EP0171672B1 - Building block - Google Patents

Building block Download PDF

Info

Publication number
EP0171672B1
EP0171672B1 EP85109275A EP85109275A EP0171672B1 EP 0171672 B1 EP0171672 B1 EP 0171672B1 EP 85109275 A EP85109275 A EP 85109275A EP 85109275 A EP85109275 A EP 85109275A EP 0171672 B1 EP0171672 B1 EP 0171672B1
Authority
EP
European Patent Office
Prior art keywords
fact
insulating
bearing
bearing part
construction element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85109275A
Other languages
German (de)
French (fr)
Other versions
EP0171672A2 (en
EP0171672A3 (en
Inventor
Werner Baumberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT85109275T priority Critical patent/ATE53092T1/en
Publication of EP0171672A2 publication Critical patent/EP0171672A2/en
Publication of EP0171672A3 publication Critical patent/EP0171672A3/en
Application granted granted Critical
Publication of EP0171672B1 publication Critical patent/EP0171672B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C1/00Building elements of block or other shape for the construction of parts of buildings
    • E04C1/40Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts
    • E04C1/41Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts composed of insulating material and load-bearing concrete, stone or stone-like material

Definitions

  • Construction studs are already known, for example made of concrete, which are provided on one of their faces with an insulating layer.
  • This insulating layer in the form of a plate fixed after the manufacture of the pad, 'can be composed of grains of an insulating material, such as cork embedded in a cement mortar, as described in patent FR-A-2,237 .018 (fixed by gluing), or by multicellular concrete as described in patent BE-A-480,990 (fixed by tenons and mortises).
  • an excessive increase in the insulating layer to the detriment of the concrete stud would lead to a weakening of the latter which could then no longer be used for the production of load-bearing walls.
  • the building block according to the invention which aims to achieve the above object, has the characteristics as defined in claim 1.
  • the first load-bearing zone consists of light concrete, possibly added with a synthetic resin, the concrete itself being composed of a normal cement binding a light material such as blast furnace slag, pumice stone , crushed terracotta, clay, clay or expanded shale, pozzolan, etc.
  • the second insulating zone is preferably composed of a hydraulic binder, for example a cement, and a synthetic resin, coating an expanded mineral filler, for example beads of expanded or cellular glass, vermiculite, polyurethane granules, mica or expanded polystyrene, wood chips, etc.
  • a hydraulic binder for example a cement
  • a synthetic resin coating an expanded mineral filler, for example beads of expanded or cellular glass, vermiculite, polyurethane granules, mica or expanded polystyrene, wood chips, etc.
  • the illustrated construction stud is of the concrete block type and includes a load-bearing zone 1 made of light concrete as described above and an insulating zone 2 also produced as described above.
  • the thickness of the insulating zone 2 constitutes at least 40% of the total thickness of the pad, while remaining less than that of the carrier zone 1.
  • the bearing zone 1 has blind cylindrical voids, for example of sections respectively in the form of slots with rounded ends 3, of rectangles with rounded angles 3 ′, circular 3 ", etc.
  • these different voids are arranged as illustrated in the figure 2, that is to say staggered in the thickness of zone 1, so as to provide the best possible resistance to the transmission of heat.
  • the volume occupied by these voids 3, 3 ′, 3 " corresponds approximately 25% of the total volume of the carrier zone 1.
  • each of the load-bearing 1 and insulating 2 zones has coupling grooves 4, 5 making it possible to ensure better stacking of the construction pads.
  • FIG. 4 is schematically illustrated in plan an embodiment of an "interior" angle with two pads A and B each formed by a carrier zone 1 and an insulating zone 2, 2 ', the insulating zone 2' of the stud B does not extend, on one side of said pad, to the end of the latter,
  • the angle connection between the two pads A and B is formed by an angle core 6, which has a portion 6 'taking the place of the missing portion of the insulating zone 2' of the stud B.
  • Such values are entirely suitable for allowing the construction of a wall, using the studs according to the invention, whose heat transmission coefficient k is equal to or less than 0.4 (including the external plasters and internal, and the seals).
  • the composition of the different parts of the wall is as follows:
  • This water / cement coefficient is a known and current data, used in the field of concrete.
  • the graph in FIG. 7 represents for the wall described by way of example the curve of temperature through the thickness of it, from the outside to the inside.
  • the interior transmission according to EMPA standard is not indicated.
  • phase shift is meant here the duration between the moment when the cold (or heat) penetrates from the outside and the observation of this change in temperature inside a room; if possible, this duration should be greater than 10-12 hours, so that the effects of this phase (or temperature) difference are only reflected on the other side of the wall (inside) when these effects have diminished significantly or disappeared outside.
  • the dimensions of the blind cells made in the area carrying the stud are not limited; on the other hand, it has been shown that the configuration illustrated for example in FIG. 2 was that which offered the most resistance to heat transmission.

Abstract

The construction element comprises two different parts. A first bearing part (1) has cavities of cylindrical cross-section with rounded ends and is constituted by light concrete having a resistance to compression comprised between 25 and 175 kg/cm2 and an apparent density comprised between 900 and 1250 kg/m3. The second insulating part (2), of an apparent density of at most 270 kg/m3, is constituted of an hydraulic binder based on cement, a synthetic resin and an expanded mineral filler. The heat transmission coefficient k in the direction perpendicular to said parts of the monolithic element is less than or equal to k=0,40 (W/mK).

Description

La présente invention se rapporte à un plot de construction, et plus particulièrement à un plot de construction monolithique comportant deux zones distinctes dans son épaisseur.The present invention relates to a building block, and more particularly to a monolithic building block having two distinct zones in its thickness.

On connaît déjà des plots de construction, par exemple en béton, qui sont munis sur une de leur face d'une couche isolante. Cette couche isolante, sous la forme d'une plaque fixée après la fabrication du plot,' peut être composée de grains en un matériau isolant, tel que du liège enrobé dans un mortier de ciment, comme décrit dans le brevet FR-A-2.237.018 (fixée par collage), ou bien par du béton multicellulaire comme décrit dans le brevet BE-A-480.990 (fixée par tenons et mortaises). Toutefois, il n'est pas possible avec de tels plots d'obtenir un coefficient de transmission de chaleur k qui soit suffisamment bas pour satisfaire aux exigences actuelles d'isolation des bâtiments. En effet, une augmentation trop importante de la couche isolante au détiment du plot en béton conduirait à un affaiblissement de celui-ci qui ne pourrait alors plus être utilisé pour la réalisation de murs porteurs.Construction studs are already known, for example made of concrete, which are provided on one of their faces with an insulating layer. This insulating layer, in the form of a plate fixed after the manufacture of the pad, 'can be composed of grains of an insulating material, such as cork embedded in a cement mortar, as described in patent FR-A-2,237 .018 (fixed by gluing), or by multicellular concrete as described in patent BE-A-480,990 (fixed by tenons and mortises). However, it is not possible with such studs to obtain a heat transmission coefficient k which is low enough to meet current building insulation requirements. Indeed, an excessive increase in the insulating layer to the detriment of the concrete stud would lead to a weakening of the latter which could then no longer be used for the production of load-bearing walls.

Le but de cette invention consiste donc à fournir un plot de construction du type précité qui obvie à l'inconvénient précité, c'est-à-dire qui puisse être utilisé comme élément porteur en présentant simultanément un coefficient de transmission de chaleur k inférieur à celui des plots connus de l'art antérieur.The object of this invention therefore consists in providing a construction stud of the aforementioned type which obviates the aforementioned drawback, that is to say which can be used as a load-bearing element by simultaneously presenting a heat transmission coefficient k less than that of the studs known from the prior art.

Le plot de construction selon l'invention, qui vise à atteindre le but précité, présente les caractéristiques telles que définies dans la revendication 1.The building block according to the invention, which aims to achieve the above object, has the characteristics as defined in claim 1.

De préférence, la première zone porteuse consiste en un béton léger, éventuellement additionné d'une résine synthétique, le béton étant lui-même composé d'un ciment normal liant un matériau léger tel que du laitier de haut-fourneau, de la pierre ponce, de la terre cuite concassée, de l'argile, glaise ou schiste expansé, de la pouzzolane, etc. Le choix de ce matériau dépend des caractéristiques recherchées pour le plot de construction: par exemple, on utilisera de préférence un laitier expansé pour obtenir un plot ayant une résistance élevée à la compression (de l'ordre de 165 kg/cm2 pour une densité apparente d'environ 1250 kg/m3), alors que la pierre ponce sera utilisée préférentiellement pour obtenir un plot ayant de meilleures caractéristiques d'isolation, mais une résistance moins élevée à la compression (de l'ordre de 40 kg/cm2 pour une densité apparente d'environ 1000 kg/m3).Preferably, the first load-bearing zone consists of light concrete, possibly added with a synthetic resin, the concrete itself being composed of a normal cement binding a light material such as blast furnace slag, pumice stone , crushed terracotta, clay, clay or expanded shale, pozzolan, etc. The choice of this material depends on the characteristics sought for the construction stud: for example, an expanded slag will preferably be used to obtain a stud having a high resistance to compression (of the order of 165 kg / cm 2 for a density apparent of approximately 1250 kg / m 3 ), whereas pumice stone will be used preferentially to obtain a stud having better insulation characteristics, but a lower resistance to compression (of the order of 40 kg / cm 2 for an apparent density of around 1000 kg / m 3 ).

Quant à la seconde zone isolante, elle est de préférence composée d'un liant hydraulique par exemple un ciment, et d'une résine synthétique, enrobant une charge minérale expansée, par exemple des billes de verre expansé ou cellulaire, de la vermiculite, des granulés de polyuréthane, du mica ou du polystyrène expansé, des copeaux de bois, etc.As for the second insulating zone, it is preferably composed of a hydraulic binder, for example a cement, and a synthetic resin, coating an expanded mineral filler, for example beads of expanded or cellular glass, vermiculite, polyurethane granules, mica or expanded polystyrene, wood chips, etc.

Le dessin annexé illustre l'invention schématiquement et à titre d'exemples.

  • La figure 1 est une vue en perspective de dessus d'un plot de construction selon l'invention.
  • La figure 2 est une vue en plan de dessous du plot selon la figure 1, et la figure 3 est une vue en coupe selon la ligne III-III de la figure 2.
  • La figure 4 est une vue en plan de dessus d'une réalisation d'un angle intérieur avec deux plots de construction selon l'invention.
  • La figure 5 est une vue en plan de dessus d'un plot d'angle, et la figure 6 est une vue en plan de dessous de ce plot d'angle.
  • La figure 7 est un graphique représentant la transmission de chaleur (température en fonction de l'épaisseur) à travers un mur réalisé avec des plots selon l'invention.
The appended drawing illustrates the invention schematically and by way of examples.
  • Figure 1 is a perspective view from above of a building block according to the invention.
  • FIG. 2 is a plan view from below of the stud according to FIG. 1, and FIG. 3 is a sectional view along line III-III of FIG. 2.
  • Figure 4 is a top plan view of an embodiment of an interior angle with two construction pads according to the invention.
  • Figure 5 is a top plan view of a corner stud, and Figure 6 is a bottom plan view of this corner stud.
  • FIG. 7 is a graph representing the heat transmission (temperature as a function of thickness) through a wall produced with studs according to the invention.

En référence tout d'abord aux figures 1 à 3, le plot de construction illustré est du type parpaing et comporte une zone porteuse 1 réalisée en béton léger comme décrit précédemment et une zone isolante 2 égalément realisée comme décrit ci-dessus. De préférence, l'épaisseur de la zone isolante 2 constitue au moins le 40% de l'épaisseur totale du plot, tout en restant inférieure à celle de la zone porteuse 1.Referring firstly to Figures 1 to 3, the illustrated construction stud is of the concrete block type and includes a load-bearing zone 1 made of light concrete as described above and an insulating zone 2 also produced as described above. Preferably, the thickness of the insulating zone 2 constitutes at least 40% of the total thickness of the pad, while remaining less than that of the carrier zone 1.

La zone porteuse 1 présente des vides cylindriques borgnes par exemple de sections respectivement en forme de fentes à extrémités arrondies 3, de rectangles à angles arrondis 3', circulaires 3", etc. De préférence, ces différents vides sont disposés comme illustrés sur la figure 2, c'est-à-dire en quinconce dans l'épaisseur de la zone 1, de manière à fournir la meilleure résistance possible à la transmission de la chaleur. Le volume occupé par ces vides 3, 3', 3" correspond approximativement au 25% du volume total de la zone porteuse 1.The bearing zone 1 has blind cylindrical voids, for example of sections respectively in the form of slots with rounded ends 3, of rectangles with rounded angles 3 ′, circular 3 ", etc. Preferably, these different voids are arranged as illustrated in the figure 2, that is to say staggered in the thickness of zone 1, so as to provide the best possible resistance to the transmission of heat. The volume occupied by these voids 3, 3 ′, 3 "corresponds approximately 25% of the total volume of the carrier zone 1.

De plus, chacune des zones porteuses 1 et isolante 2 présente des gorges d'accouplement 4, 5 permettant d'assurer un meilleur empilage des plots de construction.In addition, each of the load-bearing 1 and insulating 2 zones has coupling grooves 4, 5 making it possible to ensure better stacking of the construction pads.

Sur la figure 4 est illustrée schématiquement en plan une réalisation d'un angle "intérieur" avec deux plots A et B formés chacun d'une zone porteuse 1 et d'une zone isolante 2, 2', la zone isolante 2' du plot B ne s'étendant pas, d'un côté dudit plot, jusqu'à l'extrémité de celui-ci, La liaison d'angle entre les deux plots A et B est formée par un noyau d'angle 6, qui présente une portion 6' prenant la place de la portion manquante de la zone isolante 2' du plot B.In FIG. 4 is schematically illustrated in plan an embodiment of an "interior" angle with two pads A and B each formed by a carrier zone 1 and an insulating zone 2, 2 ', the insulating zone 2' of the stud B does not extend, on one side of said pad, to the end of the latter, The angle connection between the two pads A and B is formed by an angle core 6, which has a portion 6 'taking the place of the missing portion of the insulating zone 2' of the stud B.

Enfin, en référence aux figures 5 et 6, un plot d'angle "extérieur" est illustré, qui est formé d'une zone porteuse 7 de forme générale rectangulaire et d'une zone isolante 8 bordant ladite zone porteuse 7 sur deux de ses côtés adjacents. Comme dans le cas du plot simple, la zone porteuse 7 présente des vides borgnes 3, 3', 3" et des gorges d'accouplement 9, 9', alors que la zone isolante 8 présente également des gorges d'accouplement 10.Finally, with reference to FIGS. 5 and 6, an "external" corner stud is illustrated, which is formed of a carrier zone 7 of generally rectangular shape and of an insulating zone 8 bordering said carrier zone 7 on two of its adjacent sides. As in the case of the simple stud, the carrier zone 7 has blind voids 3, 3 ', 3 "and coupling grooves 9, 9', while the insulating zone 8 also has coupling grooves 10.

Les plots de construction selon l'invention, tels que décrits ci-dessus à titre d'exemples, présentent un coefficient de transmission de chaleur k inférieur à environ 0,35 W/mK (1 W/mK = 0,860 kcal/mh°C); par exemple, avec une zone porteuse réalisée à base de laitier expansé (densité = environ 1250 kg/m3), on obtient un k d'environ 0,3, alors qu'avec une zone porteuse à base de pierre ponce, le k du plot obtenu est de l'ordre de 0,25. De telles valeurs sont tout-à-fait appropriées pour permettre la construction d'un mur, en utilisant les plots selon l'invention, dont le coefficient de transmission de chaleur k est égal ou inférieur à 0,4 (y compris les crépis externe et interne, et les joints).The construction studs according to the invention, as described above by way of examples, have a heat transfer coefficient k less than about 0.35 W / mK (1 W / mK = 0.860 kcal / mh ° C); for example, with a load-bearing zone made from expanded slag (density = approximately 1250 kg / m 3 ), we obtain a k of approximately 0.3, whereas with a load-bearing zone based on pumice, the k of the plot obtained is of the order of 0.25. Such values are entirely suitable for allowing the construction of a wall, using the studs according to the invention, whose heat transmission coefficient k is equal to or less than 0.4 (including the external plasters and internal, and the seals).

A titre d'exemple, on présentera ci-après les caractéristiques de transmission de chaleur d'l m2 de mur de 38,5 cm d'épaisseur totale, réalisé avec des plots selon l'invention d'une épaisseur de 35 cm, et comprenant les constituants suivants de l'extérieur vers l'intérieur ainsi que 5 joints horizontaux:

  • crépi extérieur: 2 cm (À = 0,87 W/mK)
  • plot selon l'invention:
    • zone isolante comportant des billes de verre cellulaire: 15 cm (À= 0,078 W/mK) voir "Calcul pondéré" plus loin.
    • Le matériau "SILIPERL" ayant un lambda de 0,075 W/mK ne résiste pas à l'alcali, c'est pour cette raison que nous avons tenu compte dans le "Calcul pondéré" seulement du matériau "DENNERT" résistant à l'alcali selon le test EMPA Nr. 48 374/1 et présentant un lambda de 0,078 W/mK. zone porteuse à base de laitier expansé bouleté: 20 cm (À = 0,30 W/mK)
  • crépi intérieur: 1,5 cm (À = 0,70 W/mK).
By way of example, the characteristics of heat transmission of 1 m 2 of wall with a total thickness of 38.5 cm, produced with studs according to the invention with a thickness of 35 cm, will be presented below, and comprising the following components from outside to inside as well as 5 horizontal joints:
  • exterior plaster: 2 cm (À = 0.87 W / mK)
  • stud according to the invention:
    • insulating zone comprising cellular glass beads: 15 cm (A = 0.078 W / mK) see "Weighted calculation" below.
    • The "SILIPERL" material with a lambda of 0.075 W / mK does not resist alkali, it is for this reason that we have taken into account in the "Weighted calculation" only the material "DENNERT" resistant to alkali according to the EMPA test Nr. 48 374/1 and having a lambda of 0.078 W / mK. load-bearing zone based on expanded pelletized slag: 20 cm (À = 0.30 W / mK)
  • interior plaster: 1.5 cm (À = 0.70 W / mK).

Dans l'exemple ci-dessus, le plot lui-même présente un coefficient de transmission de chaleur k = 0,386. La composition des différentes parties du mur est la suivante:In the example above, the stud itself has a heat transmission coefficient k = 0.386. The composition of the different parts of the wall is as follows:

a) Plot selon l'inventiona) Plot according to the invention

Figure imgb0001
Figure imgb0001

Ce coefficient eau/ciment

Figure imgb0002
est une donnée connue et courante, utilisée dans le domaine du béton.
Figure imgb0003
This water / cement coefficient
Figure imgb0002
is a known and current data, used in the field of concrete.
Figure imgb0003

b) Joints en mortier isolantb) Insulating mortar joints

Figure imgb0004
Figure imgb0004

Dans le tableau ci-dessous, le calcul pondéré selon les normes EMPA de transmission de chaleur est présenté dans le cas du mur décrit précédemment, et pour une différence de température entre la face froide externe (-10°C) et la face chaude interne (+20°C) de 30°:

Figure imgb0005
In the table below, the weighted calculation according to EMPA standards for heat transmission is presented in the case of the wall described above, and for a temperature difference between the external cold face (-10 ° C) and the internal hot face. (+ 20 ° C) from 30 °:
Figure imgb0005

La valeur obtenue pour le ktot. de 0,393 W/m2 K pourrait encore être améliorée en utilisant des enduits isolants sur les crépis normaux ou à la place de ceux-ci.The value obtained for k tot . 0.393 W / m2 K could be further improved by using insulating plasters on or in place of normal plasters.

Enfin, le graphique de la figure 7 représente pour le mur décrit à titre d'exemple la courbe de température à travers l'épaisseur de celui-ci, de l'extérieur vers l'intérieur. Dans ce graphique, la transmission intérieure

Figure imgb0006
selon la norme EMPA n'est pas indiquée.Finally, the graph in FIG. 7 represents for the wall described by way of example the curve of temperature through the thickness of it, from the outside to the inside. In this graph, the interior transmission
Figure imgb0006
according to EMPA standard is not indicated.

En outre, grâce au coefficient de transmission de chaleur k très bas que présentent les plots de construction selon l'invention, un mur réalisé avec ceux-ci montrera un décalage de phase supérieur à environ 14 heures. Par décalage de phase, on entend ici la durée entre le moment de la pénétration depuis l'extérieur du froid (ou de la chaleur) et l'observation de cette modification de température à l'intérieur d'une chambre; cette durée doit être si possible supérieure à 10-12 heures, de telle sorte que les effets de cette différence de phase (ou de température) ne se répercutent de l'autre côté du mur (à l'intérieur) qu'au moment où ces effets ont diminué sensiblement ou ont disparu à l'extérieur.In addition, thanks to the very low heat transmission coefficient k presented by the construction studs according to the invention, a wall produced with them will show a phase shift greater than about 14 hours. By phase shift is meant here the duration between the moment when the cold (or heat) penetrates from the outside and the observation of this change in temperature inside a room; if possible, this duration should be greater than 10-12 hours, so that the effects of this phase (or temperature) difference are only reflected on the other side of the wall (inside) when these effects have diminished significantly or disappeared outside.

Enfin, les dimensions des alvéoles borgnes pratiquées dans la zone porteuse du plot ne sont pas limitées; par contre, il a été démontré que la configuration illustrée par exemple sur la figure 2 était celle que offrait le plus de résistance à la transmission de chaleur.Finally, the dimensions of the blind cells made in the area carrying the stud are not limited; on the other hand, it has been shown that the configuration illustrated for example in FIG. 2 was that which offered the most resistance to heat transmission.

Claims (6)

1. Monolithic construction element formed of two distinct parts juxtaposed in its thickness, the first part being a bearing one, which presents cavities perpendicular to the plan of the element and is made of a light concrete, the second part being an insulating and solid one, and the thickness of the bearing part being greater than that of the insulating part, characterized by the fact that the bearing part (1; 7) presents a resistance to compression comprised between 25 and 175 kg/cm2 and an apparent density comprised between 900 and 1,250 kg/ml; by the fact that the cavities (3,3', 3") of this bearing part are blind cylindrical cavities having in cross-section rounded ends and being opened on the lower face of the element, and whose at least some are in the form of elongated slots which are disposed in alternate rows parallel to the parts of the element and that the volume of said cavities is corresponding to about 25% of the volume of said bearing part; by the fact that the second part (2; 8) has an apparent density of at most 270 kg/m3 and that it is constituted of a hydraulic binder based on cement, of a synthetic resin and of an expanded mineral filler; by the fact that the thickness of the insulating part is corresponding at least to 40% of the total thickness of the element; and by the fact that each of the respective bearing (1; 7) and insulating (2; 8) parts has one or several coupling grooves (4, 5; 9, 9', 10); the whole being arranged in such a way that said element presents a heat transmission coefficient k in the direction perpendicular to said parts equal or lower to k = 0.40 (W/mK).
2. Construction element according to claim 1, characterized by the fact that the light concrete forming the bearing part is added with a synthetic resin, for example an acrylic resin.
3. Construction element according to claim 2, characterized by the fact that the light concrete comprises in addition to an hydraulic binder a material selected from a blast furnace slag, pumice stone, crushed terracotta, expanded clay, ton or slate and pouzzolana.
4. Construction element according to one of claims 1 to 3, characterized by the fact that the insulating part comprises an expanded mineral filler selected from expanded or cellular glass balls, vermiculite, granulated polyurethan, mica, expanded polystyrene and wood chips.
5. Construction element according to one of claims 1 to 4, characterized by the fact that it has in a plan view a rectangular shape.
6. Corner construction element according to one of claims 1 to 5, characterized by the fact that it comprises a bearing part of a rectangular shape and an insulating part of a L shape and bordering two adjacent faces of said bearing part.
EP85109275A 1984-08-15 1985-07-24 Building block Expired - Lifetime EP0171672B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85109275T ATE53092T1 (en) 1984-08-15 1985-07-24 BUILDING BLOCK.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3914/84 1984-08-15
CH3914/84A CH658283A5 (en) 1984-08-15 1984-08-15 CONSTRUCTION PLOT.

Publications (3)

Publication Number Publication Date
EP0171672A2 EP0171672A2 (en) 1986-02-19
EP0171672A3 EP0171672A3 (en) 1987-04-01
EP0171672B1 true EP0171672B1 (en) 1990-05-23

Family

ID=4266212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85109275A Expired - Lifetime EP0171672B1 (en) 1984-08-15 1985-07-24 Building block

Country Status (16)

Country Link
US (1) US4641470A (en)
EP (1) EP0171672B1 (en)
JP (1) JPS6160944A (en)
AT (1) ATE53092T1 (en)
AU (1) AU575670B2 (en)
CA (1) CA1243215A (en)
CH (1) CH658283A5 (en)
DE (2) DE171672T1 (en)
DK (1) DK163680C (en)
ES (1) ES295961Y (en)
FI (1) FI79378C (en)
GR (1) GR851975B (en)
IL (1) IL76080A0 (en)
NO (1) NO168661C (en)
PT (1) PT80924B (en)
ZA (1) ZA855894B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627536A (en) * 2018-04-04 2018-10-09 长安大学 A kind of cast-type conductive asphalt concrete conduction thermal effect predictor method

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4724427A (en) * 1986-07-18 1988-02-09 B. I. Incorporated Transponder device
US4879849A (en) * 1987-11-04 1989-11-14 Omni Films International, Inc. Point-of-view motion simulator system
FR2663065A1 (en) * 1990-06-12 1991-12-13 Neveux Francois Lightweight, thermally insulating, load-bearing structural breeze block
GB9108592D0 (en) * 1991-04-22 1991-06-05 Hepworth Building Prod Building block
AU665695B2 (en) * 1992-07-08 1996-01-11 Yves Pierre Marcel Treuil Cementitious building element
WO1994020274A1 (en) * 1993-03-08 1994-09-15 E. Khashoggi Industries Insulation barriers having a hydraulically settable matrix
CA2167213C (en) * 1993-07-16 2003-09-30 Richard E. Groh (Deceased) Method for using lightweight concrete, for producing a combination therefrom and a combination produced thereby
DE29601827U1 (en) * 1996-02-03 1996-03-14 Gebhart Siegfried Stone, especially formwork or block stone
USH2063H1 (en) 2000-03-13 2003-05-06 The United States Of America As Represented By The Secretary Of The Navy Thermal barrier and method of use
US20030092848A1 (en) 2001-09-11 2003-05-15 Ashok Sengupta Sprayable liner for supporting the rock surface of a mine
FR2881423B1 (en) * 2005-02-02 2007-04-20 Henri Clervil COMPOSITION FOR INSULATING CONCRETE, CONSTRUCTION ELEMENT FOR CARRYING OUT A LOST FORMWORK PRODUCED WITH THIS CONCRETE, LOST FORMWORK PRODUCED THEREFROM, AND CARRYING WALL MADE THEREFROM
KR100793542B1 (en) * 2006-10-12 2008-01-14 삼성에스디아이 주식회사 Organic electro luminescence display and driving method thereof
KR100810644B1 (en) * 2007-04-19 2008-03-06 삼성에스디아이 주식회사 Organic light emiting display device and a method of the same
US8991124B2 (en) * 2008-10-17 2015-03-31 Schöck Bauteile GmbH Concrete material, construction element for a thermal insulation, and brick-shaped thermally insulating element, each using the concrete material
DE102010023708A1 (en) * 2010-06-14 2011-12-15 Fensterle Bauunternehmen Gmbh Component for a building, in particular wall, ceiling or roof element component, and associated manufacturing method
WO2013091645A1 (en) * 2011-12-19 2013-06-27 A/S Graasten Teglværk Combined building block
NL2014985B1 (en) 2014-06-20 2016-12-06 Ceves-Vergeer B V Dry mortar mixture with grains of expanded glass.
US9447578B2 (en) 2015-01-02 2016-09-20 Richard Nelson DeBoer Modular block wall system
US10626599B2 (en) * 2016-01-06 2020-04-21 David NEGEV Interlocking masonry brick
FR3075234B1 (en) * 2017-12-20 2020-01-17 Haidar Ben Raffion BUILDING BLOCK

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE480990A (en) *
FR2189601A1 (en) * 1972-06-16 1974-01-25 Gasse Et Cie Eu Omat
FR2237018A1 (en) * 1973-06-22 1975-02-07 Grisard Paul Aggregate building block with partially insulated surface - comprising a layer of thermally insulated particles bound by cement
US4263372A (en) * 1976-05-19 1981-04-21 Rohm And Haas Company Method of coating and/or impregnating porous substrates, and products obtained thereby
US4309325A (en) * 1976-07-13 1982-01-05 Societe Metallurgique De Bretagne Clay-cement mortars and to the product made with said mortars
US4372092A (en) * 1976-08-16 1983-02-08 Lopez Fred T Precast concrete modular building panel
US4130973A (en) * 1977-09-07 1978-12-26 Curt Holger Ingestrom Building block
FR2456179A1 (en) * 1978-07-19 1980-12-05 Costamagna & Cie B M CONSTRUCTION PROCESS, PREFABRICATED PRODUCT FOR IMPLEMENTING SAME AND MANUFACTURING METHOD THEREOF
FR2442930A2 (en) * 1978-11-30 1980-06-27 Grisard Paul Brick lined with insulation - in which adhesion is achieved by cork and cement with plasticiser, rapid hardener etc.
FR2446704A1 (en) * 1979-01-19 1980-08-14 Monestier Claude Moulding building blocks with cast strata - of conventional colloidal concrete, opt. using expanded polystyrene for mould wall, insulation layer and filler components
DE2914647A1 (en) * 1979-04-11 1980-10-30 Basf Ag Hollow blocks with integral heat insulation - using expanded polystyrene with adhesive mixed with cement for cavity filling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627536A (en) * 2018-04-04 2018-10-09 长安大学 A kind of cast-type conductive asphalt concrete conduction thermal effect predictor method
CN108627536B (en) * 2018-04-04 2020-06-16 长安大学 Method for estimating conduction heat effect of cast conductive asphalt concrete

Also Published As

Publication number Publication date
FI79378C (en) 1989-12-11
NO853185L (en) 1986-02-17
CA1243215A (en) 1988-10-18
DK163680C (en) 1992-08-10
DE3577897D1 (en) 1990-06-28
EP0171672A2 (en) 1986-02-19
ES295961Y (en) 1988-05-16
FI853086L (en) 1986-02-16
FI853086A0 (en) 1985-08-12
NO168661C (en) 1992-03-18
FI79378B (en) 1989-08-31
ZA855894B (en) 1986-03-26
IL76080A0 (en) 1985-12-31
ES295961U (en) 1987-12-01
PT80924A (en) 1985-09-01
US4641470A (en) 1987-02-10
DK366285A (en) 1986-02-16
CH658283A5 (en) 1986-10-31
AU575670B2 (en) 1988-08-04
GR851975B (en) 1985-12-16
DK366285D0 (en) 1985-08-13
JPS6160944A (en) 1986-03-28
ATE53092T1 (en) 1990-06-15
AU4619585A (en) 1986-02-20
NO168661B (en) 1991-12-09
EP0171672A3 (en) 1987-04-01
PT80924B (en) 1987-06-17
DE171672T1 (en) 1986-05-22
DK163680B (en) 1992-03-23

Similar Documents

Publication Publication Date Title
EP0171672B1 (en) Building block
EP1644461A2 (en) Fire-stop device which is used to protect walls or structures or to produce a protective chamber
FR2675174A1 (en) Construction element
EP0014294A1 (en) Insulating precast building element
EP0041417B1 (en) Building block with insulating material incorporated therein for exterior insulation
EP1174232A1 (en) Building block and manufacture therof
EP3004749A1 (en) Fire protection conduit
CH632797A5 (en) Prefabricated construction element, method for constructing the element and use of the said element
CH572141A5 (en) Composite structural and insulant building wall block - has parallel opposed face load bearing plaques inter-spaced via rigid bonded bars
CH598442A5 (en) Brick assembly for building wall
WO1984003318A1 (en) Composite and insulating building wall
EP0694101A1 (en) Sound absorbent material
EP1063364B1 (en) Insulating wall
FR2511060A1 (en) Prefabricated T=shaped building block for walls - has plane face with opposed lug to allow offset interlocking with others for insulation
FR2971801A1 (en) Alveolar concrete block for modular construction of walls by stacking of blocks, in rows, with one another, comprises a concrete including light aggregates of natural sand and cement
FR2549511A1 (en) Prefabricated insulating panels for industrialised constructions and applications.
FR2562121A1 (en) Composite casebay
FR2486126A1 (en) Block for forming thermal and sound insulation wall - has wing profiles abutting with others to form insulating air gap
FR2589909A1 (en) Building block for masonry with built-in thermal insulation
EP0898027A1 (en) Constructional element for erecting walls
FR2488303A1 (en) Insulating floor with self supporting base - has insulation forming lost shutter for cast concrete floor beams
EP0451249A1 (en) New construction items.
FR2556454A1 (en) Method for storing solar energy by using accumulators and heavy weight concrete walls
WO2000040817A1 (en) Modular wall or double wall element for dry assembly
FR2561287A1 (en) Improvements to flat roofing elements comprising thermal insulation.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

ITCL It: translation for ep claims filed

Representative=s name: ING. ENRICO LORENZONI

TCAT At: translation of patent claims filed
TCNL Nl: translation of patent claims filed
DET De: translation of patent claims
PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19870430

17Q First examination report despatched

Effective date: 19880819

ITF It: translation for a ep patent filed

Owner name: CON LOR S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 53092

Country of ref document: AT

Date of ref document: 19900615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3577897

Country of ref document: DE

Date of ref document: 19900628

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920623

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920625

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920626

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920630

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920716

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920722

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920723

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920731

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920924

Year of fee payment: 8

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930724

Ref country code: GB

Effective date: 19930724

Ref country code: AT

Effective date: 19930724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930731

Ref country code: CH

Effective date: 19930731

Ref country code: BE

Effective date: 19930731

BERE Be: lapsed

Owner name: BAUMBERGER WERNER

Effective date: 19930731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85109275.9

Effective date: 19940210