EP0161290B1 - Procede de liquefaction du charbon - Google Patents

Procede de liquefaction du charbon Download PDF

Info

Publication number
EP0161290B1
EP0161290B1 EP84904097A EP84904097A EP0161290B1 EP 0161290 B1 EP0161290 B1 EP 0161290B1 EP 84904097 A EP84904097 A EP 84904097A EP 84904097 A EP84904097 A EP 84904097A EP 0161290 B1 EP0161290 B1 EP 0161290B1
Authority
EP
European Patent Office
Prior art keywords
coal
zone
reaction
reaction product
coking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84904097A
Other languages
German (de)
English (en)
Other versions
EP0161290A1 (fr
Inventor
Helmut WÜRFEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GfK SE
Original Assignee
GfK SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GfK SE filed Critical GfK SE
Publication of EP0161290A1 publication Critical patent/EP0161290A1/fr
Application granted granted Critical
Publication of EP0161290B1 publication Critical patent/EP0161290B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes

Definitions

  • the invention relates to a process for liquefying coal, in which the ground coal is mixed with grinding oil to form a pulp and liquefied under increased pressure and temperature in a reaction zone in the presence of hydrogen and, if appropriate, catalyst.
  • a process for liquefying coal has already become known, in which the coal to be processed is dried and finely ground, mixed with grinding oil, the resulting pulp of coal is pumped to reaction pressure, first by heat exchange with some of the reaction products and then in a preheater by supplying external heat heated to the light-off temperature of the liquefaction reaction and finally liquefied in a reaction zone in the presence of hydrogen and one or more suitable catalysts.
  • the product fraction leaving the reaction zone is broken down in a downstream hot separator into a vaporous top fraction consisting of gases, water of reaction and distillate oils as well as a solid fraction containing soil from undegraded coal, ash, catalyst particles, and other high-molecular, difficult-to-hydrogenate substances, especially asphaltenes, and heavy oil.
  • distillate oil depends very much on the hydrogenation conditions (e.g. pressure, temperature) in the reaction zone.
  • a satisfactory distillate oil yield e.g. B. over 5C% based on the coal used, only in very harsh hydrogenation conditions with temperatures in the range of about 480 ° C and pressures above 300 bar. It is obvious that such conditions are associated with extremely high investment costs and operating costs in a large-scale industrial plant, with considerable effects on the economy of the process.
  • the invention has for its object to develop a method of the type mentioned, in which the disadvantages described do not occur and which enables economical liquefaction of coal.
  • reaction product leaving the reaction zone is fed to a coking zone and that the hot gases and vapors withdrawing from the coking zone are cooled in direct heat exchange with the pulp to be heated.
  • An essential idea of the invention is not to restrict the liquefaction of the coal to a reaction zone operated under harsh hydrogenation conditions, as in the known process, but to include a further coking zone in the distillate oil production.
  • the liquefaction can be controlled in the reaction zone by lowering the pressure or the temperature, for example, so that initially primarily extract and only relatively little distillate oil are formed from the coal. Another large amount of distillate oil is then produced in the course of the coking.
  • the pressure in the reaction zone is generally below 300 bar, preferably between about 150 and 250 bar.
  • the coking of the reaction product withdrawn from the reaction zone is expediently carried out at temperatures between about 450 and 600 ° C., the temperature increase of the reaction product to be coked, which may be necessary, being brought about by supplying external heat by means of a conventional tube furnace. Also, by adding hydrogen, e.g. B. in the form of coke oven gas, the quality and the yield of distillates in the coking zone can be increased. To prevent coking in the course of heating the reaction product coking temperature, it proves to be expedient to add a hydrogen donate oil, in particular a higher-boiling fraction of the already hydrogen-refined oil gain, to the plant before it is heated.
  • a hydrogen donate oil in particular a higher-boiling fraction of the already hydrogen-refined oil gain
  • Another essential idea of the method according to the invention is to cool the hot gases and vapors withdrawing from the coking zone below the respective coking temperature, essentially distillate oil vapors, in the heat exchange with the fresh coal pulp to be treated, in order to heat up the coking zone for heating the To use coal-free.
  • the coal pulp is heated in direct heat exchange, ie. H. through intimate mixing of the hot gases and vapors with the fresh, possibly already fully or partially pumped coal paste.
  • direct heat exchange ie. H. through intimate mixing of the hot gases and vapors with the fresh, possibly already fully or partially pumped coal paste.
  • all of the water contained in the coal is driven out, so that the coal is almost completely dried during this heat exchange.
  • the hitherto customary, very complex drying in the course of coal preparation can thus be dispensed with completely or, at least to a large extent, if the charge coal has a high water content.
  • An additional, very significant advantage is that due to the strong heating of the coal in direct heat exchange with the hot product vapors from the coking zone, other gases that can be easily split off from the coal, such as, for example, B. methane, C0 2 and educational water, are released.
  • the coal to be supplied after the heat exchange of the reaction zone is thus already largely degassed, so that fewer gases are formed in the reaction zone itself. This in turn leads to a further increase in the hydrogen partial pressure in the reactor and thus to an improvement in the reaction conditions.
  • the heat of the fresh coal pulp to approximately the light-off temperature of the liquefaction reaction is no longer required for the use of coal pulp heat exchangers.
  • the amount of heat required for heating is supplied as part of the direct heat exchange between coal slurry and the hot coking vapors. Only for reasons of regulation and for starting up the system, a small tube furnace can be useful. Also, the time-consuming fine grinding of the coal to typically ⁇ 0.1 mm can now be omitted, since the coal on its way to the reaction zone is only conducted in pipes and not in heat exchangers in which it could settle.
  • the heavy distillates contained in these vapors condense. With the fresh coal pulp, these distillates reach the reaction or coking zone again and are broken down into the valuable product fractions naphtha and middle distillate.
  • the condensed heavy distillates are also very suitable as solvents for the coal and also lead to a dilution of the coal pulp. They in turn serve as "rubbing oil".
  • the fresh coal pulp can therefore be added as a thick pulp with up to 90% solids content. This thick slurry can be conveyed into the zone of direct heat exchange in a simple manner by means of low-wear screw conveyors.
  • the gases and vapors from the coking zone which are not condensed in the course of the direct heat exchange, essentially these are residual hydrogen, water vapor, low-boiling hydrocarbons and, in particular, hydrocarbons obtained as products in the naphtha and medium oil range, as well as the gases and vapors released when the coal is heated separated from the heated coal pulp and fed to a corresponding treatment.
  • Your residual heat can possibly be used to heat the required fresh hydrogen or the hydrogen-containing gas.
  • the entire reaction product withdrawing from the reaction zone can be fed to the coking zone.
  • the hot separator which is usually downstream of the reaction zone, is omitted.
  • the reaction product reaches the coking zone immediately below the temperature of the reaction zone of approximately 470 ° to 490 ° C., that is to say a temperature which is already in the range of the coking temperature, so that it still heats up to the coking temperature required amount of heat is only small. Possibly. the device for further heating can even be dispensed with entirely. In such a procedure, the unused residual hydrogen contained in the reaction product can also be used directly in the coking zone.
  • the gases and vapors still contained in the reaction product can also be in a hot separator downstream of the reaction zone at somewhat lower temperatures, essentially residual hydrogen, methane, etc. Gases and distillates in the naphtha and medium oil range are separated, so that the volume flow to be fed to the coking zone is reduced accordingly.
  • the gases and vapors separated in the hot separator can be fed directly to the direct heat exchange with the fresh coal pulp, so that the heat content of these gases and vapors can also be used here to heat the fresh coal pulp.
  • a particularly high-quality coke is to be produced in the coking zone, e.g. B. an electrode coke for metallurgical purposes, it makes sense to separate the substances still contained in the reaction product, such as unused coal, ash and catalyst particles, beforehand.
  • the solid separation can be carried out in a known manner, for. B. by filtration, sedimentation or centrifugation.
  • the reaction zone in two stages, the pressure of the second stage being higher than that of the first stage, which is preferably between about 10 and 50 bar .
  • the first reaction stage is operated at approximately the pressure of the coking zone, with the direct heat exchange between the coal slurry and the gases and vapors from the coking zone and possibly the gases and vapors from the top of the hot separator taking place in this first reaction stage.
  • the reaction product can be heated to the temperature of the coking zone by admixing a hot hydrogen-rich gas generated by partial oxidation of hydrocarbons.
  • the hydrogen content of this gas can then be used directly both to improve the coking and, if the reaction zone has two stages, to cover the hydrogen requirement in the first reaction zone.
  • the hot, hydrogen-containing gas can be generated by partial oxidation of methane, which forms hydrogen and carbon monoxide, among other things.
  • the hot hydrogen-containing gas can also be obtained by partial oxidation, i.e. by gasification, of the coke produced in the coking zone or, if a residue has been separated before the coking, by gasification of this residue.
  • the admixture of the hydrogen-rich gas to the reaction product to be coked is expediently carried out at a plurality of, at least two, points one behind the other in the direction of flow of the residue. This ensures a gradual, uniform heating of the residue, so that the coking temperature is only reached immediately before the reaction product is introduced into the coking zone. Possibly. it may also prove to be expedient to carry out the heating of the reaction product to be coked in two stages, with external heat being supplied in a tube furnace in a first stage and the hydrogen-containing hot gas being supplied in the second stage downstream of the first stage.
  • the coke accumulating in the coking zone is gasified, the raw gas obtained in the process is cleaned, partially converted and then at least partially subjected to a Fischer-Tropsch synthesis known per se for producing higher-boiling paraffinic hydrocarbons, in particular diesel oil.
  • Such a procedure is characterized by great flexibility with regard to gasoline or diesel oil production. If more Fischer-Tropsch products are required, the plant can be operated in a simple manner by reducing the pressure and temperature in the reaction zone or the coking zone to less distillate gain, which results in more coke for the gasification and the subsequent Fischer-Tropsch synthesis . Conversely, with an increased need for aromatic hydrocarbons for gasoline production, the conditions for treating the coal in the reaction zone or the coking zone can be tightened by increasing pressure and temperature or by increasing the hydrogen supply, so that more distillate and less coke for the Gasification occurs.
  • oil-based grating oils are distinguished from coal oils by an increased hydrogen content, which can be transferred to the coal to be treated even under particularly mild liquefaction conditions. If petroleum hydrogenation residue still containing catalyst is used as grinding oil, an additional catalyst for the coal treatment may also be dispensed with.
  • the method according to the invention is not limited to the processing of hard coal or brown coal. Rather, the same advantages can also be used to treat other carbonaceous substances, such as heavy oils derived from petroleum or oil sands or oil shale.
  • the fresh coal pulp to be treated is to be treated Mixer 2 fed and heated there in direct heat exchange with hot gases and vapors, the origin of which is explained below, to about the reaction start temperature of about 400 ° C.
  • the coal pulp is fed to a reaction zone 4 via a line 3 and there in the presence of hydrogen, which is introduced into the reaction zone 4 via a line 5, under relatively mild conditions, i.e. liquefied at a relatively low pressure of only about 200 bar and at a temperature of about 450 ° C.
  • the reaction product obtained in the reaction zone 4 is composed of a gaseous and a liquid solid-containing phase.
  • the hot gaseous phase which essentially contains the unused hydrogen, low-boiling hydrocarbons, such as methane, ethane and others, and distillates in the boiling range of naphtha and middle oil, is returned to the mixer 2 via a line 6, there with the fresh one Coal porridge mixed intimately and cooled in the heat exchange with the coal porridge.
  • the liquid solid-containing phase obtained in reaction zone 4 essentially consists of coal extract, ie bitumen, and of distillates in the boiling range, predominantly of heavy oil. In addition, this phase contains solids such as unreacted coal, ash and unused catalyst.
  • This liquid reaction product is fed via lines 7, 8, 9 and 10 to a furnace 11, where it is heated to a temperature of about 500 ° C. by indirect supply of external heat and then fed via lines 12, 13 and 14 into a coking zone 15.
  • the liquid solid-containing product fraction is coked in the coking zone 15.
  • gases and vapors are produced, especially distillates in the boiling range of naphtha and medium oil.
  • the product fraction to be coked is hydrogen via a line 16, for. B. in the form of coke oven gas added.
  • the product fraction to be coked can also be heated by directly admixing a hot hydrogen-containing gas mixture immediately before the product fraction enters the coking zone 15.
  • the product fraction is introduced via lines 7, 8, 17, 13 and 14 directly into the coking zone 15, while the hydrogen-containing hot gas is generated in a gas generator 18 by partial oxidation of methane or another hydrocarbon and is to be coked via line 19
  • Product fraction is added.
  • the partial oxidation can be controlled so that, on the one hand, sufficient heat is generated by the oxidation of carbon to carbon monoxide to heat the fraction to be coked to coking temperature, but on the other hand enough hydrogen is also generated for the coking zone.
  • the solids are separated from the coke before the reaction product is coked.
  • the liquid solid-containing reaction product from the reaction zone 4 via lines 7 and 20 is first fed to a solids separation device 21, in which the solids in a known manner, for. B. by filtration, sedimentation or centrifugation.
  • the product fraction which is now largely freed of solids and is to be coked, is withdrawn via a line 22 from the solids separation device and, depending on the selected type of further heating, via lines 9, 17, 13 and 14 or also via line 10, furnace 11 and the lines 12, 13 and 14 fed to the coking zone 15.
  • the solid-rich residue obtained in the solids separation device 21 is withdrawn from the system via a line 23. Possibly. This residue or at least part of the coke obtained in the coking zone 15 can be used in the gas generator 18 to produce the hydrogen-containing hot gas.
  • the vapors formed in the coking zone 15 are drawn off below the coking temperature of approximately 500 ° C. via a line 24 and are likewise fed to the mixer 2. These vapors, together with the vapors from line 6, heat up the fresh one Coal pulp to about the light-off temperature of the reaction zone 4, so that, and this is a major advantage of the proposed method, the supply of external heat in difficult-to-use heat exchangers for heating the fresh coal pulp can be dispensed with. In the course of the direct heat exchange of the above-mentioned vapors with the coal pulp, almost all of the water is expelled from the coal, so that the energy-consuming drying of the coal in the course of its preparation can also be dispensed with.
  • the resulting gases and vapors in the mixer 2 which consist essentially of residual hydrogen, water vapor, small amounts of low-boiling hydrocarbons, such as methane and ethane, among others, and in particular the product distillates in the naphtha and medium oil range, are via a line 25 from the System withdrawn and a further distillative processing, not shown here, due to their aromatic character, the distillates obtained are particularly suitable for the production of gasoline.
  • mixing stage 2 it may prove expedient to design mixing stage 2 as a first reaction stage for the coal and to operate the subsequent reaction zone as a second reaction stage under a higher pressure, so to speak.
  • the hydrogen supply via lines 16 and 19 is increased so that the hydrogen provided is sufficient not only for the coking zone, but also additionally for the first reaction stage, which is expediently operated under approximately the pressure of the coking zone .
  • the direct heat exchange between the hot product vapors and the starting material to be treated can be integrated directly into the reaction zone 4, which then expediently under approximately the pressure of the coking zone 15 is operated, which is approximately between 10 and 30 bar.
  • the distillate vapors obtained as the end product can be drawn off directly from the top of reaction zone 4.
  • the coke obtained in the coking zone 15 is fed via a feed 26 into a gasifier 27, preferably a fixed bed gasifier, and gasified there to form a raw gas containing carbon monoxide and hydrogen.
  • the required oxygen flows to the carburetor 27 via a line 28.
  • the raw gas from the gasifier 26 is cleaned and converted in a downstream system part 29 and then subjected to a known Fischer-Tropsch synthesis in a system 30. Due to their paraffinic character, the hydrocarbons produced in this plant are particularly advantageous for the production of diesel fuel.
  • the fresh coal pulp and / or the coking product fraction can also sulfur-binding substances such.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Dans un procédé de liquéfaction du charbon avec accroissement de la pression et de la température dans une zone de réaction, on propose d'amener le produit de réaction quittant la zone de réaction à une zone de cokéfaction et de refroidir les gaz et les vapeurs qui s'y forment, et qui sont surtout des vapeurs de mazout, de préférence par échange de chaleur direct avec le brai de charbon frais. Les vapeurs et les gaz non-condensés lors de cet échange de chaleur sont retirés de l'installation en tant que produits finaux. Le procédé permet de déplacer partiellement la production d'huile de la zone de réaction à la zone de cokéfaction, si bien que la zone de réaction peut travailler à une basse pression. De plus, par l'échange de chaleur direct entre les vapeurs et le brai de charbon frais, une grande partie de la quantité de chaleur exotherme produite lors des réactions de liquéfaction peut être ramenée dans le procédé.

Claims (20)

1. Procédé pour la fluidification de charbon, dans lequel du charbon pulvérisé est mélangé en une pâte avec une huile d'enrobage, et est liquéfié sous pression élevée et à une température élevée, dans une zone de réaction, en présence d'hydrogène et éventuellement d'un catalyseur, procédé caractérisé en ce que le produit de la réaction qui sort de la zone de réaction est envoyé dans une zone de cokéfaction, et que les gaz et vapeurs chaudes sortant de la zone de cokéfaction sont refroidis par échange direct de chaleur avec la pâte de charbon qui doit être échauffée.
2. Procédé suivant la revendication 1, caractérisé en ce que les gaz et vapeurs chaudes sortant de la zone de cokéfaction sont refroidis par échange de chaleur direct avec la pâte de charbon qui doit être échauffée, et que la partie de ces gaz et vapeurs qui ne s'e st pas condensée au cours de cet échange de chaleur est séparée de cette pâte de charbon échauffée.
3. Procédé suivant l'une des revendications 1 et 2, caractérisé en ce que les gaz et vapeurs contenus dans le produit de la reaction sont séparés et envoyés, au moins partiellement, directement à l'échange de chaleur avec la pâte de charbon.
4. Procédé suivant l'une des revendications 1 à 3, caractérisé en ce que la pression, dans la zone de réaction, est inférieure à 300 bars et se situe de préférence entre 150 et 250 bars.
5. Procédé suivant l'une des revendications 1 à 4, caractérisé en ce que la zone de cokéfaction est conduite à une pression un peu inférieure à celle de la zone de réaction.
6. Procédé suivant l'une des revendications 1 à 5, caractérisé en ce que la zone de réaction est réalisée en deux étages, la pression étant plus basse dans le premier étage que dans le second étage.
7. Procédé suivant la revendication 6, caractérisé en ce que la pression du premier étage de réaction se situe entre 10 et 50 bars environ.
8. Procédé suivant les revendications 6 ou 7, caractérisé en ce que la première zone de réaction est conduite sous une pression qui est à peu près celle de la zone de cokéfaction, et que l'échange de chaleur direct entre les vapeurs et gaz de la zone de cokéfaction et la pâte de charbon à échauffer s'effectue dans cette première zone de réaction.
9. Procédé suivant l'une quelconque des revendications 1 à 8, caractérisé en ce qu'avant la cokéfaction du produit de la réaction, on sépare au moins partiellement les matières solides qui y sont contenues.
10. Procédé suivant l'une des revendications 1 à 9, caractérisé en ce que le produit de la réaction est chauffé, avant sa cokéfaction, à une température qui se situe entre environ 450 et 600° C.
11. Procédé suivant l'une des revendications 1 à 10, caractérisé en ce que le chauffage du produit de la réaction, qui doit être cokéfié, est assuré par la fourniture indirecte de chaleur étrangère.
12. Procécé suivant l'une des revendications 1 à 11, caractérisé en ce que l'on mélange le produit de la réaction qui doit être cokéfié avec de l'hydrogène.
13. Procédé suivant l'une des revendications 1 à 10, caractérisé en ce que l'échauffement du produit de la réaction à cokéfier s'effectue par mélange d'un gaz chaud contenant de l'hydrogène, obtenu par oxydation partielle d'un combustible contenant du carbone.
14. Procédé suivant la revendication 13, caractérisé en ce que le gaz chaud est mélangé au produit de la réaction qui doit être cokéfié en au moins deux points situés l'un à la suite de l'autre dans le sens de l'écoulement du produit de la réaction.
15. Procédé suivant l'une des revendications 1 à 14, caractérisé en ce que l'echauffement du produit de la réaction, qui doit être cokéfié, s'effectue en deux étapes où il est fourni, dans une première étape, une chaleur étrangère, et dans la seconde étape montée à la suite de la première, un gaz chaud contenant de l'hydrogène.
16. Procédé suivant une des revendications 1 à 15, caractérisé en ce qu'il est ajouté, au produit de la réaction qui doit être cokéfié, avant son chauffage à la température de cokéfaction, des huiles donneuses d'hydrogène, en particulier une fraction a hautpoint d'ébullition de l'huile, récupérée dans l'installation, ayant déjà subi un traitement hydrogénant.
17. Procédé suivant l'une des revendications 1 à 16, caractérisé en ce que le coke obtenu dans la zone de cokéfaction est gazéifié, et que le gaz brut ici obtenu est soumis, après épuration et conversion partielle, au moins partiellement, à une synthèse de Fischer-Tropsch pour la production de fractions hydrocarburées paraffiniques à point d'ébullition élevé.
18. Procédé suivant l'une des revendications 1 à 17, caractérisé en ce que l'on mélange des substances se combinant avec le soufre au charbon frais et/ou au produit de la réaction qui doit être cokéfié.
19. Procédé suivant une des revendications 1 à 18, caractérisé en ce que l'on utilise au moins partiellement comme huiles d'enrobage, des fractions de pétrole brut, et/ou des résidus de pétrole provenant des traitements du pétrole brut, en particulier des résidus d'hydrogénation du pétrole contenant encore des catalyseurs.
20. Utilisation du procédé suivant une ou plusieurs des revendications 1 à 19, pour le traitement de fractions lourdes de pétrole, de sables bitumineux, ou de schistes bitumineux.
EP84904097A 1983-11-05 1984-11-03 Procede de liquefaction du charbon Expired EP0161290B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3340041 1983-11-05
DE3340041 1983-11-05

Publications (2)

Publication Number Publication Date
EP0161290A1 EP0161290A1 (fr) 1985-11-21
EP0161290B1 true EP0161290B1 (fr) 1987-08-12

Family

ID=6213546

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84904097A Expired EP0161290B1 (fr) 1983-11-05 1984-11-03 Procede de liquefaction du charbon

Country Status (8)

Country Link
US (1) US4946583A (fr)
EP (1) EP0161290B1 (fr)
JP (1) JPS61500319A (fr)
AU (1) AU575094B2 (fr)
CA (1) CA1228315A (fr)
DE (1) DE3465331D1 (fr)
WO (1) WO1985001954A1 (fr)
ZA (1) ZA848615B (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753965A (ja) * 1993-08-09 1995-02-28 Nkk Corp 石炭の液化方法
US20080256852A1 (en) * 2007-04-20 2008-10-23 Schobert Harold H Integrated process and apparatus for producing coal-based jet fuel, diesel fuel, and distillate fuels
CN103254922B (zh) * 2013-04-17 2014-11-05 西安交通大学 一种煤两段直接液化方法及系统
IL227708A0 (en) * 2013-07-29 2013-12-31 S G B D Technologies Ltd Systems and methods for material processing in the city
US9061953B2 (en) 2013-11-19 2015-06-23 Uop Llc Process for converting polycyclic aromatic compounds to monocyclic aromatic compounds

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2852441A (en) * 1954-10-22 1958-09-16 Exxon Research Engineering Co Conversion of hydrocarbons
US3193486A (en) * 1962-10-23 1965-07-06 Sinclair Research Inc Process for recovering catalyst particles in residual oils obtained in the conversion of hydrocarbon oils
US3956101A (en) * 1970-10-09 1976-05-11 Kureha Kagaku Kogyo Kabushiki Kaisha Production of cokes
DE2654635B2 (de) * 1976-12-02 1979-07-12 Ludwig Dr. 6703 Limburgerhof Raichle Verfahren zur kontinuierlichen Herstellung von Kohlenwasserstoffölen aus Kohle durch spaltende Druckhydrierung
US4204943A (en) * 1978-03-24 1980-05-27 Exxon Research & Engineering Co. Combination hydroconversion, coking and gasification
US4213846A (en) * 1978-07-17 1980-07-22 Conoco, Inc. Delayed coking process with hydrotreated recycle
US4216074A (en) * 1978-08-30 1980-08-05 The Lummus Company Dual delayed coking of coal liquefaction product
DE3105030A1 (de) * 1981-02-12 1982-09-02 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen herstellung von kohlenwasserstoffoelen aus kohle durch druckhydrierung in zwei stufen
DE3141380A1 (de) * 1981-10-17 1983-05-05 GfK Gesellschaft für Kohleverflüssigung mbH, 6600 Saarbrücken Verfahren zum hydrieren von kohle

Also Published As

Publication number Publication date
ZA848615B (en) 1985-07-31
EP0161290A1 (fr) 1985-11-21
CA1228315A (fr) 1987-10-20
US4946583A (en) 1990-08-07
AU3614184A (en) 1985-05-22
JPS61500319A (ja) 1986-02-27
AU575094B2 (en) 1988-07-21
DE3465331D1 (en) 1987-09-17
WO1985001954A1 (fr) 1985-05-09

Similar Documents

Publication Publication Date Title
DE2536249A1 (de) Verfahren zur kontinuierlichen herstellung von heizgas und synthesegas aus festen, kohlenstoffhaltigen brennstoffen
DE2654635B2 (de) Verfahren zur kontinuierlichen Herstellung von Kohlenwasserstoffölen aus Kohle durch spaltende Druckhydrierung
DE3903144C2 (de) Hydrocracken von Schwerölen in Gegenwart einer Eisen-Kohle-Aufschlämmung
DE1768566A1 (de) Kohlehydrierverfahren
DE2733186A1 (de) Kohleverfluessigungsverfahren
DE2909103A1 (de) Verfahren zur kohleverfluessigung
DE3133562A1 (de) "verfahren zur herstellung fluessiger kohlenwasserstoffe"
DE2743865A1 (de) Verfahren zur umwandlung von rueckstaenden
DE2855403A1 (de) Kohleverfluessigungsverfahren
JPS6189290A (ja) 炭素質原料の水素化転化のための改良接触法
DD147851A5 (de) Integriertes kohleverfluessigungs-vergasungsverfahren
DE2733185A1 (de) Verfahren zur verfluessigung von kohle
DE2635388A1 (de) Kohleverfluessigungsverfahren
DE2317674A1 (de) Verfahren zur herstellung von synthesegas und reinen kraftstoffen
DE3201118A1 (de) Verfahren zum verfluessigen festen kohlenstoffhaltigen materials
DE3033259A1 (de) Verfahren zur loesungsmittelraffination von kohle
EP0161290B1 (fr) Procede de liquefaction du charbon
DE2713614A1 (de) Verfahren zur herstellung von fluiden kohlenwasserstofftrennstoffen aus kohle
DD151180A5 (de) Kombiniertes verfahren zur kohleverfluessigung und-vergasung
DD144787A5 (de) Kombiniertes kohleverfluessigungs-vergasungsverfahren
DE2711105C2 (de) Verfahren zur Umwandlung von Kohle in unter Normalbedingungen flüssige Kohlenwasserstoffe
DD147679A5 (de) Kohleverfluessigungsverfahren mit verbessertem schlammrueckfuehrungssystem
DD147676A5 (de) Kohleverfluessigungsverfahren mit zusatz fremder mineralien
DE1001442B (de) Verfahren zur Umwandlung von schweren Kohlenwasserstoffoelen
DE2936008A1 (de) Verfahren zum hydrieren von kohle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850624

AK Designated contracting states

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19860903

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3465331

Country of ref document: DE

Date of ref document: 19870917

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GFK GESELLSCHAFT FUER KOHLEVERFLUESSIGUNG MBH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GFK GESELLSCHAFT FUER KOHLEVERFLUESSIGUNG MBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881103

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911126

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930803