforderlich, einen der Anlenkpunkte zwischen einem schwenkbaren starren Wellenabschnitt und dem zugeordneten in der Maschinenlängsachse rotierenden Längenabschnitt der Maschinenwelle in Richtung der Maschinenlängsachse verschiebbar zu lagern. Diese Massnahme kann jedoch entfallen, wenn einer der Wellenabschnitte teleskopierbar ausgebildet ist.
  • Die Erfindung ist nachfolgend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Dabei zeigen die Figuren 1 bis 6 in schematischer Darstellung verschiedene Radialkolbenmotoren mit Schwenkwellenverstellungen.
  • Der in Figur 1 veranschaulichte Radialkolbenmotor 1 umfasst beispielsweise fünf Arbeitskolben 2, deren Mittelachsen in einer zur Maschinenlängsachse MLA gemeinsamen Querebene QE angeordnet sind. Die Arbeitskolben 2 gleiten radial in Arbeitszylindern 3. Sie stützen sich an einem Stützglied 4 gleitend ab, welches parallel zur Maschinenlängsachse MLA relativ zu den Arbeitskolben 2 verschiebbar ist.
  • Das Stützglied 4 ist über ein Raumgelenk 5 mit einem aus der Maschinenlängsachse MLA radial verschwenkbaren starren Wellenabschnitt 6 verbunden. Das in die Maschinenlängsachse MLA mündende Ende 9 des schwenkbaren Wellenabschnitts 6 ist raumgelenkig an einen um die Maschinenlängsachse M LA rotierenden, jedoch axial unverschiebbaren Längenabschnitt 7 der Maschinenwelle 8 angeschlagen.
  • Das aus der Maschinenlängsachse MLA radial verlagerbare Ende 10 des schwenkbaren Wellenabschnitts 6 durchsetzt einen Schlitz 11 eines scheibenartigen Widerlagers 12, das zwar um die Maschinenlängsachse MLA rotiert, jedoch axial unverschiebbar gelagert ist. Die schlitzartige Durchführung 11 im Widerlager 12 für den Wellenabschnitt 6 ist so bemessen, dass das Widerlager 12 von dem Wellenabschnitt 6 einwandfrei im Drehsinn mitgenommen und der Wellenabschnitt 6 in dem Schlitz 11 radial verlagert werden kann.
  • Das aus der Maschinenlängsachse MLA verschwenkbare Ende 10 des Wellenabschnitts 6 ist an einen Schwenklenker 13 eines Schwenklenker-Getriebes 14 angelenkt. Die Schwenkachse 15 verläuft im Abstand neben der Maschinenlängsachse MLA und senkrecht zu dieser. Das Schwenklenker-Getriebe 14 umfasst einen weiteren Schwenklenker 16, der einerseits an eine mit dem Widerlager 12 verbundene Konsole 17 und andererseits an den Schwenklenker 13 angelenkt ist. Sowohl die Schwenkachse 18 zwischen den beiden Schwenklenkern 13 und 16 als auch die Schwenkachse 19 zwischen der Konsole 17 und dem Schwenklenker 16 erstrecken sich neben der Maschinenlängsachse MLA sowie senkrecht zu dieser.
  • An die Schwenkachse 18 ist ferner ein Gleitstück 20 angelenkt, das unter dem Einfluss einer zwischen dem Widerlager 12 und der Schwenkachse 18 angeordneten Feder 21 steht.
  • Das Gleitstück 20 ist unverbunden an einem Plunger 22 eines einseitig beaufschlagbaren Hydraulikzylinders 23 abgestützt, dessen Längsachse 24 mit der Maschinenlängsachse MLA übereinstimmt.
  • Bei nicht beaufschlagtem Radialkolbenmotor 1 und ebenfalls nicht beaufschlagtem Hydraulikzylinder 23 drückt die Rückstellfeder 21 den Plunger 22 in das Zylindergehäuse 25 hinein und verlagert damit auch den Wellenabschnitt 6 in die Maschinenlängsachse MLA. Das Schluckvolumen ist dann gleich Null. Durch entsprechende Beaufschlagung des Hydraulikzylinders 23 gegen die Rückstellkraft der Feder 21 kann nun der Plunger 22 ausgeschoben werden, wobei über das Gleitstück 20 und das Schwenklenker-Getriebe 14 der schwenkbare Wellenabschnitt 6 und dadurch auch das Stützglied 4 radial verlagert werden. Auf diese Weise ist das Schluckvolumen des Radialkolbenmotors 1 stufenlos veränderbar.
  • Bei der Ausführungsform eines Radialkolbenmotors 1' gemäss Figur 2 ist der einseitig beaufschlagbare Hydraulikzylinder 23 gemäss Figur 1 durch einen doppelseitig beaufschlagbaren Hydraulikzylinder 26 ersetzt worden. Der Hydraulikzylinder 26 umfasst einen Kolben 27 mit Kolbenstange 28, welche über einen Ausgleichslenker 29 mit einem Schwenklenker-Getriebe 14 gemäss Figur 1 gelenkig verbunden ist. Neben dem Schwenklenker-Getriebe 14 sind auch die anderen Bauteile dieser Ausführungsform entsprechend der Ausführungsform der Figur 1 gestaltet. Eine nochmalige Erläuterung ist daher entbehrlich.
  • Aufgrund der unmittelbaren Verbindung des Hydraulikzylinders 26 mit dem Schwenklenker-Getriebe 14 ist es aber erforderlich, beispielsweise die Kolbenstange 28 oder den Kolben 27 des Hydraulikzylinders 26 rotationsfähig zu lagern. Eine solche Verbindung kann aber auch in der Schwenkachse 30 zwischen der Kolbenstange 28 und dem Ausgleichslenker 29 vorgesehen sein. Ausserdem kann es zweckmässig sein, im Kolbenstangenraum 31 eine Druckfeder 32 anzuordnen. Diese Druckfeder 32 hat den Zweck, den schwenkbaren Wellenabschnitt 6 in die Maschinenlängsachse MLA zurückzuverlagern, wenn der Radialkolbenmotor 1' drucklos ist. Diese Massnahme kann jedoch auch durch entsprechende Druckbeaufschlagung des Kolbenstangenraums 31 durchgeführt werden. Darüberhinaus kann der Ausgleichslenker 29 als variables Unwucht-Ausgleichsglied genutzt werden.
  • Bei dem in der Figur 3 veranschaulichten Radialkolbenmotor 1" ist der schwenkbare Wellenabschnitt als hydraulisch beaufschlagbarer Teleskopzylinder 33 ausgebildet. Der Teleskopzylinder 33 kann einseitig oder doppelseitig beaufschlagbar sein. Am Gehäuse 34 ist ein Stützglied 35 mit kugelabschnittsförmigen Oberflächen ausgebildet. An diesen Oberflächen stützen sich entsprechend gestaltete Pleuelschuhe 36 ab, welche mit den Arbeitskolben 2 gelenkig verbunden sind.
  • Das in die Maschinenlängsachse MLA mündende Ende 9 des Wellenabschnitts 6 ist entsprechend den Ausführungsformen der Figuren 1 und 2 mit dem axial unverschiebbaren, in der Maschinenlängsachse MLA rotierenden Längenabschnitt 7 der Maschinenwelle 8 raumgelenkig verbunden.
  • Der teleskopierbare Längenabschnitt 37 des Teleskopzylinders 33 durchsetzt ein scheibenartig ausgebildetes Widerlager 38, das um die Maschinenlängsachse MLA rotiert, jedoch in Richtung der Maschinenlängsachse MLA unverschiebbar gelagert ist. Zu diesem Zweck besitzt das Widerlager 38 einen Schlitz 39, welchen der Teleskopteil 37 so durchsetzt, dass das Widerlager 38 im Drehsinne mitgenommen und der Teleskopteil 37 radial verlagert werden kann.
  • Das Widerlager 38 bildet Bestandteil eines Schwenklenker-Getriebes 40, welches einen Schwenklenker 41 aufweist, der einerseits über eine Schwenkachse 42 an eine mit dem Widerlager 38 verbundene Konsole 43 und andererseits über eine Schwenkachse 44 mit dem teleskopierbaren Teil 37 des Teleskopzylinders 33 verbunden ist. Beide Schwenkachsen 42 und 44 erstrecken sich seitlich neben der Maschinenlängsachse M LA und senkrecht zu dieser.
  • Etwa mittig des Schwenklenkers 41 ist eine Konsole 45 befestigt, an die ein Ausgleichslenker 46 angelenkt ist. Der andere Endabschnitt des Ausgleichslenkers 46 ist über ein Gelenk 30 mit einer Kolbenstange 28 eines Hydraulikzylinders 26 gelenkig verbunden, wie er beispielsweise anhand der Figur 2 beschrieben worden ist.
  • Je nach Beaufschlagungsart des schwenkbaren Teleskopzylinders 33 kann auch der das Schiebeglied bildende Hydraulikzylinder 26 mechanisch durch eine Feder 32 im Kolbenstangenraum 31 oder hydraulisch im Kolbenstangenraum 31 bzw. ggf. auch im Kolbenraum 47 beaufschlagt sein.
  • In der Figur 4 ist eine Ausführungsform eines Radialkolbenmotors 1'" mit zwei Reihen von Arbeitskolben 2 veranschaulicht. Es ist eine Anordnung der Verstellung gewählt, wie sie in Figur 3 dargestellt ist, jedoch mit Ausnahme des Hydraulikzylinders 26. Dieser ist bei der Ausführungsform der Figur 4 entbehrlich, da durch entsprechende Beaufschlagung der Teleskopzylinder 33 deren Neigung zur Maschinenlängsachse MLA über das Schwenklenker-Getriebe 40 und damit das Schluckvolumen verändert werden kann.
  • Die Ausführungsform gemäss Figur 5 zeigt einen Radialkolbenmotor 1 "" mit einem starren schwenkbaren Wellenabschnitt 6 und einer Kolbenreihe gemäss den Ausführungsformen der Figuren 1 und 2. Das aus der Maschinenlängsachse MLA verschwenkbare Ende 10 des Wellenabschnitts 6 ist jedoch mit einem Schwenklenker-Getriebe 40 gekoppelt, wie es anhand der Figur 3 erläutert worden ist. Der Unterschied besteht ferner darin, dass das Widerlager 38 nunmehr axial verlagerbar ist.
  • Die dazu notwendigen Stellmittel können hydraulischer, pneumatischer, elektrischer oder mechanischer Natur sein. Es ist zu erkennen, dass durch Verstellung des Widerlagers 38 parallel zur Maschinenlängsachse M LA in die Betriebslage in unterbrochener Linienführung die Neigung des schwenkbaren Wellenabschnitts 6 zur Maschinenlängsachse MLA und damit das Schluckvolumen des Radialkolbenmotors 1 "" verändert werden kann.
  • Im Prinzip dieselbe Möglichkeit besteht auch bei einem Radialkolbenmotor 1"''' mit zwei Arbeitskolbenreihen A, B gemäss der Ausführungsform der Figur 6. Hierbei ist auch der schwenkbare Wellenabschnitt 6 der zweiten Kolbenreihe B im Gelenkpunkt 44 des Schwenklenkers 41 mit dem Wellenabschnitt 6 der ersten Kolbenreihe A verbunden. Allerdings ist es bei dieser Ausführungsform erforderlich, den Anlenkpunkt 48 des schwenkbaren Wellenabschnitts 6 der zweiten Arbeitskolbenreihe B mit dem zugeordneten, in der Maschinenlängsachse MLA rotierenden Längenabschnitt 7 der Maschinenwelle 8 in Richtung der Maschinenlängsachse MLA verschiebbar anzuordnen. Eine solche Verschiebbarkeit kann entfallen, wenn der schwenkbare Wellenabschnitt 6 entsprechend der Ausführungsform der Figuren 3 oder 4 als einseitig oder doppelseitig beaufschlagbarer Hydraulikzylinder 33 ausgebildet ist.

Claims (10)

1. Fluidische Radialkolbenmaschine, insbesondere hydraulische Radialkolbenmaschine, deren Volumen stufenlos veränderbar ist und bei welcher die mit ihren Mittelachsen in einer zur Maschinenlängsachse gemeinsamen Querebene angeordneten Arbeitskolben an einem mit der Maschinenwelle verbundenen, radial zur Maschinenwelle verlagerbaren Stützglied wenigstens mittelbar gleitend anliegen, dadurch gekennzeichnet, dass der die gemeinsame Querebene (QE) der Arbeitskolben (2) durchsetzende Längenabschnitt (6, 33) der Maschinenwelle (8) aus der Längsachse (MLA) der Maschine (1, 1', 1", 1 "', 1 "", 1 ""') verschwenkbar und mit dem zu den Arbeitskolben (2) relativ beweglichen Stützglied (4, 35) raumgelenkig verbunden ist, wobei das in die Maschinenlängsachse (MLA) mündende Ende (9) des schwenkbaren Wellenabschnitts (6, 33) an den um die Maschinenlängsachse (MLA) rotierenden, axial unverschiebbaren Längenabschnitt (7) der Maschinenwelle (8) raumgelenkig angeschlagen und das aus der Maschinenlängsachse (MLA) radial verlagerbare Ende (10, 37) des Wellenabschnitts (6, 33) unter Eingliederung eines kraftbeaufschlagten, translatorisch wirksamen Schiebeglieds (23, 26, 33) mit einem neben der Querebene (QE) um die Maschinenlängsachse (MLA) drehbar gelagerten Schwenklenker-Getriebe (14, 40) mit senkrecht zur Maschinenlängsachse (MLA) verlaufenden Schwenkachsen (15, 18, 19; 42, 44) im Rotationssinne mitnahmefähig gekoppelt ist.
2. Radialkolbenmaschine nach Anspruch 1, dadurch gekennzeichnet, dass das Schiebeglied aus einem einseitig beaufschlagbaren Hydraulikzylinder (23) besteht, dessen Längsachse (24) mit der Maschinenlängsachse (MLA) übereinstimmt und dessen axial beweglicher Teil (22) an einem gegen die elastische Rückstellkraft einer Feder (21 ) verlagerbaren Gleitstück (20) abgestützt ist, welches mit dem Schwenklenker-Getriebe (14) gelenkig verbunden ist.
3. Radialkolbenmaschine nach Anspruch 1, dadurch gekennzeichnet, dass das Schiebeglied aus einem doppelseitig beaufschlagbaren Hydraulikzylinder (26) besteht, dessen Längsachse mit der Maschinenlängsachse (MLA) übereinstimmt und dessen Kolbenstange (28) durch einen Ausgleichslenker (29, 46) mit dem Schwenklenker-Getriebe (14, 40) verbunden ist.
4. Radialkolbenmaschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der schwenkbare Wellenabschnitt (6) über seine gesamte Länge starr ausgebildet und das mit diesem raumgelenkig verbundene Stützglied (4) parallel zur Maschinenlängsachse (MLA) verschiebbar ist.
5. Radialkolbenmaschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der schwenkbare Wellenabschnitt als hydraulisch beaufschlagbarer Teleskopzylinder (33) ausgebildet ist, dessen Gehäuse (34) das Stützglied (35) trägt, an welchem sich die Arbeitskolben (2) raumgelenkig abstützen.
6. Radialkolbenmaschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Schwenklenker-Getriebe (14) ein parallel zur Querebene (QE) um die Maschinenlängsachse (MLA) drehbares und von dem schwenkbaren Wellenabschnitt (6) im Drehsinn mitnahmefähig sowie radial relativverlagerbar durchsetztes, axial unverschiebbares Widerlager (12) aufweist, an das im radialen Abstand von der Maschinenlängsachse (MLA) ein Schwenklenker (16) angelenkt ist, welcher sowohl mit einem weiteren, an das Ende (10) des Wellenabschnitts (6) gelenkig angeschlagenen Schwenklenker (13) als auch mit dem Gleitstück (20) bzw. mit dem Ausgleichslenker (29) gelenkig verbunden ist.
7. Radialkolbenmaschine nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Schwenklenker-Getriebe (40) ein parallel zur Querebene (QE) um die Maschinenlängsachse (MLA) drehbares und von dem schwenkbaren Wellenabschnitt (6, 33) im Drehsinn mitnahmefähig sowie radial relativverlagerbar durchsetztes Widerlager (38) aufweist, an welchem im radialen Abstand von der Maschinenlängsachse (MLA) ein mit dem anderen Ende an mindestens einen schwenkbaren Wellenabschnitt (6, 33) gelenkig angeschlagener Schwenklenker (41 ) befestigt ist.
8. Radialkolbenmaschine nach Anspruch 7, dadurch gekennzeichnet, dass im mittleren Längenbereich des Schwenklenkers (41) ein andererseits mit der Kolbenstange (28) eines zumindest kolbenstangenseitig beaufschlagbaren Hydraulikzylinders (26) gelenkig verbundener Ausgleichslenker (46) angelenkt ist.
9. Radialkolbenmaschine nach Anspruch 7, dadurch gekennzeichnet, dass das rotierende Widerlager (12, 38) axial unverschiebbar gelagert ist.
10. Radialkolbenmaschine nach Anspruch 7, dadurch gekennzeichnet, dass das rotierende Widerlager (38) axial verschiebbar gelagert und dem Einfluss von Stellmitteln unterworfen ist.
EP85113805A 1984-11-07 1985-10-30 Fluidische Radialkolbenmaschine Expired EP0180912B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3440543A DE3440543A1 (de) 1984-11-07 1984-11-07 Fluidische radialkolbenmaschine
DE3440543 1984-11-07

Publications (3)

Publication Number Publication Date
EP0180912A2 EP0180912A2 (de) 1986-05-14
EP0180912A3 EP0180912A3 (en) 1987-04-15
EP0180912B1 true EP0180912B1 (de) 1989-04-12

Family

ID=6249634

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85113805A Expired EP0180912B1 (de) 1984-11-07 1985-10-30 Fluidische Radialkolbenmaschine

Country Status (3)

Country Link
US (1) US4768421A (de)
EP (1) EP0180912B1 (de)
DE (1) DE3440543A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122486A1 (de) * 1991-07-06 1993-01-07 Teves Gmbh Alfred Antriebsaggregat, insbesondere motor-pumpenaggregat fuer schlupfgeregelte bremsanlagen
DE10208586A1 (de) 2002-02-22 2003-09-11 Reinhard Sorg Antriebseinrichtung für eine Maschine, insbesondere Pumpe oder Motor
CN100482939C (zh) * 2003-12-15 2009-04-29 流体静力设计技术集团有限公司 液压马达/泵
US8413572B1 (en) 2006-11-22 2013-04-09 Westendorf Manufacturing, Co. Auto attachment coupler with abductor valve
FR2981703B1 (fr) * 2011-10-21 2013-11-22 Hydr Am Pompe hydraulique radiale a excentricite et debit variables

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE525535C (de) * 1931-05-26 Hans Reisert & Co Akt Ges Kolbenpumpe mit regelbarer Foerdermenge
US1321086A (en) * 1916-10-03 1919-11-04 Hugo Centervall Variable-stroke pump.
DE380862C (de) * 1920-03-14 1923-09-13 Maschf Fluessigkeitsgetriebe
US1612883A (en) * 1923-12-24 1927-01-04 Leonadus C Porterfield Oil burner
FR641154A (fr) * 1926-10-01 1928-07-30 Pompe à piston à débit réglable
FR990841A (fr) * 1949-05-12 1951-09-26 Variateur de vitesse hydraulique automatique, progressif et asservi
GB962911A (en) * 1960-10-19 1964-07-08 Veb Zek Hydraulic control and compensating means for hydraulic pumps and motors
US3339460A (en) * 1965-05-07 1967-09-05 J C Birdwell Pressure fluid motor
US3492948A (en) * 1968-04-08 1970-02-03 Haviland H Platt Hydraulic pump/motor
DD69265A1 (de) * 1968-05-29 1969-10-05
GB1385702A (en) * 1971-01-29 1975-02-26 Chamberlain Ind Ltd Hydraulic motors and the like
US3871268A (en) * 1972-12-30 1975-03-18 Shimazaki Mixing Equipment Co Combination pumping apparatus
DE2504693A1 (de) * 1975-02-05 1976-08-19 Tex Trans Inc Hydraulische kraftuebertragungs- und bremseinrichtung fuer fahrzeuge
DE2654526C3 (de) * 1976-12-02 1982-09-30 G. Düsterloh GmbH, 4322 Sprockhövel Hydrostatische Radialkolbenmaschine
JPS55146284A (en) * 1979-04-27 1980-11-14 Kayaba Ind Co Ltd Radial piston motor
FR2472119A1 (fr) * 1979-12-18 1981-06-26 Wolff Rene Transmetteur mecanique de puissance a amplitude variable
DE3109706C2 (de) * 1981-03-13 1986-09-18 G. Düsterloh GmbH, 4322 Sprockhövel Volumenschaltbarer Hydromotor
US4548124A (en) * 1984-02-23 1985-10-22 Riva Calzoni S.P.A. Radial piston hydraulic motor with variable eccentricity

Also Published As

Publication number Publication date
DE3440543C2 (de) 1989-05-03
US4768421A (en) 1988-09-06
EP0180912A3 (en) 1987-04-15
EP0180912A2 (de) 1986-05-14
DE3440543A1 (de) 1986-05-22

Similar Documents

Publication Publication Date Title
EP2999885B1 (de) Axialkolbenpumpe in schrägscheibenbauart
DE2854049C2 (de) Taumelscheiben-Verdichter
DE19925691B4 (de) Landwirtschaftliche Erntemaschine
DE3942189C1 (de)
EP2258488A2 (de) Antriebsanordnung für einen länglichen Schwingkörper
DE2448594C3 (de) Axialkolbenmaschine
EP0953111B1 (de) Axialkolbenmaschine mit dämpfungselement für die schräg- oder taumelscheibe
DE2231579B2 (de) Schmiedepresse, insbesondere Gesenkschmiedepresse
EP0180912B1 (de) Fluidische Radialkolbenmaschine
DE2166808A1 (de) Axialkolbenmotor
DE19654567A1 (de) Hydraulischer Transformator
DE3935800C2 (de) Einstellbare Axialkolbenmaschine in Schrägscheibenbauweise
DE2359734C2 (de) Hydrostatische Kolbenmaschine
DE3733083C2 (de)
DE19527649A1 (de) Axialkolbenmaschine
EP1018416A2 (de) Walzwerk für Rohstoffe für die keramische Industrie
EP0272522A1 (de) Kurbeltrieb, insbesondere für Hubkolbenmotoren
DE102013008681A1 (de) Axialkolbenpumpe in Schrägscheibenbauart
DE4413792A1 (de) Konstruktion zum Einstellen eines Taumelscheibenwinkels eines hydraulischen Verstellmotors
DE4002017A1 (de) Verstellbare axialkolbenmaschine in schraegscheibenbauweise
DE2910835C2 (de) Wechseltisch
DE2019848C (de) Kegelscheiben-Umschlingungsgetriebe
DE2439830A1 (de) Hydrostatisches getriebe und verstellbare axialkolbenmaschine fuer ein solches
DE3208070A1 (de) Schwingungserreger
EP3459343A1 (de) Riemenspannsystem für eine rundballenpresse sowie landwirtschaftliche rundballenpresse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): FR GB IT SE

17P Request for examination filed

Effective date: 19860515

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): FR GB IT SE

17Q First examination report despatched

Effective date: 19871028

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85113805.7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19981026

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19981030

Year of fee payment: 14

Ref country code: FR

Payment date: 19981030

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19991030

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991030

EUG Se: european patent has lapsed

Ref document number: 85113805.7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19991030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST