EP0164263A2 - Fabrication d'une tôle d'acier destinée au traitement de surface et exempte de lignes de Hartmann - Google Patents
Fabrication d'une tôle d'acier destinée au traitement de surface et exempte de lignes de Hartmann Download PDFInfo
- Publication number
- EP0164263A2 EP0164263A2 EP85303935A EP85303935A EP0164263A2 EP 0164263 A2 EP0164263 A2 EP 0164263A2 EP 85303935 A EP85303935 A EP 85303935A EP 85303935 A EP85303935 A EP 85303935A EP 0164263 A2 EP0164263 A2 EP 0164263A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- steel sheet
- rolling
- steel
- less
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 57
- 239000010959 steel Substances 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000005096 rolling process Methods 0.000 claims abstract description 47
- 238000000137 annealing Methods 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims abstract description 16
- 230000009467 reduction Effects 0.000 claims abstract description 16
- 238000005098 hot rolling Methods 0.000 claims abstract description 14
- 239000010960 cold rolled steel Substances 0.000 claims abstract description 7
- 238000005097 cold rolling Methods 0.000 claims abstract description 7
- 238000001953 recrystallisation Methods 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract description 5
- 238000007747 plating Methods 0.000 claims description 8
- 239000005028 tinplate Substances 0.000 abstract description 14
- 239000005029 tin-free steel Substances 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 description 11
- 235000019589 hardness Nutrition 0.000 description 9
- 229910052718 tin Inorganic materials 0.000 description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 8
- 239000006104 solid solution Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910000655 Killed steel Inorganic materials 0.000 description 7
- 238000005496 tempering Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000032683 aging Effects 0.000 description 5
- 238000005275 alloying Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005246 galvanizing Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 235000019587 texture Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0268—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
Definitions
- the present invention relates to the production of a base sheet to be surface-treated, that is, a steel sheet as a base steel sheet to be plated for a surface-treated sheet such as tinplate and tin free steel in which a steel sheet is thinly plated with Sn or Cr, and is to effectively avoid the occurrence of the stretcher strain in the treatment, particularly drawing, made on the surface-treated steel sheet.
- the tempering degree is classified into several ranges from T-1(HR30T:49 ⁇ 3) to T-6(HR30T:70 ⁇ 3) depending upon intended Rockwell T hardnesses (HR30T).
- Such classification is made with respect to the box annealing, and in particular the classification from the T-4-CA to T-6-CA (HR30T:61 ⁇ 3 to 70 ⁇ 3) is specified with respect to the continuous annealing.
- the present invention is particularly suitable for the tinplate having the tempering degree of T2 or higher among the above-mentioned classification ranges and tin-free steel similar thereto.
- the base steel sheet of T-1 to T-4 grades to be plated as tinplate there has been heretofore mainly used a low carbon aluminum-killed steel having 0.01 to 0.10% by weight (hereinafter also referred to briefly as "%" with respect to the other components of the steel), while as the base sheet of T-5 and T-6 grades, use has been principally made of a low carbon aluminum-killed steel in which P or N is added to increase the hardness.
- the relation between the annealing method performed on the base steel sheet to be surface-treated and the properties of the tinplate is as follows: Box annealing: Since cooling is gradually performed down near room temperature in a few or several days after recrystallization (550-700°C), most of carbon in the steel precipitates as carbide. On the other hand, nitrogen in the steel precipitates as aluminum nitride during heating.
- Continuous annealing After heating is carried out rapidly up to 600 to 730°C at 10-30°C/sec., and recrystallization is performed while the temperature is kept for several ten seconds, cooling is carried out down to room temperature at 5-50°C/sec. Accordingly, most of C and N exist in the solid-solution state. Consequently, the dislocation is introduced into the steel through temper rolling and solute C and N precipitated on the dislocation lines through plated tin-alloying treatment after the tin plating cause strain aging hardening. Thus, when this steel sheet is worked into a can or the like, "texture" pattern (called “stretcher strain”) caused by yield point elongation is formed to conspicuously deteriorate the outer appearance.
- This publication discloses that aluminum-killed steel containing not more than 0.1% (not more than 0.04% in the below-mentioned Examples) of C, not more than 0.05% of Si, 0.05 to 0.4% of Mn, 0.01 to 0.1% of acid soluble AI, and 0.002 to 0.01% of N is used as a base material, hot rolling and the cold rolling are performed at a hot rolling finish temperature of from 700 to 900°C and at cold rolling reduction of 75-93%, respectively, followed by the continuous annealing to give a surface hardness of 43 to 58, and then wet type temper rolling is carried out at a rate of 1.5 to 35% depending upon a desired tempering degree in a range of HR30:44-75 of the surface hardness.
- this method can attain the hardness as one of the material characteristics required in the tin plate, but it utterly failed to mention the countermeasure in the prevention of the stretcher strain produced in the processing.
- the base sheet which is completely freed from the aging after baking can not be produced.
- the strain aging takes place when alloying treatment is made at 230-300°C for a few seconds after the temper rolled steel sheet to be plated is plated with tin or when heating is done in drying to obtain the tin free steel after chromium galvanization is performed, so that a conspicuous stretcher strain is induced in processing such as plate working.
- Japanese Patent application No. 5,425/1983 was filed with respect to a method of manufacturing the hard base steel sheet to be plated with tin which is free from the occurrence of the stretcher strain by continuously annealing an extremely low carbon steel sheet which contains not more than 0.0030% of C and a cold rolled steel sheet to which Nb or Ti is added upon necessity and temper rolling it at not less than 10%.
- the object of the present invention is to provide a method of manufacturing a base steel sheet to be surface-treated while being able to advantageously restrain the stretcher strain in the processing.
- the present inventors Upon having examined the method of manufacturing the tinplate being utterly free from the occurrence of the stretcher strain even after tin-melting treatment as well as baking treatment following the tin plating, the present inventors have found that even when the content of C is in a range of not more than 0.007% which can be relatively easily attained, the object intended by the present invention can be advantageously accomplished by performing temper rolling at a draft of not less than 7% by means of two or more stand rolling mill.
- a method of manufacturing a base steel sheet which method comprises combined steps of: hot rolling a steel slab containing not more than 0.0070% by weight of C (hereinafter referred to briefly as "%" for simplification with respect to the contents of the steel components), not more than 0.1% of Si, not more than 0.5% of Mn, 0.010 to 0.080% of Al, not more than 0.0050% of N, not more than 0.030% of S provided that the ratio of Mn/S is not less than 10, and not more than 0.030% of P while the hot rolling being terminated at a finish temperature of not less than 800°C; cold rolling thus obtained hot rolled steel sheet in an ordinary manner; continuously annealing the cold rolled steel sheet in which heating is done up to a temperature from a recrystallization temperature to 800°C, followed by cooling; and then temper rolling the annealed steel sheet at a reduction of not less than 7% by using two or more stand rolling mill, whereby the thus obtained base sheet to
- the behavior of the steel components of a base steel sheet to be surface-treated, particularly, C is important.
- the content of C is conventionally as high as 0.01 to 0.10%, a large amount of exists in the solid-solution state in the steel due to the quenching during the continuous annealing, and the solute C precipitates on the dislocation lines in the temper rolling and plating-alloying treatment subsequent to the plating to cause the stretcher strain. Accordingly, it is preferable that the content of C present in the solid-solution state in the continuously annealed steel is as small as possible.
- the most effective method of reducing the content of C in the solid-solution state is to reduce the content of C contained in the steel.
- Each steel was forged to be a sheet bar having a thickness of 30 mm. Then, the hot rolling was performed to obtain a hot rolled sheet of 2.6 mm while the sheet bar was heated at 1,250°C and the finishing temperature was 860°C. Immediately thereafter, the hot rolled sheet was placed into a furnace of 560°C, and gradually cooled for 30 minutes, which corresponds to the treatment at a coiling temperature of 560°C.
- the resulting steel sheet was cold rolled up to a thickness of 0.32 mm by a small scale rolling mill after pickling, and then subjected to the recrystallization annealing in the continuous annealing cycle.
- the cold rolled steel sheet was rapidly heated up to 710°C at a rate of 15°C/sec. and maintained at this temperature for 30 minutes, and then quenched down to room temperature at a rate of 10°C/sec.
- the baking treatment was carried out at 210°C for 20 minutes.
- the steel sheet was drawn up to a depth of 5 mm with respect to a steel sheet piece punched in a diameter of 95 mm under the conditions that the diameter of a punching die was 50 mm, a blank holding force was 1 ton and the diameter of a punch was 33 mm.
- the occurrence of the strain pattern in the drawing was observed by eyes.
- the relation among the content of C, the temper rolling reduction and the stretcher strain is shown in Fig. 1.
- Mn Since S which may cause brittleness at the hot rolling is required to be fixed in a form of MnS, Mn is necessary to be Mn/S ⁇ 10.
- Al is necessary to fix N in a form of aluminum nitride, it is necessary that Al is in an amount of 0.010% at the minimum. The addition of too much amount thereof leads to cost-up, and thus the upper limit is set at 0.080%.
- N may cause the stretcher strain in the processing of the product as in the case with C if N is present in the solid-solution state after the continuous annealing
- N is preferably as few as possible.
- the upper limit thereof is set at 0.0050%, the above-mentioned fixing with Al can be attained.
- the slab having appropriately undergone the slabbing in the ingot making or more preferably the continuous casting is subjected to the hot rolling during the processing processes according to the present invention.
- the hot rolling finish temperature is set at not lower than 800°C.
- the other hot rolling conditions and cold rolling conditions than the above are not particularly required to be restricted, and may be according to the ordinary ones.
- the annealing temperature In the conditions of the continuous annealing following the cold rolling, it is necessary to set the annealing temperature at not lower than the recrystallization temperature. However, if the annealing temperature exceeds 800°C, it becomes not only extremely difficult to pass the sheet in the continuous annealing but also the grain becomes larger to cause the rough surface. Thus, the upper- limit of the annealing temperature is set at 800°C.
- the plated steel sheet such as the tinplate or tin free steel having the peculiarity that completely no stretcher strain caused by the yield point elongation, that is, the strain pattern, is produced after the tin plating and tin-melting treatment or the corresponding treatment in the tin free steel is obtained merely by employing the extremely low carbon aluminum-killed steel with not more than 0.0070% of C as a raw material and temper rolling of the cold rolled steel sheet thereof at 7% after the continuous annealing.
- the steel sheet as continuous annealed is extremely soft, because the raw material is an extremely low carbon Al killed steel, and therefore, the rolling at 7% reduction can be easily performed by the temper rolling mill.
- the steel sheet having undergone the continuous annealing was temper rolled at 7-20% in two passes and maintained in an oil bath at 250°C for 3 seconds, and then was subjected to a treatment corresponding to baking at 210°C for 20 minutes.
- the present invention is to establish the process of advantageously producing the tinplate and the tin-free steel with the temper degree of not less than 2 which is free from the production of the stretcher strain on the basis of the completely novel concept that the extremely low carbon Al-killed steel containing not more than 0.0070% of C as the raw material is combined with the temper rolling.
- Any sort of the conventionally used rolling mills having two or more stands may do.
- a steel having a composition shown in Table 1 was prepared through melting in a converter to prepare a slab in continuous casting.
- the slab was finished to be 2.3 mm under the hot rolling conditions shown in Table 1.
- the resulting sheet was cold rolled down to 0.8 mm by means of a tandem rolling mill after pickling.
- the steel sheet thus obtained was further subjected to a treatment corresponding to baking at 210°C for 20 minutes, and the hardness was measured, while shallow drawing test similarly as mentioned in the fundamental experiment was carried out thereon.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
- Arc Welding In General (AREA)
- Seal Device For Vehicle (AREA)
- Coating Apparatus (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59116612A JPS60262918A (ja) | 1984-06-08 | 1984-06-08 | ストレツチヤ−ストレインの発生しない表面処理原板の製造方法 |
JP116612/84 | 1984-06-08 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0164263A2 true EP0164263A2 (fr) | 1985-12-11 |
EP0164263A3 EP0164263A3 (en) | 1987-01-21 |
EP0164263B1 EP0164263B1 (fr) | 1990-12-12 |
Family
ID=14691482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85303935A Expired - Lifetime EP0164263B1 (fr) | 1984-06-08 | 1985-06-04 | Fabrication d'une tôle d'acier destinée au traitement de surface et exempte de lignes de Hartmann |
Country Status (10)
Country | Link |
---|---|
US (1) | US4586965A (fr) |
EP (1) | EP0164263B1 (fr) |
JP (1) | JPS60262918A (fr) |
KR (1) | KR900004405B1 (fr) |
AU (1) | AU557182B2 (fr) |
CA (1) | CA1241583A (fr) |
DE (1) | DE3580865D1 (fr) |
ES (1) | ES8604653A1 (fr) |
NO (1) | NO160496C (fr) |
ZA (1) | ZA854179B (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0556834A2 (fr) * | 1992-02-21 | 1993-08-25 | Kawasaki Steel Corporation | Procédé de fabrication de tôles en acier à résistance élevée pour des boîtes |
EP0565066A1 (fr) * | 1992-04-06 | 1993-10-13 | Kawasaki Steel Corporation | Tôle noire ou fer blanc pour la production de boîtes et procédé de fabrication |
WO1996026295A1 (fr) * | 1995-02-24 | 1996-08-29 | Sollac | Procede d'elaboration d'une tole ou d'une bande en acier pour la realisation d'une boite et tole ou bande en acier obtenue par ce procede |
EP1247871A3 (fr) * | 2001-04-06 | 2004-01-21 | ThyssenKrupp Stahl AG | Méthod de fabrication d'un tôle noire ayant une ductilité élevée et utilisation d'un acier |
US7501031B2 (en) * | 2004-06-18 | 2009-03-10 | Nippon Steel Corporation | Steel sheet for tin plated steel sheet and tin-free steel sheet each having excellent formability and manufacturing method thereof |
CN104988387A (zh) * | 2015-06-19 | 2015-10-21 | 唐山不锈钢有限责任公司 | Mrt-4镀锡板用热轧带钢的生产方法 |
CN108760524A (zh) * | 2018-03-19 | 2018-11-06 | 江阴兴澄特种钢铁有限公司 | 一种降低含p热轧板卷曲中裂纹倾向的模拟试验方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6169928A (ja) * | 1984-09-12 | 1986-04-10 | Kawasaki Steel Corp | 連続焼鈍によるしごき加工用鋼板の製造方法 |
JPS63134645A (ja) * | 1986-11-26 | 1988-06-07 | Nippon Steel Corp | 伸びフランジ成形性の優れたdi缶用鋼板 |
JPH079029B2 (ja) * | 1988-06-17 | 1995-02-01 | 川崎製鉄株式会社 | 連続焼鈍設備における極薄硬質ぶりき原板の製造方法 |
US5156694A (en) * | 1988-12-19 | 1992-10-20 | Kawasaki Steel Corporation | Method of producing formable thin steel sheets |
US5053194A (en) * | 1988-12-19 | 1991-10-01 | Kawasaki Steel Corporation | Formable thin steel sheets |
AU721071B2 (en) † | 1996-02-08 | 2000-06-22 | Jfe Steel Corporation | Steel sheet for 2 piece battery can having excellent formability, anti secondary work embrittlement and corrosion resistance |
KR100338705B1 (ko) * | 1997-07-18 | 2002-10-18 | 주식회사 포스코 | 용접성및내프루팅성이우수한가공용주석도금원판의제조방법 |
KR100350070B1 (ko) * | 1997-12-29 | 2002-12-11 | 주식회사 포스코 | 단축공정에의한석도원판제조방법및장치 |
KR20020049920A (ko) * | 2000-12-20 | 2002-06-26 | 이구택 | 에지부 표면결함이 없는 열연강판의 제조방법 |
KR20110126519A (ko) * | 2008-12-19 | 2011-11-23 | 에누오케 가부시키가이샤 | 개스킷용 강판의 제조 방법 및 개스킷 |
JP5728856B2 (ja) * | 2010-09-07 | 2015-06-03 | Jfeスチール株式会社 | 部材の製造方法 |
CN102000696B (zh) * | 2010-10-19 | 2013-02-13 | 无锡嘉联不锈钢有限公司 | 一种条纹不锈钢带的生产方法 |
CN102719731B (zh) * | 2012-06-28 | 2016-03-02 | 宝山钢铁股份有限公司 | 二次冷轧荫罩带钢及其制造方法 |
KR101303657B1 (ko) * | 2013-04-17 | 2013-09-04 | 그린산업(주) | 방서와 전자파차폐를 위한 연철테이프 제조방법 |
CN103602884A (zh) * | 2013-12-06 | 2014-02-26 | 马钢(集团)控股有限公司 | 一种超低碳铝镇静钢板及其生产方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3260623A (en) * | 1963-10-04 | 1966-07-12 | American Can Co | Method of tempering continuously annealed metal sheet |
FR2260623A1 (fr) * | 1974-02-09 | 1975-09-05 | Nippon Steel Corp | |
JPS5597428A (en) * | 1979-01-16 | 1980-07-24 | Nippon Steel Corp | Production of steel plate for easy open can with excellent can opening property and score processability |
GB2081150A (en) * | 1980-08-01 | 1982-02-17 | Nippon Steel Corp | Method of producing steel strip |
EP0073092A1 (fr) * | 1981-08-13 | 1983-03-02 | Kawasaki Steel Corporation | Procédé de fabrication de tôle noire à grade de dureté T-3 |
JPS58197224A (ja) * | 1982-05-10 | 1983-11-16 | Kawasaki Steel Corp | 連続焼鈍による調質度t↓1〜t↓3を有する錫めっきあるいはティンフリー鋼板の製造方法 |
JPS59129733A (ja) * | 1983-01-17 | 1984-07-26 | Kawasaki Steel Corp | ストレツチヤ−ストレインの発生しない硬質ぶりき用めつき原板の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1527489A (en) * | 1976-08-05 | 1978-10-04 | Andreu Sa Dr | Amine compound |
DE3166285D1 (en) * | 1980-05-31 | 1984-10-31 | Kawasaki Steel Co | Method for producing cold rolled steel sheets having a noticeably excellent formability |
JPS5989727A (ja) * | 1982-11-12 | 1984-05-24 | Kawasaki Steel Corp | プレス成形性の優れた超深絞り用冷延鋼板の製造方法 |
-
1984
- 1984-06-08 JP JP59116612A patent/JPS60262918A/ja active Granted
-
1985
- 1985-05-29 NO NO852140A patent/NO160496C/no not_active IP Right Cessation
- 1985-05-31 US US06/739,623 patent/US4586965A/en not_active Expired - Lifetime
- 1985-06-03 ZA ZA854179A patent/ZA854179B/xx unknown
- 1985-06-04 DE DE8585303935T patent/DE3580865D1/de not_active Expired - Lifetime
- 1985-06-04 EP EP85303935A patent/EP0164263B1/fr not_active Expired - Lifetime
- 1985-06-05 KR KR1019850003948A patent/KR900004405B1/ko not_active IP Right Cessation
- 1985-06-05 CA CA000483185A patent/CA1241583A/fr not_active Expired
- 1985-06-06 AU AU43371/85A patent/AU557182B2/en not_active Ceased
- 1985-06-07 ES ES544004A patent/ES8604653A1/es not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3260623A (en) * | 1963-10-04 | 1966-07-12 | American Can Co | Method of tempering continuously annealed metal sheet |
FR2260623A1 (fr) * | 1974-02-09 | 1975-09-05 | Nippon Steel Corp | |
JPS5597428A (en) * | 1979-01-16 | 1980-07-24 | Nippon Steel Corp | Production of steel plate for easy open can with excellent can opening property and score processability |
GB2081150A (en) * | 1980-08-01 | 1982-02-17 | Nippon Steel Corp | Method of producing steel strip |
EP0073092A1 (fr) * | 1981-08-13 | 1983-03-02 | Kawasaki Steel Corporation | Procédé de fabrication de tôle noire à grade de dureté T-3 |
JPS58197224A (ja) * | 1982-05-10 | 1983-11-16 | Kawasaki Steel Corp | 連続焼鈍による調質度t↓1〜t↓3を有する錫めっきあるいはティンフリー鋼板の製造方法 |
JPS59129733A (ja) * | 1983-01-17 | 1984-07-26 | Kawasaki Steel Corp | ストレツチヤ−ストレインの発生しない硬質ぶりき用めつき原板の製造方法 |
Non-Patent Citations (3)
Title |
---|
PATENTS ABSTRACT OF JAPAN, vol. 8, no. 34 (C-210)[1471], 15th February 1984; & JP-A-58 197 224 (KAWASAKI SEITETSU K.K.) 16-11-1983 * |
PATENTS ABSTRACTS OF JAPAN, vol. 4, no. 151 (C-28)[633], 23rd October 1980; & JP-A-55 097 428 (SHIN NIPPON SEITETSU K.K.) 24-07-1980 * |
PATENTS ABSTRACTS OF JAPAN, vol. 8, no. 251 (C-252)[1688], 16th November 1984; & JP-A-59 129 733 (KAWASAKI SEITETSU K.K.) 26-07-1984 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0556834A2 (fr) * | 1992-02-21 | 1993-08-25 | Kawasaki Steel Corporation | Procédé de fabrication de tôles en acier à résistance élevée pour des boîtes |
EP0556834A3 (en) * | 1992-02-21 | 1993-09-29 | Kawasaki Steel Corporation | Method of producing high-strength steel sheet used for can |
EP0565066A1 (fr) * | 1992-04-06 | 1993-10-13 | Kawasaki Steel Corporation | Tôle noire ou fer blanc pour la production de boîtes et procédé de fabrication |
WO1996026295A1 (fr) * | 1995-02-24 | 1996-08-29 | Sollac | Procede d'elaboration d'une tole ou d'une bande en acier pour la realisation d'une boite et tole ou bande en acier obtenue par ce procede |
FR2730942A1 (fr) * | 1995-02-24 | 1996-08-30 | Lorraine Laminage | Procede d'elaboration d'une tole ou d'une bande en acier pour la realisation d'une boite et tole ou bande en acier obtenue par ce procede |
US6056832A (en) * | 1995-02-24 | 2000-05-02 | Sollac | Method for producing a steel sheet or strip for making a can, and steel sheet or strip obtained by said process |
EP1247871A3 (fr) * | 2001-04-06 | 2004-01-21 | ThyssenKrupp Stahl AG | Méthod de fabrication d'un tôle noire ayant une ductilité élevée et utilisation d'un acier |
US7501031B2 (en) * | 2004-06-18 | 2009-03-10 | Nippon Steel Corporation | Steel sheet for tin plated steel sheet and tin-free steel sheet each having excellent formability and manufacturing method thereof |
US8012276B2 (en) | 2004-06-18 | 2011-09-06 | Nippon Steel Corporation | Method for manufacturing a steel sheet for tin plated steel sheet and tin-free steel sheet each having excellent formability |
CN104988387A (zh) * | 2015-06-19 | 2015-10-21 | 唐山不锈钢有限责任公司 | Mrt-4镀锡板用热轧带钢的生产方法 |
CN104988387B (zh) * | 2015-06-19 | 2017-04-12 | 唐山不锈钢有限责任公司 | Mrt‑4镀锡板用热轧带钢的生产方法 |
CN108760524A (zh) * | 2018-03-19 | 2018-11-06 | 江阴兴澄特种钢铁有限公司 | 一种降低含p热轧板卷曲中裂纹倾向的模拟试验方法 |
Also Published As
Publication number | Publication date |
---|---|
US4586965A (en) | 1986-05-06 |
EP0164263B1 (fr) | 1990-12-12 |
AU4337185A (en) | 1985-12-12 |
ZA854179B (en) | 1986-01-29 |
NO160496C (no) | 1989-04-26 |
KR860000396A (ko) | 1986-01-28 |
JPS6330368B2 (fr) | 1988-06-17 |
EP0164263A3 (en) | 1987-01-21 |
ES8604653A1 (es) | 1986-02-01 |
KR900004405B1 (ko) | 1990-06-25 |
NO160496B (no) | 1989-01-16 |
ES544004A0 (es) | 1986-02-01 |
CA1241583A (fr) | 1988-09-06 |
JPS60262918A (ja) | 1985-12-26 |
DE3580865D1 (de) | 1991-01-24 |
NO852140L (no) | 1985-12-09 |
AU557182B2 (en) | 1986-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4586965A (en) | Production of a base steel sheet to be surface-treated which is to produce no stretcher strain | |
US4698102A (en) | Process for producing, by continuous annealing, soft blackplate for surface treatment | |
US4676844A (en) | Production of formable thin steel sheet excellent in ridging resistance | |
US3496032A (en) | Process for the production of coldrolled steel plate having good shape-fixability | |
JP3043901B2 (ja) | 深絞り性に優れた高強度冷延鋼板及び亜鉛めっき鋼板の製造方法 | |
JPH0257128B2 (fr) | ||
JP3369619B2 (ja) | 深絞り性及び延性に優れる高強度冷延鋼板の製造方法及び溶融亜鉛めっき鋼板の製造方法 | |
JPS63121623A (ja) | 耐リジング性と化成処理性に優れる深絞り用冷延鋼板の製造方法 | |
JPH03150316A (ja) | 深絞り用冷延鋼板の製造方法 | |
JPS61204325A (ja) | 耐リジング性と強度−伸びバランスに優れる加工用アズロ−ルド薄鋼板の製造方法 | |
JP3142975B2 (ja) | 深絞り性に優れた高強度冷延鋼板の製造方法 | |
JPH05222460A (ja) | プレス成形性の優れた冷延鋼板の製造方法 | |
JPH062069A (ja) | 深絞り性に優れた高強度冷延鋼板及び溶融亜鉛めっき鋼板 | |
JPS6360231A (ja) | 耐リジング性と深絞り性に優れる加工用薄鋼板の製造方法 | |
JPS61204331A (ja) | 耐リジング性とめつき密着性に優れる加工用電気金属めつき薄鋼板の製造方法 | |
JPS6213534A (ja) | 耐リジング性と張り出し成形性に優れる加工用アズロ−ルド薄鋼板の製造方法 | |
JPS61261434A (ja) | 耐リジング性と張り剛性に優れる加工用アズロ−ルド薄鋼板の製造方法 | |
CN85104306A (zh) | 待进行表面处理的且不产生拉伸度形花纹的基底薄钢板的加工方法 | |
JPH0561341B2 (fr) | ||
JPH0257129B2 (fr) | ||
JPH0333767B2 (fr) | ||
JPH0227416B2 (ja) | Tairijinguseitotaijikoseinisugurerukakoyoazuroorudosukohannoseizohoho | |
JPH0826402B2 (ja) | 連続焼鈍による表面性状の優れたAlキルド冷延鋼板の製造方法 | |
JPH0259846B2 (fr) | ||
JPH05339641A (ja) | 深絞り性に優れた高強度冷延鋼板及び溶融亜鉛めっき鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): BE DE FR GB |
|
17P | Request for examination filed |
Effective date: 19870306 |
|
17Q | First examination report despatched |
Effective date: 19880615 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB |
|
REF | Corresponds to: |
Ref document number: 3580865 Country of ref document: DE Date of ref document: 19910124 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19990602 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000604 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20000604 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20030902 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040608 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040617 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040630 |
|
BERE | Be: lapsed |
Owner name: *KAWASAKI STEEL CORP. Effective date: 20040630 |