EP0178348B1 - Durch Wärmezufuhr direkt betriebener Gasverdichter - Google Patents

Durch Wärmezufuhr direkt betriebener Gasverdichter Download PDF

Info

Publication number
EP0178348B1
EP0178348B1 EP84112662A EP84112662A EP0178348B1 EP 0178348 B1 EP0178348 B1 EP 0178348B1 EP 84112662 A EP84112662 A EP 84112662A EP 84112662 A EP84112662 A EP 84112662A EP 0178348 B1 EP0178348 B1 EP 0178348B1
Authority
EP
European Patent Office
Prior art keywords
pressure
working
gas compressor
gas
fluid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84112662A
Other languages
English (en)
French (fr)
Other versions
EP0178348A1 (de
Inventor
Franz X. Prof. Dr. Eder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE19823220071 priority Critical patent/DE3220071A1/de
Priority to DE19833314705 priority patent/DE3314705C2/de
Priority to PCT/DE1983/000097 priority patent/WO1983004281A1/de
Priority to EP19830901585 priority patent/EP0110905A1/de
Priority to AU15535/83A priority patent/AU1553583A/en
Application filed by Individual filed Critical Individual
Priority to EP84112662A priority patent/EP0178348B1/de
Publication of EP0178348A1 publication Critical patent/EP0178348A1/de
Application granted granted Critical
Publication of EP0178348B1 publication Critical patent/EP0178348B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/02Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having pistons and displacers in the same cylinder
    • F02G2243/04Crank-connecting-rod drives
    • F02G2243/08External regenerators, e.g. "Rankine Napier" engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/50Crosshead guiding pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2280/00Output delivery

Definitions

  • the invention relates to a gas compressor operated by supplying heat with the features of the preamble of patent claim 1.
  • Such a gas compressor is known from DE-A 3246633.
  • two working cylinders are used, in which displacement pistons are moved back and forth by an auxiliary drive.
  • a heater, half the exchange surface of a common heat exchanger and a cooler are arranged in the primary circuit assigned to each working cylinder.
  • the cold part of each working cylinder is connected to a double-acting fluid separator at opposite chambers, in which a sliding double-acting free piston is arranged.
  • This is e.g. B. formed as a symmetrical differential piston that forms with the housing of the fluid separator both the pressure chambers connected to the cold chambers of the working cylinder, and also closes two pump chambers with a smaller cross section, which are filled with a flowable working medium.
  • the pump chambers are connected via check valve pairs with different flow directions to two pressure vessels into which the working medium is pumped and kept under pressure by a gas cushion.
  • a work machine can be connected to the two pressure vessels.
  • This known gas compressor requires two working cylinders, since the countercurrent heat exchanger contained in the external thermal circuit is necessary in order to supply both working cylinders with energy as thermal compressors. This structure is unnecessarily complex and therefore expensive.
  • the pump piston of the double-acting fluid separator which is positively coupled to the pressure changes in the cold chambers of the working cylinders does not allow an optimal conversion of the pressure changes into pressure energy in a wide frequency range.
  • US-A 4215548 describes in FIG. 7 a gas compressor with a single working cylinder, the thermal outer circuit of which has a heater, a regenerator and a cooler.
  • the working piston is a type of free piston.
  • a membrane arranged in the working area serves as the end of a double container filled with liquid, which has a thin connecting line.
  • the “piston” containing the membrane acts here as a resonant piston for decoupling mechanical work. This structure enables pressure energy to be obtained only in a narrow frequency range, in which the required phase lag of 90 ° is guaranteed.
  • the invention has for its object to provide a gas compressor that is compact and simple, therefore cheaper to build and which allows the production of pressure energy in a wide frequency range.
  • the gas compressor according to the invention can be made more compact and simple, and therefore inexpensive, by using only a single working cylinder.
  • pressure energy is obtained over a wide frequency range, the single-acting fluid separator used allowing the automatic adaptation between the pressure conditions in the secondary circuit having an expansion machine and the changing pressure in the cold chamber of the working cylinder.
  • a fluid separator for the compressor formed by the working cylinder and the secondary circuit with the expansion machine different working media can be used.
  • Helium gas of high pressure is preferably used in the compressor and a gas / oil mixture is used in the working group, which allows an oil-lubricated and pressure-tight expansion machine to be used.
  • the gas compressor consists of the working cylinder 1, in which the poorly heat-conducting displacement piston 2, which is attached to the piston rod 3, which is pressure-tightly guided through the cylinder base, is moved approximately sinusoidally between the top and bottom dead center by the crankshaft 5 and the connecting rod 4.
  • the heat output required for operation is fed to the working cylinder 1 via the fin heat exchanger 6 inside the combustion chamber 7.
  • the cylinder head and the lower cylinder chamber 8 are connected via the thermal regenerator 9, the cooler 10 and the said fin heat exchanger 6, so that only the pressure difference, which is caused by the flow losses in the heat exchangers 6, 10 and in the regenerator 9, is loaded on the displacement piston 2.
  • the thermal insulation of the parts located at high temperature (400 to 800 ° C.) is only indicated in FIG. 1; however, it is partly responsible for the efficiency achieved in converting heating energy into pressure energy.
  • the lower working space 8 of the cylinder 1 is connected to the fluid separator, which is shown in FIG. 1 as a divided, flat pressure vessel, which consists of two spherical caps 11 a, 11 b, which are separated gas-tight by the elastic membrane 12.
  • the calotte 11b is connected via the check valves 13, 14 with different flow directions to the pressure vessel 15 or to the pressure-tight crankcase 16, in which the electric motor 17 for driving the displacement piston is arranged.
  • the expansion motor 18 is connected between the high-pressure tank 15 and the crankcase 16 functioning as a low-pressure tank, the flow rate of which can be adjusted by the control valve 19.
  • FIG. 2 shows the pressure curve in the working gas in the event that the pressure in the pressure vessel 15 is higher than the maximum value in the working cylinder and the valve 19 is closed.
  • the components 15, 16 and 18 connected to the chamber volume 11b b of the fluid separator are filled with a gas-oil mixture;
  • nitrogen or carbon dioxide are also suitable as pressurized gas, since their kinematic toughness is noticeably greater and the adiabatic exponent is smaller than that of helium. The latter brings about a lower temperature drop in the working medium during expansion in the expansion motor 18.
  • the gas pressure reaches its maximum value and the chamber volume 11b is compressed until the gas pressure in the cylinder 1 matches the pressure P h in the container 15, the check valve 14 remains closed during this time.
  • the displacer 2 moves upward, the gas pressure decreases and, after the pressure P n prevailing in the crankcase 16 is reached, the valve is opened and the gas-oil mixture is sucked into the chamber 11b; in extreme cases the membrane 12 lies against the inner wall of 11 a.
  • the superheated steam of a condensable substance eg. B. propylene, fluorinated hydrocarbons, application.
  • a condensable substance eg. B. propylene, fluorinated hydrocarbons
  • any working medium can be used in the secondary circuit of the fluid separator, which contains the expansion motor or a heating machine in addition to the pressure buffers.
  • a mixture of nitrogen or carbon dioxide and mineral oil has the advantage that a relatively high operating frequency can be used in the converter and separator and the essential lubrication and sealing of the expansion motor is guaranteed for the secondary circuit.
  • the temperature increase that occurs in the separator during the compression cycle and the temperature decrease that occurs in the engine during work relaxation is reduced. The latter can be used to reduce the heat output to be dissipated in the cooler 10 with the aid of an additional heat exchanger.
  • a second pressure vessel is connected to the check valve 14, into which the expanded working medium from the expander 18 flows from the pressure p " . Since the conventional expansion motors act as a pump when the direction of rotation is reversed, this property can be used together with the said pressure accumulators to to store the braking energy generated during the braking process in a vehicle driven by such an expansion engine, for this purpose the gas lines leading to the expander are exchanged with the aid of a special changeover valve.
  • the expansion motor 18 is also located in the crankcase 16. Its output axis 20 is led out of it in a gas-tight manner.
  • the expansion motor 18 is coupled to the electric motor generator 17 and, after starting, not only drives the crankshaft 5 or the displacer 2, but can also alternatively and controllably generate electrical energy which can be stored.
  • the expansion motor 18 is not tied to the location of the thermomechanical converter, but can be connected to the control valve 19 or to the crankcase 16 by means of flexible high-pressure hoses via the releasable couplings 21, 22. It is also possible to operate several expanders of the same type in parallel, the speed of which is automatically set in accordance with the torque output. There are many possible applications in the areas of vehicle drives, mobile and stationary hoists, conveyor systems, etc.
  • the mutual alignment of the cylinders and the phase position of the displacement pistons are expediently chosen such that a) the free mass forces are compensated for, b) the lower working spaces 8 of the cylinders are connected to displacement side pistons with the gas side 11 of a common fluid separator, and c) the high-temperature heat exchanger 6 of all working cylinders are arranged in a common combustion chamber.
  • a special construction of the fluid separator which advantageously replaces the one shown in FIG. 1 when the mean working pressures in the primary and secondary circuits are to be different, is shown in FIG. 5.
  • the differential piston 24, 25 can be freely moved between the end bearings in the pressure-resistant housing 23 with the check valves 13, 14.
  • the volume enclosed by the rear of the piston 24 and the housing 23 is, for. B. filled with the fluid of the secondary circuit and is connected to the pressure vessel 26, in which the constant, adjustable compensation pressure Pe prevails.
  • the extreme pressures Ph and p " in the secondary circuit are translated in comparison to those in the primary circuit in the ratio of the corresponding piston cross sections.

Description

  • Die Erfindung betrifft einen durch Wärmezufuhr betriebenen Gasverdichter mit den Merkmalen des Oberbegriffs des Patentanspruches 1.
  • Ein derartiger Gasverdichter ist aus der DE-A 3246633 bekannt. Hierbei werden zwei Arbeitszylinder verwendet, in denen phasenverschoben Verdrängerkolben durch einen Hilfsantrieb hin-und herbewegt werden. Im jedem Arbeitszylinder zugeordneten Primärkreis sind jeweils ein Heizer, die halbe Austauschfläche eines gemeinsamen Wärmetauschers und ein Kühler angeordnet. Der Kaltteil jedes Arbeitszylinders ist an einen doppeltwirkenden Fluidseparator an einander gegenüberliegenden Kammern angeschlossen, in denen ein verschiebbarer doppelwirkender Freikolben angeordnet ist. Dieser ist z. B. als symmetrischer Differentialkolben ausgebildet, der mit dem Gehäuse des Fluidseparators sowohl die mit den Kalträumen der Arbeitszylinder verbundenen Druckkammern bildet, als auch zwei Pumpenkammern mit kleinerem Querschnitt abschliesst, die mit einem fliessfähigen Arbeitsmedium gefüllt sind. Die Pumpenkammern sind über Rückschlagventilpaare mit unterschiedlicher Durchlassrichtung mit zwei Druckbehältern verbunden, in die das Arbeitsmedium gepumpt und durch ein Gaspolster unter Druck gehalten wird. An die beiden Druckbehälter kann eine Arbeitsmaschine angeschlossen werden. Dieser bekannte Gasverdichter erfordert zwei Arbeitszylinder, da der im thermischen Aussenkreis enthaltene Gegenstrom-Wärmetauscher notwendig ist, um beide Arbeitszylinder als thermische Kompressoren mit Energie zu versorgen. Dieser Aufbau ist unnötig aufwendig und daher teuer. Zudem erlaubt der mit den Druckänderungen in den kalten Kammern der Arbeitszylinder zwangsgekoppelte Pumpenkolben des doppeltwirkenden Fluidseparators keine optimale Umsetzung der Druckänderungen in Druckenergie in einem weiten Frequenzbereich.
  • Die US-A 4215548 beschreibt in Figur 7 einen Gasverdichter mit einem einzigen Arbeitszylinder, dessen thermischer Aussenkreis einen Heizer, einen Regenerator und einen Kühler aufweist. Der Arbeitskolben stellt eine Art von Freikolben dar. Eine im Arbeitsraum angeordnete Membran dient als Abschluss eines mit Flüssigkeit gefüllten Doppelbehälters, der eine dünne Verbindungsleitung aufweist. Der die Membran enthaltende «Kolben» wirkt hier als resonanzfähiger Kolben zur Auskopplung von mechanischer Arbeit. Dieser Aufbau ermöglicht die Gewinnung von Druckenergie nur in einem engen Frequenzbereich, bei dem die erforderliche Phasennacheilung von 90° gewährleistet ist.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Gasverdichter zu schaffen, der raumgedrängter und einfacher, daher billiger aufgebaut werden kann und der in einem weiten Frequenzbereich die Gewinnung von Druckenergie erlaubt.
  • Die Erfindung löst diese Aufgabe mit den kennzeichnenden Merkmalen des Patentanspruches 1.
  • Der Gasverdichter nach der Erfindung kann durch Verwendung von nur einem einzigen Arbeitszylinders raumgedrängter und einfacher, daher preiswert aufgebaut werden. Zum anderen ' wird Druckenergie über einen weiten Frequenzbereich gewonnen, wobei der verwendete einfach wirkende Fluidseparator eine selbsttätige Anpassung zwischen den Druckverhältnissen im eine Expansionsmaschine aufweisenden Sekundärkreis und dem wechselnden Druck in der kalten Kammer des Arbeitszylinders ermöglicht. Zusätzlich können durch die Verwendung eines Fluidseparators für den vom Arbeitszylinder gebildeten Kompressor und dem Sekundärkreis mit Expansionsmaschine unterschiedliche Arbeitsmedien verwendet werden. Vorzugsweise werden im Kompressor Heliumgas von hohem Druck und im Arbeitskreis ein Gas-ÖI-Gemisch verwendet, das eine ölgeschmierte und druckdichte Expansionsmaschine anzuwenden erlaubt.
  • Weitere -Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Die Erfindung wird anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. In der Zeichnung zeigen:
    • Fig. 1 eine schematische Ansicht des Gasverdichters;
    • Fig. 2 ein Diagramm des Druckverlaufs des Arbeitsgases;
    • Fig. 3 ein Diagramm des Volumendurchsatzes des thermomechanischen Konverters;
    • Fig. 4 eine Teilansicht einer geänderten Ausführungsform;
    • Fig. 5 eine Teilansicht einer weiteren Ausführungsform.
  • Der Gasverdichter besteht aus dem Arbeitszylinder 1, in dem der schlecht wärmeleitende Verdrängerkolben 2, der an der durch den Zylinderboden druckdicht geführten Kolbenstange 3 befestigt ist über eine Kreuzkopfführung sowie das Pleuel 4 von der Kurbelwelle 5 etwa sinusförmig zwischen oberem und unterem Totpunkt bewegt wird. Die zum Betrieb erforderliche Wärmeleistung wird dem Arbeitszylinder 1 über den Rippenwärmetauscher 6 im Inneren der Brennkammer 7 zugeführt. Zylinderkopf und der untere Zylinderraum 8 sind über den thermischen Regenerator 9, den Kühler 10 und besagten Rippenwärmetauscher 6 verbunden, so dass auf dem Verdrängerkolben 2 lediglich der Druckunterschied lastet, der durch die Strömungsverluste in den Wärmetauschern 6, 10 und im Regenerator 9 verursacht wird. Die thermische Isolation der auf hoher Temperatur (400 bis 800°C) befindlichen Teile ist in Fig. 1 nur angedeutet; sie ist aber zu einem Teil für den bei der Umsetzung von Heiz- in Druckenergie erzielten Wirkungsgrad verantwortlich.
  • Der untere Arbeitsraum 8 des Zylinders 1 ist mit dem Fluidseparator verbunden, der in Fig. 1 als geteilter flacher Druckbehälter dargestellt ist, der aus zwei Kugelkalotten 11 a, 11b besteht, die gasdicht durch die elastische Membran 12 getrennt sind. Die Kalotte 11b ist über die Rückschlagventile 13, 14 mit unterschiedlicher Durchströmrichtung mit dem Druckbehälter 15 bzw. mit dem druckdichten Kurbelgehäuse 16 verbunden, in dem der Elektromotor 17 für den Antrieb des Verdrängerkolbens angeordnet ist. Zwischen dem Hochdruckbehälter 15 und dem als Niederdruckbehälter fungierenden Kurbelgehäuse 16 ist der Expansionsmotor 18 geschaltet, dessen Mengenstrom durch das Regelventil 19 einzustellen ist.
  • Da die im Arbeitszylinder 1 und angeschlossenem Teilvolumen 11 des Fluidseparators enthaltene Gasmenge konstant ist, wird sich der darin einstellende Gasdruck periodisch ändern, wenn der Verdrängerkolben 2 zwischen den Totpunktlagen hin- und hergeschoben wird.
  • In Fig. 2 ist der Druckverlauf im Arbeitsgas dargestellt für den Fall, dass im Druckbehälter 15 ein höherer Druck herrscht als dem Maximalwert im Arbeitszylinder entspricht und das Ventil 19 geschlossen ist. Die mit dem Kammervolumen 11b b des Fluidseparators verbundenen Komponenten 15,16 und 18 sind mit einem Gas-Ölgemisch gefüllt; als Druckgas sind ausser Helium oder Wasserstoff auch Stickstoff oder Kohlendioxid geeignet, da ihre kinematische Zähigkeit merklich grösser und der Adiabatenexponent kleiner als bei Helium sind. Letzterer bewirkt eine geringere Temperaturabsenkung des Arbeitsmediums während der Entspannung im Expansionsmotor 18.
  • Befindet sich der Verdrängerkolben 2 im unteren Totpunkt und damit die Hauptmenge des Arbeitsgases im oberen Zylinderabschnitt, so erreicht der Gasdruck seinen Maximalwert und wird das Kammervolumen 11b soweit zusammengepresst, bis der Gasdruck im Zylinder 1 mit dem Druck Ph im Behälter 15 übereinstimmt, das Rückschlagventil 14 bleibt währenddessen geschlossen. Bei der Aufwärtsbewegung des Verdrängerkolbens 2 nimmt der Gasdruck ab und wird nach Erreichen des im Kurbelgehäuse 16 herrschende Druckes Pn das Ventil geöffnet und das Gas-Ölgemisch in die Kammer 11b gesaugt; die Membran 12 liegt im Extremfall an der Innenwand von 11 a an.
  • Bei geöffnetem Ventil 19 wird dem Expansionsmotor 18 das Gas-Ölgemisch mit dem Druck Ph zugeführt und verlässt diesen mit dem Druck Pn. Bezeichnet man den durchgesetzten Volumenstrom mit V (m3/s), so beträgt die im Expander erzeugte mechanische Leistung
    Figure imgb0001

    wenn dieser das Druckgefälle ΔP=Ph-Pn verarbeitet.
  • Bei grossem Volumendurchsatz wird sich das Druckgefälle im Konverter verringern, wie aus dem gestrichelten Druckverlauf in Fig. 2 der über dem Kurbelwinkel Φ aufgetragen ist, hervorgeht. Beim Kurbelwinkel Φh öffnet sich das Ventil 13 und wird während der Phase Φh <Φ <2 Π das Kammervolumen 11 b des Fluidseparators in den Hochdruckbehälter 15 gepumpt. Während der Aufwärtsbewegung des Verdrängers 2 sinkt der Gasdruck und erreicht beim Phasenwinkel Φn den im Kurbelgehäuse 16 herrschenden Druck Pn. Zwischen Φn<Φ<Π bleibt das Ventil 14 geöffnet und wird Gas-Ölgemisch in die Kammer 11 b gesaugt. Mit zunehmendem Volumenstrom V, d. h. mit wachsender Drehzahl n des Expanders 18 nimmt die Druckdifferenz (Pn-Pn) ab, da sich die Öffnungswinkel Φn bzw. Φh nach kleineren Kurbelwinkeln verlagern.
  • Aus dem angeführten Zusammenhang resultiert zwischen Ap und V: Für V=0, d. h. im Stillstand des Expansionsmotors, wird Δp und damit das erzeugte Drehmoment seinen Höchstwert erreichen. Nimmt die zu V proportionale Drehzahl zu, so nimmt zwar Ap ab, doch erreicht das Produkt Δp.V=P (Leistung) einen Maximalwert, der bei hohen Drehzahlen wieder abnimmt. In Fig. 3 sind über dem Volumendurchsatz V des thermomechanischen Konverters bzw. über der Drehzahl des Expanders 18 Drehmoment D und Leistung P aufgetragen. Die Leistungscharakteristik der Maschine, die aus Konverter und Expansionsmotor besteht, entspricht der eines Hauptschluss-Elektromotors; bei der Anwendung für den Antrieb eines Fahrzeuges erübrigen sich daher die Kupplungsvorrichtung und ein Schaltgetriebe.
  • Im Primärkreis, d. h. im Arbeitszylinder 1 mit angeschlossenen Wärmetauschern 7, 9 und Regenerator 8 findet anstelle von Helium- oder Wasserstoffgas der überhitzte Dampf einer kondensierbaren Substanz, z. B. Propylen, fluorierte Kohlenwasserstoffe, Anwendung. Der Vorteil dieser im Bereich der Sattdampfzustände stark vom idealen Gasverhalten abweichenden Stoffe besteht für den Primärkreis darin, dass für dasselbe Druckverhältnis Ph/Pn eine niedrigere Heiztemperatur T2 für den Wärmetauscher 6 (Fig. 1) angewandt werden kann und dadurch Wärmeleitungs- und Abstrahlverluste des Zylinders 1 verringert werden.
  • - Im Sekundärkreis des Fluidseparators, der ne-- ben den Druckpuffern den Expansionsmotor oder eine Wärmemaschine enthält, kann ein beliebiges Arbeitsmedium benutzt werden. Als solches bietet ein Gemisch aus Stickstoff oder Kohlendioxid und Mineralöl den-Vorteil, dass eine relativ hohe Arbeitsfrequenz in Wandler und Separator angewandt werden kann und für den Sekundärkreis die unabdingbare Schmierung und Abdichtung des Expansionsmotors gewährleistet wird. Gleichzeitig verringert sich mit einem mehratomigen Arbeitsmedium im Sekundärkreis wegen des kleineren Adiabatenexponenten die beim Kompressionstakt im Separator entstehende Temperaturerhöhung und die bei der arbeitsleistenden Entspannung im Motor auftretende Temperaturerniedrigung. Letztere kann dazu genutzt werden, um die Hilfe eines zusätzlichen Wärmetauschers die im Kühler 10 abzuführende Wärmeleistung zu verringern.
  • Im Sekundärkreis wird anstelle des Kurbelgehäuses 16 ein zweiter Druckbehälter an das Rückschlagventil 14 angeschlossen, in den das expandierte Arbeitsmedium aus dem Expander 18 vom Druck p" strömt. Da die gebräuchlichen Expansionsmotoren bei Umkehr der Drehrichtung als Pumpe wirken, kann diese Eigenschaft zusammen mit besagten Druckspeichern dazu benutzt werden, um bei einem von einem solchen Expansionsmotor angetriebenen Fahrzeug die während des Bremsvorganges entstehende Bremsenergie zu speichern. Hierzu werden erfindungsgemäss die zum Expander führenden Gasleitungen mit Hilfe eines besonderen Umschaltventils vertauscht.
  • In einer weiteren konstruktiven Ausführung, die vereinfacht in Fig. 4 dargestellt ist, befindet sich auch der Expansionsmotor 18 im Kurbelgehäuse 16. Seine Abtriebsachse 20 ist gasdicht aus diesem herausgeführt. Der Expansionsmotor 18 ist an den elektrischen Motor-Generator 17 gekuppelt und treibt nach dem Anlassen nicht nur die Kurbelwelle 5 bzw. den Verdrängerkolben 2 an, sondern kann auch alternativ und regelbar elektrische Energie erzeugen, die gespeichert werden kann.
  • Der Expansionsmotor 18 ist nicht an den Standort des thermomechanischen Konverters gebunden, sondern kann mittels flexibler Hochdruckschläuche über die lösbaren Kupplungen 21, 22 an das Regelventil 19 bzw. an das Kurbelgehäuse 16 angeschlossen werden. Ferner ist auch der Parallelbetrieb mehrerer gleichartiger Expander möglich, deren Drehzahl sich selbsttätig entsprechend dem abgegebenen Drehmoment einstellt. Es ergeben sich vielseitige Anwendungsmöglichkeiten auf den Gebieten des Fahrzeugantriebes, der fahrbaren und stationären Hebezeuge, der Förderanlagen u.a.
  • Die Leistungsfähigkeit und Abmessungen dieser neuartigen Wärmekraftmaschine lässt sich aus theoretischen Überlegungen und praktischen Ergebnissen ableiten: Mit einem Hubvolumen von 1 dm3, einer Heiztemperatur T2 = 500°C, einem Maximaldruck Ph = 100 bar beträgt bei einer Drehzahl von 1500 1/min die theoretische mechanische Leistung etwa 25 kW; praktisch wird dieser Wert durch den Wirkungsgrad des Konverters und des Expansionsmotors nur zu etwa 65% erreicht.
  • Grössere Leistungen werden als Mehrzylindermaschinen ausgeführt; die gegenseitige Ausrichtung der Zylinder und die Phasenlage der Verdrängerkolben werden zweckmässig derart gewählt, dass a) sich die freien Massenkräfte kompensieren, b) die unteren Arbeitsräume 8 der Zylinder mit gleichphasig arbeitenden Verdrängerkolben mit der Gasseite 11 eines gemeinsamen Fluidseparators verbunden, und c) die Hochtemperaturwärmetauscher 6 aller Arbeitszylinder in einer gemeinsamen Brennkammer angeordnet sind. Eine spezielle Konstruktion des Fluidseparators, die den in Fig. 1 gezeigten im Vorteil dann ersetzt, wenn die mittleren Arbeitsdrücke im Primär- und Sekundärkreis verschieden sein sollen, ist in Fig. 5 dargestellt. Bei diesem Ausführungsbeispiel ist in dem druckfestem Gehäuse 23 mit den Rückschlagventilen 13,14 der Differentialkolben 24, 25 zwischen den Endlagern frei verschiebbar. Das von der Rückseite des Kolbens 24 und dem Gehäuse 23 eingeschlossene Volumen ist z. B. mit dem Fluid des Sekundärkreises gefüllt und wird mit dem Druckbehälter 26 verbunden, in dem der konstante, einstellbare Kompensationsdruck Pe herrscht. Die Extremdrücke Ph und p" im Sekundärkreis werden im Vergleich zu denen im Primärkreis im Verhältnis der entsprechenden Kolbenquerschnitte übersetzt. Durch Wahl des passenden Kompensationsdruckes Pc lassen sich die in Fig. eingetragenen Drücke nach unten verschieben und kann der Minimaldruck Pmin etwa zu Null kompensiert werden.
  • Es lassen sich im Vergleich zur konventionellen Wärmekraftmaschine folgende Vorteile herausstellen:
    • 1) Die beschriebene Wärmekraftmaschine wird durch äussere Zufuhr von thermischer Energie betrieben, wobei als Primärenergieträger flüssige, gasförmige und feste Brennstoffe genutzt werden können. Die bei ihrer Verbrennung auftretenden relativ niedrigen Betriebstemperaturen von maximal 800°C ergeben im Vergleich zum herkömmlichen Otto- oder Dieselmotor nur etwa ein Zehntel der Schadstoffemission an Stickoxiden und Kohlenmonoxid.
    • 2) Der in der beschriebenen Wärmekraftmaschine ablaufende Arbeitsprozess spielt sich in einem kleinen Druckverhältnis von etwa 1:2 ab, wobei die wenigen beweglichen Teile, wie Verdrängerkolben, nur gegen geringe dynamische Druckdifferenzen abgedichtet zu werden brauchen, was sich in einer langen Lebensdauer und hoher Betriebssicherheit niederschlägt.
    • 3) Während im Primärkreis vorzugsweise inertes Helium unter hohem Druck angewandt wird, werden im angekoppelten Sekundärkreis für den Betrieb des oder der Expansionsmotoren passende Gas-Ölgemische als Arbeitsmedium benutzt, welche eine zusätzliche Dicht- und Schmierfunktion erfüllen.
    • 4) Bei der Anwendung auf den Fahrzeugantrieb lässt sich auf einfachste Art der Einzelradantrieb realisieren, da die Expansionsmotoren über flexible Druckschläuche an die gemeinsamen Druckbehälter angeschlossen werden. Durch Vertauschen von Zu- und Rückleitung der einzelnen Motoren mit Hilfe herkömmlicher Umschaltventile kann die Bremsenergie als Druckenergie in den Druckbehältern gespeichert werden.

Claims (8)

1. Durch Wärmezufuhr betriebener Gasverdichter, bei dem ein erstes, gasförmiges Arbeitsmedium in einem Arbeitszylinder (1) mit Hilfe von einem Hilfsantrieb (17) bewegten Verdrängerkolbens (2) durch einen parallelgeschalteten, aus einem Heizer (6, 7), einem Temperaturwandler und einem Kühler (10) bestehenden Primärkreis hin- und hergeschoben und abwechselnd durch Beheizung im Heizer (6, 7) im Heissteil des Arbeitszylinders (1) auf hohe Temperatur, in seinem Kaltteil durch den Kühler auf tiefe Temperatur gebracht wird, wobei ein durch eine verschiebbare, gasdichte Wand (12, 24, 25) in Kammern (11a, 11b) unterteilter Fluidseparator vorhanden ist, dessen eine Kammer (11a) mit dem Kaltteil (8) des Arbeitszylinders (1) kommuniziert, während eine andere Kammer (11 b) über Rückschlagventile (13, 14) mit unterschiedlicher Durchströmrichtung mit zwei Druckbehältern (15, 16) verbunden ist, die über eine Arbeitsmaschine (18) verbunden sind und der von der anderen Kammer (11 b) des Fluidseparators, Druckbehältern (15, 16) und Arbeitsmaschine (18) gebildete Sekundärkreis mit einem zweiten Arbeitsmedium gefüllt ist, dadurch gekennzeichnet, dass nur ein Arbeitszylinder (1) vorhanden ist, dessen Primärkreis einen Regenerator (9) als Temperaturwandler aufweist, dass der Fluidseparator einfach wirkend mit nur zwei Kammern (11a, 11b) ausgebildet ist, von denen die eine Kammer (11a) an den Kaltteil (8) des Arbeitszylinders (1) angeschlossen ist, während die andere Kammer (11 b) über nur zwei Rückschlagventile (13, 14) mit unterschiedlicher Durchströmrichtung mit den zwei Druckbehältern (15, 16) verbunden ist, dass die Wand des Fluidseparators von einer die Kammern (11 a, 11 b) trennenden Membran (12) oder einem Freikolben (24,25) gebildet ist, dass das Arbeitsmedium des Sekundärkreises ein Gas, Dampf oder Gas-ÖI-Gemisch ist und dass die Arbeitsmaschine eine Expansionsmaschine ist.
2. Gasverdichter nach Anspruch 1, dadurch gekennzeichnet, dass der Fluidseparator aus einem geteilten, druckfesten Gehäuse besteht, dessen Hälften (11 a, 11 b) innen die Form von Kugelkalotten besitzten und dass die Membran (12) aus metallischem oder gummielastischem Werkstoff besteht.
3. Gasverdichter nach Anspruch 1, dadurch gekennzeichnet, dass der Fluidseparator aus einem Differentialkolben (24, 25) in einem druckfesten Gehäuse (23) besteht und drei veränderliche, voneinander abhängige Volumina abschliesst, die mit dem Kaltteil (8) des Arbeitszylinders (1), mit den Druckbehältern (15, 16) über zwei Rückschlagventile (13, 14) und mit einem weiteren Druckbehälter (26) verbunden sind, der das Arbeitsmedium von Primär- oder Sekundärkreis bei einstellbarem Druck enthält.
4. Gasverdichter nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass die Druckbehälter (15,16) mit mehreren parallel arbeitenden Expansionsmaschinen (18) verbunden sind.
5. Gasverdichter nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass das Kurbelgehäuse (16) druckfest und dicht ausgeführt ist und als einer der Druckbehälter dient.
6. Gasverdichter nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die Kurbelwelle (5) für den Antrieb des Verdrängerkolbens (2), von einem elektrischen Motor-Generator (17) angetrieben wird, der im druckdichten Kurbelgehäuse (16) angeordnet ist und seinerseits mit einem Expansionsmotor (18) gekuppelt ist, der an die Druckbehälter (15, 16) angeschlossen ist und dessen Abtriebswelle (20) druckdicht aus dem Kurbelgehäuse geführt wird.
7. Gasverdichter nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass in seinem Primärkreis als erstes Arbeitsmedium überhitzter Dampf, wie z. B. Propylen oder fluorierte Kohlenwasserstoffe, verwendet wird.
EP84112662A 1982-05-27 1984-10-19 Durch Wärmezufuhr direkt betriebener Gasverdichter Expired EP0178348B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE19823220071 DE3220071A1 (de) 1982-05-27 1982-05-27 Durch waermezufuhr direkt betriebener gasverdichter
DE19833314705 DE3314705C2 (de) 1982-05-27 1983-04-22 Durch Wärmezufuhr direkt betriebener Gasverdichter
PCT/DE1983/000097 WO1983004281A1 (en) 1982-05-27 1983-05-27 Thermal engine
EP19830901585 EP0110905A1 (de) 1982-05-27 1983-05-27 Arbeitsmaschine
AU15535/83A AU1553583A (en) 1982-05-27 1983-05-27 Arbeitsmaschine
EP84112662A EP0178348B1 (de) 1982-05-27 1984-10-19 Durch Wärmezufuhr direkt betriebener Gasverdichter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19823220071 DE3220071A1 (de) 1982-05-27 1982-05-27 Durch waermezufuhr direkt betriebener gasverdichter
DE19833314705 DE3314705C2 (de) 1982-05-27 1983-04-22 Durch Wärmezufuhr direkt betriebener Gasverdichter
EP84112662A EP0178348B1 (de) 1982-05-27 1984-10-19 Durch Wärmezufuhr direkt betriebener Gasverdichter

Publications (2)

Publication Number Publication Date
EP0178348A1 EP0178348A1 (de) 1986-04-23
EP0178348B1 true EP0178348B1 (de) 1989-09-06

Family

ID=27190124

Family Applications (2)

Application Number Title Priority Date Filing Date
EP19830901585 Withdrawn EP0110905A1 (de) 1982-05-27 1983-05-27 Arbeitsmaschine
EP84112662A Expired EP0178348B1 (de) 1982-05-27 1984-10-19 Durch Wärmezufuhr direkt betriebener Gasverdichter

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP19830901585 Withdrawn EP0110905A1 (de) 1982-05-27 1983-05-27 Arbeitsmaschine

Country Status (4)

Country Link
EP (2) EP0110905A1 (de)
AU (1) AU1553583A (de)
DE (2) DE3220071A1 (de)
WO (1) WO1983004281A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081011A1 (en) 2002-03-27 2003-10-02 Richard Laurance Lewellin Engine for converting thermal energy to stored energy
AU2003215418B2 (en) * 2002-03-27 2010-01-28 Richard Laurance Lewellin Engine for converting thermal energy to stored energy

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3220071A1 (de) * 1982-05-27 1983-12-01 Franz X. Prof. Dr.-Ing. 8000 München Eder Durch waermezufuhr direkt betriebener gasverdichter
US4662176A (en) * 1985-04-15 1987-05-05 Mitsubishi Denki Kabushiki Kaisha Heat exchanger for a Stirling engine
DE68906381T2 (de) * 1989-06-16 1993-09-09 George Sidaway Waermemotor.
DE19934844A1 (de) * 1999-07-24 2001-02-01 Bosch Gmbh Robert Arbeitsmaschine
DE102006027103B3 (de) * 2006-06-12 2007-10-18 Maiß, Martin Verfahren zur Steuerung/Regelung von Stirlingmaschinen mit rotierenden Verdrängern
CN101302945B (zh) * 2008-07-10 2011-04-27 张中和 通过流体温差产生能量的设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019335A (en) * 1976-01-12 1977-04-26 The Garrett Corporation Hydraulically actuated split stirling cycle refrigerator
US4215548A (en) * 1978-10-12 1980-08-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Free-piston regenerative hot gas hydraulic engine

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE259159C (de) *
DE66427C (de) * R. MANNESMANN in Berlin N.W., Pariser Platz 6 Verfahren und Einrichtung zur Erzeugung hochgespannter Gase durch Wärme
GB135141A (de) * 1900-01-01
DE45895C (de) * M. HONIGMANN in Grevenberg Vorrichtung zur Herstellung geprefster Gase
FR551314A (fr) * 1922-05-12 1923-04-03 Compresseur à diaphragme
DE475837C (de) * 1925-12-25 1929-05-02 Josef Machtolf Durch Druckfluessigkeit angetriebener Kompressor
US2157229A (en) * 1935-07-17 1939-05-09 Research Corp Apparatus for compressing gases
US3248870A (en) * 1960-07-29 1966-05-03 Morgenroth Henri Stirling cycle engine divided into a pressure generating unit and energy converting unit
FR1585968A (de) * 1968-08-16 1970-02-06
DE1961457A1 (de) * 1969-12-08 1971-06-24 Muenzinger Friedrich Zweistoff-Waermekraftmaschine mit geschlossenen Kreislaeufen
US3678686A (en) * 1970-02-20 1972-07-25 Atomic Energy Commission Modified stirling cycle engine-compressor having a freely reciprocable displacer piston
US3698182A (en) * 1970-09-16 1972-10-17 Knoeoes Stellan Method and device for hot gas engine or gas refrigeration machine
US3733837A (en) * 1970-11-18 1973-05-22 British Oxygen Co Ltd Thermodynamic reciprocating machine
DE2317038A1 (de) * 1973-04-05 1974-10-17 Heinrich Dipl Ing Doelz Magnetanordnung fuer einen elektrodynamischen schwingverdichter
DE2421398C2 (de) * 1974-05-03 1983-11-24 Audi Nsu Auto Union Ag, 7107 Neckarsulm Wärmekraftmaschine für den Antrieb eines Kraftfahrzeuges
ZA753251B (en) * 1974-06-07 1976-04-28 Research Corp Power piston actuated displacer piston driving means for free-piston stirling cycle type engine
DE2432958A1 (de) * 1974-07-09 1976-01-29 Foerenade Fabriksverken Heissgasmotor
DE2519869A1 (de) * 1975-05-03 1976-11-11 Erich Tausend Heissgasmotor
NL7705363A (nl) * 1977-05-16 1978-11-20 Philips Nv Heetgasmotor.
DE2736472C3 (de) * 1977-08-12 1980-10-02 Arnulf Dipl.-Ing. Keller Hubkolbenmaschine, insbesondere Heißgasmaschine oder Verdichter
DE2842181A1 (de) * 1978-09-28 1980-04-10 Edalat Pour Morteza Ing Grad Mit sonnenenergie betriebene pumpanlage
DE2945973A1 (de) * 1979-11-14 1981-05-21 Schneider, Christian, Dipl.-Ing., 8650 Kulmbach Vorrichtung zur waermewandlung
DE3122144A1 (de) * 1981-06-04 1983-03-03 Rolf 4330 Mülheim Kresel Ein- oder zweistufiger kaeltemittelverdichter mit dampfantrieb und zwischengeschalteter antriebsfluessigkeit
GB2104155A (en) * 1981-08-19 1983-03-02 British Aerospace Stirling cycle machines
DE3230585A1 (de) * 1981-08-19 1983-03-03 British Aerospace Plc, London Stirlingmaschine
DE3220071A1 (de) * 1982-05-27 1983-12-01 Franz X. Prof. Dr.-Ing. 8000 München Eder Durch waermezufuhr direkt betriebener gasverdichter
DE3227643A1 (de) * 1982-07-23 1984-01-26 Franz X. Prof. Dr.-Ing. 8000 München Eder Hausenergiesystem
DE3229108A1 (de) * 1982-08-04 1984-02-09 Franz X. Prof. Dr.-Ing. 8000 München Eder Thermisches antriebsystem fuer kraftfahrzeuge
DE3246633A1 (de) * 1982-12-16 1984-06-20 Franz X. Prof. Dr.-Ing. 8000 München Eder Waermekraftmaschine
US4455825A (en) * 1983-03-01 1984-06-26 Pinto Adolf P Maximized thermal efficiency hot gas engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4019335A (en) * 1976-01-12 1977-04-26 The Garrett Corporation Hydraulically actuated split stirling cycle refrigerator
US4215548A (en) * 1978-10-12 1980-08-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Free-piston regenerative hot gas hydraulic engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003081011A1 (en) 2002-03-27 2003-10-02 Richard Laurance Lewellin Engine for converting thermal energy to stored energy
AU2003215418B2 (en) * 2002-03-27 2010-01-28 Richard Laurance Lewellin Engine for converting thermal energy to stored energy

Also Published As

Publication number Publication date
WO1983004281A1 (en) 1983-12-08
EP0178348A1 (de) 1986-04-23
DE3314705A1 (de) 1984-10-25
DE3314705C2 (de) 1994-11-17
AU1553583A (en) 1983-12-16
EP0110905A1 (de) 1984-06-20
DE3220071A1 (de) 1983-12-01

Similar Documents

Publication Publication Date Title
WO1986002408A1 (en) Gas compressor directly driven by heat energy
DE1282661B (de) Vorrichtung zur Kaelteerzeugung
EP2334923A1 (de) Verfahren und vorrichtung zum betreiben eines stirling-kreisprozesses
EP0178348B1 (de) Durch Wärmezufuhr direkt betriebener Gasverdichter
US4615259A (en) Reciprocating gas compressor
EP1454051B1 (de) Thermo-hydrodynamischer-kraftverstärker
CH667132A5 (de) Drehkolben-eintakt-verbrennungsmotor.
DE19814742C1 (de) Kreiskolben-Wärmemotor-Vorrichtung
DE2539878A1 (de) Thermodynamische maschine mit geschlossenem kreislauf
US2648527A (en) Heat exchanger
EP2273093A1 (de) Wärmekraftmaschine
DE3229108A1 (de) Thermisches antriebsystem fuer kraftfahrzeuge
DE3815606C2 (de)
DE3246633A1 (de) Waermekraftmaschine
DE1815711A1 (de) Rollkurbelmaschinen
DE3327483A1 (de) Regenerative waermekraftmaschine
DE4124729A1 (de) Durch aeussere waermezufuhr betriebene thermohydraulische arbeits- oder waermemaschine
WO2002084078A1 (de) Kreiskolben-wärmemotor-vorrichtung
US3984983A (en) Power control compressor arrangement in hot gas engine
US3138918A (en) Fluid engine having a pressurized crankcase
DE3616001A1 (de) Thermohydraulische regenerative arbeitsmaschine
DE3732123A1 (de) Kraftmaschine
DE4410886A1 (de) Mehrstufiger Rotationskolbenverdränger
DE4022632A1 (de) Verfahren zum umwandeln von waermeenergie in eine mechanische drehbewegung sowie vorrichtung zum durchfuehren des verfahrens
DE3227643A1 (de) Hausenergiesystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR IT

17P Request for examination filed

Effective date: 19861020

17Q First examination report despatched

Effective date: 19870416

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR IT

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921019

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST