EP0162367B2 - Procédé et dispositif pour la préparation de l'extrémité de fil pour la remise en route d'une machine à bout libéré - Google Patents
Procédé et dispositif pour la préparation de l'extrémité de fil pour la remise en route d'une machine à bout libéré Download PDFInfo
- Publication number
- EP0162367B2 EP0162367B2 EP85105561A EP85105561A EP0162367B2 EP 0162367 B2 EP0162367 B2 EP 0162367B2 EP 85105561 A EP85105561 A EP 85105561A EP 85105561 A EP85105561 A EP 85105561A EP 0162367 B2 EP0162367 B2 EP 0162367B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- thread
- shield
- thread end
- suction
- free
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 33
- 238000007383 open-end spinning Methods 0.000 title claims description 18
- 238000009987 spinning Methods 0.000 claims description 58
- 239000000835 fiber Substances 0.000 claims description 29
- 238000002360 preparation method Methods 0.000 claims description 26
- 238000005520 cutting process Methods 0.000 claims description 11
- 230000000717 retained effect Effects 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 230000001154 acute effect Effects 0.000 claims description 3
- 230000014759 maintenance of location Effects 0.000 claims description 2
- 238000005304 joining Methods 0.000 claims 2
- 230000010355 oscillation Effects 0.000 claims 2
- 238000012423 maintenance Methods 0.000 description 11
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000000926 separation method Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 241000209035 Ilex Species 0.000 description 1
- 210000004905 finger nail Anatomy 0.000 description 1
- 238000010040 friction spinning Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H4/00—Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
- D01H4/48—Piecing arrangements; Control therefor
- D01H4/50—Piecing arrangements; Control therefor for rotor spinning
Definitions
- the invention relates to a method for preparing a thread end for re-spinning an open-end spinning device, in which the thread end is cut to a spinnable thread end, and a device for performing the method.
- the thread to be reattached is gripped by a transfer clamp which has a cavity-like extension into which a compressed air nozzle opens.
- the compressed air nozzle and the cavity-like extension are designed so that the compressed air receives a corresponding swirl, by which the thread end arranged in the cavity-like extension is unscrewed.
- the clamping point for the thread to be returned must be shifted in the longitudinal direction of the thread in order to be adapted to the length of the staple of the fibers.
- the thread end to be reattached is held by a pneumatic catcher by means of an air stream.
- the thread end protruding from the pneumatic catcher is cut to a predetermined length and sucked into a suction pipe for unscrewing.
- the thread is attached for piecing after the thread end to be attached has been unscrewed and the unscrewed end of the thread has been removed.
- the object of the present invention is to improve the automatic thread application in open-end spinning devices, in particular with regard to its success rate at high rotor speeds or spinning speeds.
- this method achieves a considerable improvement in the success rate for threading even at high rotor speeds or spinning speeds, so that a lowering of the rotor speed for the piecing process compared to the normal spinning process is largely unnecessary.
- the method has the further advantage that the processed thread length can be selected independently of the stack length and can be adapted to different spinning conditions.
- the turbulent air flow is superimposed on a torsional flow component which follows the spinning rotation of the thread end to be processed.
- JP-PS-OS 26 541/74 It is known that a Fa to turn the end pneumatically in the direction of thread rotation (JP-PS-OS 26 541/74). This is, however, a pneumatic holding of the thread without the thread dissolving and thereby reducing the retention effect and breaking the thread when later removed from the suction tube.
- this patent is not concerned with preparing a thread end for a piecing operation to be carried out on an open-end spinning machine or station.
- the preparation of the thread end is simplified in that the thread to be prepared for piecing is laid out from the thread take-up position to the preparation device and then cut to length, whereupon the free thread end thus created is sucked into the preparation device. In this way, the free thread end is detected immediately after being cut to length by the air flow and automatically introduced into the processing device.
- Exact cutting to length is achieved by using a cutting device.
- the roughening of the surface of the free thread end is accelerated in that the free thread end is whipped against an edge-like projection or against a rough surface.
- the piecing success and the binding of the fibers to the free thread end is further improved if the free end of the thread is processed to a length which is greater than the stack length.
- the thread is expediently held at a distance from its free end which is 1.5 times the length of the stack.
- Optimal piecing conditions in open-end rotor spinning result from the fact that the free thread end is prepared in a length that corresponds approximately to the diameter of the spinning rotor.
- the free thread end is cut to the required distance from the holding point after cutting to length.
- the insertion of the piecing thread into the spinning device is facilitated in that the free thread end after preparation is brought to the length suitable for insertion into the spinning device and is returned after insertion into the attachment position, from which the release for the attachment process takes place.
- the device for carrying out the method is essentially characterized by the features of claim 11.
- a rapid preparation of the thread end is achieved in that at least one edge-like projection is provided in the region of the oscillating thread end or a rough surface is arranged.
- the free thread end is surrounded in its longitudinal direction by a tubular shield through which the turbulent air flow is directed.
- the compressed air nozzle is directed against the inner wall of the shield.
- a particularly effective air turbulence is created in that the compressed air nozzle is directed into the shield at an acute angle with respect to the central axis thereof.
- several compressed air nozzles open into the shield, the openings of which lie opposite one another and which are acted upon in an alternating sequence.
- the shielding can be connected to a suction line.
- this When using a suction air nozzle, this has one or more secondary air openings behind the inlet opening for the free thread end, as seen in the flow direction. It is thereby achieved that the thread end is hit particularly intensively against the rough inner surface of the shield.
- the arrangement of the secondary air openings takes place in such a way that the secondary air openings open into the suction air nozzle eccentrically to the bore axis of the suction air nozzle in the direction of the thread end to be processed.
- the secondary air openings preferably open tangentially to the inner diameter into the suction air nozzle, as a result of which an effective turbulent torsional flow is generated which prevents the thread from being untwisted.
- a simple manufacture of the suction air nozzle is possible in that the secondary air openings are formed by a groove-like recess in the nozzle wall.
- the flow cross section of the inlet opening is smaller than that of the secondary air opening or secondary air openings.
- the diameter of the inlet opening for the free thread end is 2 to 5 mm depending on the thread size.
- the inlet opening is expediently arranged in a cover which overlaps the wall of the suction air nozzle. This makes the device easily accessible and therefore easy to maintain.
- the introduction of the free end of the thread into the preparation device is facilitated in that the inlet opening has a funnel-shaped widening over which the thread holding device can be positioned at a close distance.
- four staggered side air openings are distributed over the circumference of the suction air nozzle, and each of the side air openings is connected to the atmosphere via a bypass.
- the suction air nozzle is connected to a suction line via the shield closed.
- the suction line is connected to the suction device which produces the negative vacuum, since the negative pressure on the fibers and the thread is already matched to the spinning process. Excessive stress on the thread end is therefore avoided.
- the suction air nozzle is made in one piece with the shield.
- a threading aid for the thread is created in that the shield is slotted in the longitudinal direction. If necessary, the shield can be slotted in the direction of movement of the thread towards the fiber collecting surface.
- the shield is a square tube and is arranged essentially in the direction of exit of the thread from the thread holding device. This promotes the whip-like movement of the thread end due to the turbulence flow.
- the shield can also be arranged transversely to the direction of exit of the thread from the thread holding device. In a structurally simple manner, the shield is arranged in a stationary manner in the swivel range of the thread holding device. Alternatively, there is the possibility that the shield can be fed to the free thread end.
- the shield can simultaneously serve to guide the free thread end into the thread take-off tube of the spinning device. According to current knowledge, a clear width of the shield, which lies in a range of 8 to 15 mm at a given negative pressure of 700 mm water column, has proven to be optimal for the preparation of the free thread end by a suction air stream.
- the shield is expediently designed as a sleeve which is arranged axially displaceably in a holder of the nozzle.
- the invention is described below in connection with an open-end rotor spinning device, to which a maintenance carriage is assigned, from which the thread attachment takes place. However, it can also be used with advantage in other open-end spinning devices, for example a friction spinning device.
- the spinning machine 1 (FIG. 1) generally has a large number of spinning positions.
- the open-end spinning device producing the thread is located in a housing 10.
- the housing 10 has a thread draw-off tube 11, through which the spun thread (dashed line) leaves the open-end spinning device and is drawn off by means of a pair of draw-off rollers 12.
- the thread is wound into a bobbin S by the winding device 13.
- a maintenance device W which can be moved along the spinning stations and performs a wide variety of maintenance processes, e.g. B. also re-spinning the thread at the spinning position after thread break. To do this, it is necessary to search for the broken thread running onto the spool on the spool, to pull the end of the thread found from the spool and to reinsert it into the spinning device so that it contacts the fibers in the spinning device and thus the spinning process starts again Gear is set. If the end of the thread cannot be successfully attached to the fibers in the spinning device during the first attachment process, the maintenance device repeats the attachment attempt, but time is lost as a result and the maintenance capacity of the maintenance device is considerably impaired. In addition, the efficiency of the entire machine is reduced by extending the downtime of the spinning device. So it is essential that the success rate when starting is as high as possible.
- the maintenance device is usually called to the relevant spinning station in order to carry out the steps necessary to restart the spinning process. It is common for the spinning device to be cleaned first of fiber residues and dirt before the actual re-spinning takes place.
- a suction tube 14 is arranged on the carriage of the maintenance device Wange, which can be moved from a rest position into a thread take-up position indicated by a broken line, in which the mouth of the suction tube 14 is in front of the spool S lifted from its drive roller and driven in the unwinding direction is located and takes up the thread end.
- the thread is sucked through the suction pipe 14 and this is in again ne moved back to rest position, the thread exits through a longitudinal slot in the suction tube 14 and extends exposed from the spool S to the lower part of the suction tube 14.
- a pair of clamping rollers 2, 20 is provided, which serves as a thread holding device and can be set in rotation by a drive means, not shown.
- the pair of rollers 2, 20 is overhung on the carriage of the maintenance device W on a swivel arm 30 and can be pivoted about an axis 3 between a thread take-up position 1 and a thread delivery position IV for returning the thread end into the thread outlet tube of the open-end spinning device.
- the pair of rollers 2, 20, by pivoting, grips the thread extending from the bobbin S to the lower part of the suction tube 14, whereupon the thread F is severed at a predetermined point below the pair of rollers 2, 20 holding it.
- the cutting takes place by means of a knife 15 which, in cooperation with an anvil roller 16, produces a defined thread end (FIG. 3, position I).
- the separated piece of thread is sucked off through the suction pipe 14.
- the distance of the separation point from the holding point of the thread F given by the clamping line of the pair of rollers 2, 20 and thus the length of the free thread end F 'to be prepared for piecing can be chosen and determined independently of the stack length depending on the piecing conditions. It has been shown that a free thread end F 'of a length which is greater than the stack length and is preferably 1.5 times the stack length, enables problem-free piecing under a wide variety of piecing conditions with a very high success rate and a particularly firm piecer results.
- the roller pair 2, 20 is assigned a compressed air nozzle 5 which is connected to a compressed air line 4 and which opens into a tubular shield 51 arranged in the pivoting range of the roller pair 2, 20 (FIG. 2).
- the shield 51 is arranged with a holder 50 essentially in the direction of exit of the thread F from the pair of rollers 2, 20.
- the compressed air nozzle 5 is directed against the inner wall 52 of the shield 51, expediently at an acute angle a with respect to the central axis of the shield 51. According to previous knowledge, an angle a of approximately 45 ° has proven to be particularly favorable.
- the shield 51 is preferably designed as a square tube, but it can also have a different cross section.
- the inner wall 52 is provided with at least one projection extending in the longitudinal direction of the shield 51 with a sharp edge or it has a rough surface.
- the latter can be created inexpensively by lining the inner wall 52 with sandpaper, with standard grain sizes being sufficient.
- the turbulent air flow required for the preparation of the thread end can be increased by a second compressed air nozzle 5 ', shown in broken lines in FIG.
- Appropriately controlled valves alternately apply compressed air to the nozzles.
- the pair of rollers 2, 20 are pivoted with the free thread end F 'held by them over the shield 51 (FIGS. 3 and 4, position 11). Simultaneously or immediately thereafter, compressed air is blown through the nozzle 5 into the shield 51 by opening a valve and a turbulent air flow is generated, in the embodiment shown in FIG. 3 (position II) with two nozzles in alternating sequence through the nozzles 5 and 5 '. In this case, the free thread end F 'is conveyed into the shield 51 by the injector effect occurring at the inlet of the shield 51.
- the turbulent air flow directed through the shield 51 sets the free thread end F 'in whip-like vibrations and thus causes individual fiber ends to be exposed and spread apart from the thread surface, as indicated in FIGS. 3 and 4 (position 111). Due to the rough inner wall 52 or at least one angular projection in the shield 51, which lies in the region of the oscillating thread end F 'and against which the thread end F' is whipped by the turbulent air flow, the exposure of fiber ends is accelerated and for the preparation of the free thread end F 'takes a minimum of time. Individual fibers or fiber pieces that may arise from the separation point or from the Loosen piece of thread are removed by a suction line 53 connected to the shield (FIG. 2).
- the compressed air supply is set in the shield 51 and the pair of rollers 2, 20 with the processed thread end F 'which it holds fixed in front of the opening of the thread outlet tube 11 of the open-end spinning device pivoted (Fig. 3 and 4, position IV).
- the thread end F ' is drawn into the thread outlet tube 11 and, after being released by the pair of rollers 2, 20, it finally reaches the fiber collecting surface 6 of the spinning device, where it is spun onto the fed fiber ring.
- the pair of rollers 2, 20 is assigned a suction air nozzle 7 with a tubular shield 51 arranged after it, which are located in the swivel range of the pair of rollers 2, 20 (FIG. 5).
- the suction air nozzle 7 can be made in one piece with the shield 51 or can also be releasably connected to it.
- the shield 51 is arranged with a holder 50 essentially in the direction of exit of the thread F from the pair of rollers 2, 20 and is connected to the suction line 53.
- the suction line 53 is preferably connected to the suction device which produces the spinning vacuum, so that the suction air flow passed through the shield 51 corresponds to the spinning vacuum during rotor spinning, which is usually 700 mm water column.
- the suction air nozzle 7 has as close as possible to its inlet opening for the free thread end F 'at least one secondary air opening 71 which opens eccentrically to the bore axis of the suction air nozzle 7 and preferably tangentially to the inside diameter (FIG. 7).
- four staggered secondary air openings 71 are distributed over the circumference of the suction air nozzle 7, each of which opens eccentrically to the bore axis and tangential to the inner diameter of the suction air nozzle 7.
- the secondary air openings 71 are arranged so that the turbulent air flow generated by the suction air nozzle 7 and guided by the shield 51 is superimposed on a torsional flow component which follows the spinning rotation of the thread end to be processed and prevents the thread from unraveling.
- the secondary air openings 71 are produced in a simple manner in that the free end of the nozzle wall surrounding the inlet opening is recessed or slit-like.
- the free end of the thread is introduced into the suction air nozzle 7 and the shield 51 arranged downstream of it through the inlet opening 81, which is arranged centrally in a cover 8 spanning the wall of the suction air nozzle 7.
- the lid 8 is releasably attached to the suction air nozzle 7 and can therefore be removed so that the suction air nozzle 7 and the shield 51 are accessible for maintenance work.
- the arrangement of the inlet opening 81 in a cover simplifies the manufacture of the device.
- each of the secondary air openings 71 is connected to the atmosphere via a bypass 72.
- the sucking in of the thread end to be processed into the suction air nozzle 7 and the shield 51 is made easier by a funnel-shaped widening of the inlet opening which can be seen in FIG.
- the flow cross section of the inlet opening 81 for the free thread end is dimensioned smaller than that of the secondary air openings.
- a free thread end is preferably prepared in a length that corresponds approximately to the diameter of the spinning rotor.
- the preparation is also accelerated here in that the inner wall 52 of the shield 51 is provided with at least one projection extending in the longitudinal direction of the shield with a sharp edge or a rough surface (FIG. 5).
- the shield 51 is designed as a sleeve, the inner wall of which is provided with the sharp-edged projection or the rough surface.
- the shield 51 is clamped in a holder 9 of the suction air nozzle 7 designed as a clamping sleeve by means of a union nut 91.
- the shield 51 can be axially displaced, as indicated by the double arrow, so that the sharp-edged projection or the rough surface can be brought into the region of the thread end caused by the turbulent suction air flow in whip-like vibrations according to the thread length to be processed.
- optimal processing of the free thread end is achieved with a suction air flow corresponding to a spinning vacuum of 700 mm water column tion reached when the clear width of the shield 51 is in the range of 8 to 15 mm.
- the thread F which extends from the spool S to the lower part of the suction tube 14 according to FIG. 1 and is gripped by the pair of rollers 2, 20 in the thread take-up position I is only severed after the Roller pair 2, 20 has been pivoted via the inlet opening 81 of the suction air nozzle 7 and has thus laid the thread from the thread take-up position I to the preparation device.
- the cutting takes place by the knife 15 in cooperation with the anvil roller 16, which are arranged at a predetermined distance from the suction air nozzle 7 (FIG. 5).
- the separated thread end is sucked off through the suction tube 14, while at the same time the free thread end F ', which is held by the roller pair 2, 20 positioned in close proximity in front of the funnel-shaped extension, is sucked through the inlet opening 81 into the suction air nozzle 7 and the shield 51 into which suction air is introduced shortly before the thread is cut to length by opening a valve.
- the turbulent suction air flow generated in this way sets the free thread end F 'in whip-like vibrations, as a result of which fiber ends are spread apart from the thread surface and the thread receives a rougher surface.
- the spinning twist is retained in the thread end, so that the thread end retains its strength.
- the preparation of the thread end F ' is also carried out very quickly here by whipping the thread end against the rough inner wall 52 of the shield 51.
- the suction air supply is stopped.
- the prepared free thread end can then, in order to facilitate insertion into the spinning device, be brought to the length suitable for the insertion, for example by driving the bobbin S in the winding direction and winding a certain length of thread onto the bobbin S.
- the pair of rollers 2, 20 with the prepared thread end is now pivoted into the thread delivery position IV before the opening of the thread take-off tube 11 (FIG. 1).
- There the thread end is drawn into the thread take-off tube 11 due to the negative pressure prevailing in the spinning device.
- the free thread end is released by the pair of rollers 2, 20 and reaches the fiber collecting surface of the spinning device, where it is spun onto the fed fiber ring.
- the device described can be modified and developed in various ways.
- the shield 51 can thus be provided with a longitudinal slot for the insertion of the thread end F '.
- a movable shield can be provided, which is fed to the free thread end F 'and at the same time also serves to guide the free thread end F' into the thread outlet tube 11.
- the shield is provided with a longitudinal slot in the direction of movement of the thread towards the spinning device, through which the thread running into the spinning device is released upon the return movement of the shield into the starting position. It is of course also possible to arrange such a device according to the invention for preparing the thread end in a stationary manner at each spinning station.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Spinning Or Twisting Of Yarns (AREA)
Claims (41)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19843418780 DE3418780A1 (de) | 1984-05-19 | 1984-05-19 | Verfahren und vorrichtung zum vorbereiten eines abgelaengten fadenendes zum wiederanspinnen einer offenend-spinnvorrichtung |
DE3418780 | 1984-05-19 | ||
DE3422526 | 1984-06-16 | ||
DE19843422526 DE3422526A1 (de) | 1984-06-16 | 1984-06-16 | Verfahren und vorrichtung zum vorbereiten eines abgelaengten fadenendes zum wiederanspinnen einer offenend-spinnvorrichtung |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0162367A1 EP0162367A1 (fr) | 1985-11-27 |
EP0162367B1 EP0162367B1 (fr) | 1988-08-10 |
EP0162367B2 true EP0162367B2 (fr) | 1993-08-04 |
Family
ID=25821377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85105561A Expired - Lifetime EP0162367B2 (fr) | 1984-05-19 | 1985-05-07 | Procédé et dispositif pour la préparation de l'extrémité de fil pour la remise en route d'une machine à bout libéré |
Country Status (7)
Country | Link |
---|---|
US (1) | US4653260A (fr) |
EP (1) | EP0162367B2 (fr) |
BR (1) | BR8502325A (fr) |
CS (1) | CS276711B6 (fr) |
DE (1) | DE3564296D1 (fr) |
HK (1) | HK31593A (fr) |
SG (1) | SG67691G (fr) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1230033B (it) * | 1987-07-15 | 1991-09-24 | Mesdan Spa | Metodo universale per eliminare la torsione in un filato, districarlo e scioglierlo, e dispositivo per realizzare il metodo stesso. |
US5880510A (en) * | 1988-05-11 | 1999-03-09 | Raytheon Company | Graded layer passivation of group II-VI infrared photodetectors |
US5246347A (en) * | 1988-05-17 | 1993-09-21 | Patients Solutions, Inc. | Infusion device with disposable elements |
DE3828319A1 (de) * | 1988-08-20 | 1990-02-22 | Schubert & Salzer Maschinen | Fadenspleissvorrichtung zum knotenfreien verbinden von faeden und verfahren zur fadenendenvorbereitung |
DE3918946A1 (de) * | 1989-06-09 | 1990-12-13 | Schubert & Salzer Maschinen | Vorrichtung und verfahren zum anspinnen eines fadens an einer offenend-spinnvorrichtung |
IT1239336B (it) * | 1990-02-23 | 1993-10-20 | Savio Spa | Dispositivo e procedimento per la preparazione del capo del filo per l'avviamento o la ripresa della filatura open-end |
ATE114744T1 (de) * | 1991-01-04 | 1994-12-15 | Rieter Ag Maschf | Vorrichtung zur rückführung eines fadenendes und ummantelung für mindestens eine spinndüse zum andocken einer solchen vorrichtung. |
DE4114069A1 (de) * | 1991-04-30 | 1992-11-05 | Fritz Stahlecker | Verfahren und vorrichtung zum verfestigen des endstuecks eines fadens |
JPH07122167B2 (ja) * | 1992-03-16 | 1995-12-25 | 村田機械株式会社 | 紡績装置の糸継ぎ方法 |
ITMI20032004A1 (it) * | 2003-10-16 | 2005-04-17 | Savio Macchine Tessili Spa | Dispositivo introduttore-estrattore del bandolo nel rotore di filatura open-end |
CZ2021500A3 (cs) | 2021-11-01 | 2023-05-10 | Rieter Cz S.R.O. | Způsob oddělení konce příze před obnovením předení na textilním stroji pro výrobu příze, zařízení k jeho provádění a textilní stroj pro výrobu příze |
CZ202364A3 (cs) | 2023-02-20 | 2024-08-28 | Rieter Cz S.R.O. | Zařízení pro přípravu konce příze pro zapředení příze na pracovním místě textilního stroje pro výrobu příze a textilní stroj |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL156456C (fr) * | 1966-09-02 | |||
US3455095A (en) * | 1967-09-26 | 1969-07-15 | Tmm Research Ltd | Spinning of textile yarns |
US3807270A (en) * | 1968-11-06 | 1974-04-30 | Rieter Ag Maschf | Apparatus for cutting a thread on a draw-spin-winding machine |
US3695017A (en) * | 1969-03-15 | 1972-10-03 | Daiwa Spinning Co Ltd | Automatic yarn piecing apparatus for spindleless spinning machine |
DE2203198A1 (de) * | 1972-01-24 | 1973-08-02 | Zinser Textilmaschinen Gmbh | Verfahren, um bei einer offen-endspinnvorrichtung den gesponnenen faden auf eine vorbestimmte laenge zu kuerzen und vorrichtung zur durchfuehrung des verfahrens |
DE2337246C3 (de) * | 1973-07-21 | 1980-01-17 | Fritz 7341 Bad Ueberkingen Stahlecker | Anspinnverfahren und Vorrichtung für das Offenend-Spinnen |
DE2350844A1 (de) * | 1973-10-10 | 1975-04-24 | Fritz Stahlecker | Vorrichtung zum anspinnen eines fadens bei einem offen-end-spinnaggregat |
DE2350842C3 (de) * | 1973-10-10 | 1979-04-26 | Fritz 7341 Bad Ueberkingen Stahlecker | Vorrichtung zum Anspinnen eines Fadens bei einem Offenendspinnaggregat |
DE2350843C3 (de) * | 1973-10-10 | 1980-03-13 | Fritz 7341 Bad Ueberkingen Stahlecker | Vorrichtung zum Anspinnen eines Fadens bei einem Offenend-Spinnaggregat |
DE2361787C3 (de) * | 1973-12-12 | 1981-05-27 | Stahlecker, Fritz, 7347 Bad Überkingen | Entlang einer Offenend-Spinnmaschine verfahrbare Vorrichtung zum Anspinnen |
DE2413657A1 (de) * | 1974-03-21 | 1975-10-02 | Krupp Gmbh | Verfahren zur erzeugung eines anspinnfaehigen fadenendes fuer das anspinnen bzw. wiederanspinnen von offen-end-spinnvorrichtungen und vorrichtung zur durchfuehrung des verfahrens |
US4054024A (en) * | 1974-09-30 | 1977-10-18 | Hironori Hirai | Apparatus for stopping and restarting the operation of an open-end spinning system |
JPS55101560A (en) * | 1979-01-23 | 1980-08-02 | Murata Mach Ltd | Method and apparatus for joining spum yarns |
CS215297B1 (en) * | 1980-02-13 | 1982-08-27 | Frantisek Burysek | Facility for spinning-in the yearn on the spindleless spinnig unit with the spinnig rotor |
DE3172449D1 (en) * | 1980-11-24 | 1985-10-31 | Schweiter Ag Maschf | Method of untwisting a length of a textile yarn, and device for applying this method |
JPS5842567A (ja) * | 1981-09-03 | 1983-03-12 | Murata Mach Ltd | 紡績糸の糸継装置 |
DE3143263A1 (de) * | 1981-10-31 | 1983-05-11 | W. Schlafhorst & Co, 4050 Mönchengladbach | Vorrichtung zum partiellen strecken und parallelisieren der fasern eines fadens oder fadenendes |
DE3151270A1 (de) * | 1981-12-24 | 1983-07-07 | W. Schlafhorst & Co, 4050 Mönchengladbach | Verfahren und vorrichtung zum knotenfreien verbinden zweier faeden |
CH655492B (fr) * | 1982-07-01 | 1986-04-30 | ||
JPS5930923A (ja) * | 1982-08-12 | 1984-02-18 | Toyoda Autom Loom Works Ltd | オ−プンエンド精紡機の糸継ぎ方法 |
CH660722A5 (de) * | 1982-11-12 | 1987-06-15 | Schweiter Ag Maschf | Verfahren und vorrichtung zum spleissen von zwei garnenden. |
-
1985
- 1985-05-07 EP EP85105561A patent/EP0162367B2/fr not_active Expired - Lifetime
- 1985-05-07 DE DE8585105561T patent/DE3564296D1/de not_active Expired
- 1985-05-16 BR BR8502325A patent/BR8502325A/pt not_active IP Right Cessation
- 1985-05-17 US US06/735,327 patent/US4653260A/en not_active Expired - Lifetime
- 1985-05-20 CS CS853602A patent/CS276711B6/cs unknown
-
1991
- 1991-08-19 SG SG676/91A patent/SG67691G/en unknown
-
1993
- 1993-04-01 HK HK315/93A patent/HK31593A/xx unknown
Also Published As
Publication number | Publication date |
---|---|
EP0162367A1 (fr) | 1985-11-27 |
US4653260A (en) | 1987-03-31 |
BR8502325A (pt) | 1986-01-21 |
HK31593A (en) | 1993-04-08 |
DE3564296D1 (en) | 1988-09-15 |
SG67691G (en) | 1993-02-19 |
CS276711B6 (en) | 1992-08-12 |
EP0162367B1 (fr) | 1988-08-10 |
CS360285A3 (en) | 1992-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19501545C2 (de) | Verfahren zum Andrehen eines Garnes in einer Spinnmaschine | |
DE60110981T2 (de) | Maschine und Verfahren zur Herstellung eines Kerngarnes | |
EP3652368B1 (fr) | Procédé pour faire fonctionner un arrangement de filage à jet d'air | |
EP3431427B1 (fr) | Procédé de fonctionnement d'un poste de travail d'un métier à filer ou d'un bobinoire et buse de fil | |
EP3276057B1 (fr) | Unité guide-fil, métier à filer à bout ouvert et procédé de fonctionnement d'un poste de filage | |
EP0404045B1 (fr) | Méthode de changement de bobines d'une machine textile et machine textile | |
DE10124832A1 (de) | Fadenspleissvorrichtung | |
CH642403A5 (de) | Spindelloses spinnverfahren und vorrichtung zur herstellung von garnen auf einer spinnmaschine. | |
WO2008095631A1 (fr) | Dispositif de filage à air | |
DE69803275T2 (de) | Verfahren zum individuellen fadenanspinnen an einer arbeitseinheit einer rotorspinnmaschine und vorrichtung zur durchführung des verfahrens | |
EP0162367B2 (fr) | Procédé et dispositif pour la préparation de l'extrémité de fil pour la remise en route d'une machine à bout libéré | |
WO1987003310A1 (fr) | Procede et dispositif de renfilage d'un dispositif a filer pourvu d'un organe tordeur pneumatique | |
DE3336294C2 (de) | Verfahren zum Garnansetzen beim Spinnen von Faserbündelgarnen | |
DE3607206C2 (de) | Verfahren und Vorrichtung zum Herstellen einer Spleißverbindung | |
DE3639031A1 (de) | Vorrichtung zur herstellung eines gesponnenen fadens | |
EP0110150B1 (fr) | Dispositif de filature à tuyère | |
DE2157189A1 (de) | Verfahren zur Beseitigung von Verunreinigungen aus einer Spinnturbine von Offen-End-Spinnmaschinen und Vorrichtung zur Durchführung dieses Verfahrens | |
DE3817222A1 (de) | Verfahren und vorrichtung zum anspinnen eines luftgesponnenen fadens | |
DE3418780A1 (de) | Verfahren und vorrichtung zum vorbereiten eines abgelaengten fadenendes zum wiederanspinnen einer offenend-spinnvorrichtung | |
DE3828189A1 (de) | Verfahren und vorrichtung zum anspinnen eines doppelfadens nach einem fadenbruch | |
EP0581077A1 (fr) | Dispositif pour saisir les bouts de fils de bobines, particulièrement pour les réserves de transfert ou les bouts de fils au pied des bobines | |
DE3346045A1 (de) | Verfahren zum spinnen von garn aus stapelfasern in einem luftwirbel und vorrichtung zur durchfuehrung dieses verfahrens | |
DE3410471A1 (de) | Oe-friktionsspinnmaschine mit einer vielzahl von spinnaggregaten und einem verfahrbaren wartungsgeraet | |
DE69026813T2 (de) | Vorrichtung und Verfahren zur Fadenendvorbereitung zum Anspinnen oder Wiederanspinnen einer Offenend-Spinnvorrichtung | |
DE102006036713A1 (de) | Verfahren zum Vorbereiten eines abgelängten Garnendes sowie Textilmaschine mit einem Garnendenpräparator zur Durchführung des Verfahrens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Designated state(s): CH DE FR GB IT LI |
|
17P | Request for examination filed |
Effective date: 19860521 |
|
17Q | First examination report despatched |
Effective date: 19870630 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
REF | Corresponds to: |
Ref document number: 3564296 Country of ref document: DE Date of ref document: 19880915 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: WILHELM STAHLECKER GMBH Effective date: 19890422 |
|
26 | Opposition filed |
Opponent name: W. SCHLAFHORST & CO. Effective date: 19890503 Opponent name: WILHELM STAHLECKER GMBH Effective date: 19890422 |
|
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19920320 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19920423 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19920428 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19920619 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19930507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19930531 Ref country code: CH Effective date: 19930531 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: RIETER INGOLSTADT SPINNEREIMASCHINENBAU AKTIENGESE |
|
ITF | It: translation for a ep patent filed | ||
27A | Patent maintained in amended form |
Effective date: 19930804 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): CH DE FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN |
|
ET3 | Fr: translation filed ** decision concerning opposition | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19930507 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19940131 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19940201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |