EP0158739A2 - Einrichtung zum Einspritzen von Kraftstoff in Brennräumen - Google Patents

Einrichtung zum Einspritzen von Kraftstoff in Brennräumen Download PDF

Info

Publication number
EP0158739A2
EP0158739A2 EP84116262A EP84116262A EP0158739A2 EP 0158739 A2 EP0158739 A2 EP 0158739A2 EP 84116262 A EP84116262 A EP 84116262A EP 84116262 A EP84116262 A EP 84116262A EP 0158739 A2 EP0158739 A2 EP 0158739A2
Authority
EP
European Patent Office
Prior art keywords
combustion chambers
injecting fuel
chambers according
fuel
central region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP84116262A
Other languages
English (en)
French (fr)
Other versions
EP0158739B1 (de
EP0158739A3 (en
Inventor
Werner Dr. Dipl.-Phys. Grünwald
Ernst Imhof
Iwan Komaroff
Rolf Dipl.-Ing. Mayer
Günther Schmid
Helmut Reum
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0158739A2 publication Critical patent/EP0158739A2/de
Publication of EP0158739A3 publication Critical patent/EP0158739A3/de
Application granted granted Critical
Publication of EP0158739B1 publication Critical patent/EP0158739B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/06Injectors with heating, cooling, or thermally-insulating means with fuel-heating means, e.g. for vaporising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines

Definitions

  • the invention relates to a device for injecting fuel into combustion chambers according to the preamble of the main claim.
  • a known device of this type DE-PS 834 467
  • the heating coil of a glow plug encloses the fuel jet emerging from an injection nozzle.
  • fresh air is blown out of the cylinder perpendicularly to the injected jet at one point on the injection channel, asymmetrically.
  • Fuel parts that were previously heated up are transported accelerated into the cylinder.
  • There is no optimal combustion which is disadvantageous in terms of efficiency and exhaust gas composition.
  • the device according to the invention with the characterizing features of the main claim has the advantage that the heating element meets the different requirements of short heating-up time and good quality of annealing.
  • An advantageous embodiment of the invention results from the fact that the temperature of the heating element is higher in its central region than in its outer regions. The middle, much hotter area enables short heating-up times and, due to the higher temperature difference to the fuel jet flowing in the air jacket, better heat transfer.
  • the heating element heats the fuel jet without contact.
  • the intense infrared radiation heats up the fuel droplets of the air-fuel swirling, while the air is heated by convection where it flows past the heating element.
  • the fuel-air mixture is thus effectively preheated for its easy flammability without the heating element coming into contact with fuel.
  • the mechanical holder is located in the areas where the heating element has a lower temperature. This bracket is much more reliable at lower temperatures.
  • the heating element is designed as a resistance heating element through which electric current flows, the heating resistance of which is higher in its central region than in FIG outer areas.
  • a temperature profile desired on the heating element can thus be designed very precisely.
  • a resistance heating element must be contacted in a very reliable manner, which is easy to control in the areas with a lower temperature, without having to forego the advantages of good heat transfer and a short heating-up time.
  • the resistance heating element is designed as a cylindrical incandescent body which can be contacted on its two end faces. It may be favorable that the diameter of the cylindrical filament is increased towards the end faces.
  • the incandescent body can be the carrier of the heating resistor and provide the necessary mechanical strength.
  • the larger diameter of the end faces enables a larger electrically effective cross section and a particularly reliable contact.
  • the heating resistor is advantageously supplied with feed current in that contacting disks are attached to the end faces of the incandescent body by means of suitable solders.
  • the incandescent body is designed at least in its central region as a helical heating resistor, the resistance coils of which have a smaller cross section in its central region than in its outer regions. This feature makes it easy to determine the temperature profile over the cross section of the resistance coil, because the electrical resistance per unit length of the helical heating resistor causes the electrical heating power generated.
  • the helical heating resistor consists of the material molybdenum disilicide (MoSi 2 ).
  • MoSi 2 molybdenum disilicide
  • the helical heating resistor is made of the material M O Si 2 , and 'milled out of a tube of this material, it can be advantageous to improve the mechanical strength that support means are present between at least a few turns of the helical heating resistor in the manner of webs.
  • These support means can consist of axially attached layers of electrically insulating ceramic paste, so that the advantages of the desired temperature profile of the incandescent body can be combined with the advantages of the resistance material MoSi 2 .
  • An advantage of the M O Si 2 is that it has a so-called PTC effect (increase in resistance when the temperature rises), so that the heating-up times are very short, and that the electrical power consumed automatically adapts to changing load conditions without an external control device.
  • a mecha nisch particularly stable incandescent body is characterized in that an electrically insulating cylinder is present as a support means, which includes the helical heating resistor.
  • the cylindrical incandescent body has holes in the manner of a perforation on its outer surface and that the density of the holes is higher in its central regions than in its outer regions.
  • the perforation may be present only in central regions of the cylindrical incandescent body.
  • a structure equivalent to the perforation can also be achieved in that the cylindrical incandescent body is at least partially constructed in the manner of a cell structure, the effective electrical resistance in the central region, due to the cell structure, being higher than in the outer regions.
  • FIG. 1 shows an embodiment of the device according to the invention on an injection nozzle.
  • Fig. 2 shows a helical heating resistor which is designed as a cylindrical incandescent body.
  • Fig. 3 shows a helical heating resistor with contacting washers.
  • FIG. 4 shows two configurations of the incandescent body and
  • FIG. 5 shows an exemplary embodiment with a incandescent body which is enclosed by a ceramic protective tube.
  • a fuel injection nozzle 12 is inserted in an engine block 10 above a spacer ring 11 by means of a nozzle clamping nut 13.
  • the fuel injection nozzle 12 has a valve needle 15 working in a nozzle body 14.
  • the nozzle body 14 is clamped to a nozzle holder (not shown in FIG. 1) with the nozzle clamping nut 13.
  • a housing 17 of a heating device is fastened in a screwed-in groove 16 at the end of the nozzle clamping nut 13 on the combustion chamber side.
  • the bottom of the nozzle body 14 is supported via a support plate 18 against the housing 17 of the heating device.
  • the housing 17 is closed with a cover 19 on the combustion chamber side.
  • Support plate 18 and cover 19 are designed as concentric elements, so that the fuel jet 2o can freely enter the combustion chamber, which is not shown in the figure.
  • a contacting disk 21 and the cover 19 used for contacting there is a cylindrical incandescent body 22, the mechanical strength of which is improved by one or more support webs 23.
  • a contact web 24 can be provided between the support plate 18 and the cover 19.
  • the operating voltage is supplied to the incandescent body 22 via the contacting disk 21 connected to it, which is connected to a lead 27 via a wire bracket 25 and a contact pin 26.
  • the contact pin 26 is part of a temperature and pressure-tight soldered electrical feedthrough 28 in the housing 17.
  • the housing 17 has openings 29 through which the wire bracket 25 is guided to the contacting disk 21 and through which, on the other hand, an air flow can get from the combustion chamber to the bottom of the nozzle body 14, precisely to the point where the fuel jet 2o arises between the nozzle body 14 and the valve needle 15.
  • the fuel jet draws in air according to the jet pump principle, which surrounds it in a jacket-like manner and thus passes through the cylindrical filament that it does not come into contact with the fuel, but rather heats up the air jacket, which then in turn heats up the fuel jacket. However, it is heated not only the passing air jacket from the heating element, but the infrared radiation of the heating element acts on the fuel droplets of the injected fuel jet 'and heats it. Because the nozzle base is flushed with fresh air, the nozzle cannot become clogged with soot and the quality with regard to the quantity and droplet size of the fuel jet remains constant over long operating times.
  • the cylindrical incandescent body 22 shows a cylindrical incandescent body designed as a helical heating resistor without contacting disks.
  • the cylindrical incandescent body 22 consists of a helical heating resistor 36, the cross section of which is lower in a central region 37 of the incandescent body 22 and thus the resistance is higher than in its outer regions 38.
  • the region 37 thus acts as a high-temperature region, because of its length of the heating resistor-related resistance is higher than in the outer regions 38.
  • the outer regions 38 become a low-temperature region, the lower electrical resistance results in lower current heat, so that a durable contact and fastening is possible here.
  • the helical heating resistor 36 which is fastened between two contacting disks 21, is mechanically solidified between its coils with axially attached layers 41 of ceramic paste.
  • FIG. 4 The embodiment of a cylindrical incandescent body 22 shown in FIG. 4 is shown in the two variants A and B. Both variants contain end collars 42 for holding and contacting.
  • the central region 37 working as a high-temperature region is formed by a cell-like perforation 40 which reduces the cross section of the resistance material and thus brings about an increase in resistance.
  • the helical heating resistor 36 is shown, which has the same cross section due to the uniform pitch in the entire coil area. The desired lowering of the temperature in the contact area results in the strongly formed end collars 42 due to their low electrical resistance.
  • the spiral 36 can, as shown in Fig. 3, be supported.
  • the heating element shown in FIG. 5 shows the cylindrical incandescent body 22 within a ceramic support tube 43.
  • the incandescent body has only one end collar 42. As indicated in the figure, it is designed as a helical heating resistor, which is now not constructed at the same time according to mechanical skill criteria, since the ceramic support tube 43 ensures mechanical strength.
  • the incandescent body lies between the two contacting disks (21) and is supplied with operating voltage from there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Es wird eine Einrichtung zum Einspritzen von Kraftstoff in Brennräumen, insbesondere für selbstzündende Brennkraftmaschinen, vorgeschlagen, bei der eine Kraftstoffeinspritzdüse nach Art einer Strahlpumpe durch eine Luftleitvorrichtung einen mit einem Luftmantel, umhüllten Kraftstoffstrahl erzeugt. Dieser luftumhüllte Kraftstoffstrahl wird durch ein Heizelement geleitet, dessen Wärmeerzeugung über seine Längsamessung in der Art verteilt ist, daß entlang des Heizelementes ein gewünschtes Wärmeprofil entsteht. Die Art des Wärmeprofils hängt von den Materialeigenschaften des Heizwiderstandes sowie dessen konstruktivem Aufbau und seiner Kontaktierung ab. Gut geeignetes Material für den Heizwiderstand ist Molybdändisilizid (MoSi2).

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach der Gattung des Hauptanspruchs. Bei einer bekannten Einrichtung dieser Art (DE-PS 834 467) umschließt der Heizwendel einer Glühkerze den von einer Einspritzdüse austretenden Kraftstoffstrahl. Zusätzlich wird unsymmetrisch, seitlich, an einer Stelle des Einspritzkanals Frischluft aus dem Zylinder senkrecht zum eingespritzten Strahl geblasen. Dabei werden zwar Kraftstoffanteile, die vorher aufgeheizt wurden, beschleunigt in den Zylinder transportiert. Bei dieser bekannten Anordnüng ist es jedoch nachteilig, daß Kraftstoffteile auf den Heizwendel der Glühkerze auftreffen und dort teilweise verkohlen, und daß weiterhin von dem seitlich austretenden Frischluftstrahl Kraftstoffteilchen gegen die Wand des Einspritzkanals geblasen werden. Es findet keine optimale Verbrennung statt, was in Bezug auf Wirkungsgrad und Abgaszusammensetzung ungünstig ist.
  • Vorteile der Erfinduna
  • Die erfindungsgemäße Einrichtung mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, daß das Heizelement den unterschiedlichen Anforderungen von kurzer Aufheizzeit und guter Dauerglühqualität genügt. Eine vorteilhafte Ausgestaltung der Erfindung ergibt sich dadurch, daß die Temperatur des Heizelementes in seinem mittleren Bereich höher als in seinen äußeren Bereichen ist. Der mittlere, wesentlich heißere Bereich ermöglicht kurze Aufheizzeiten und aufgrund der höheren Temperaturdifferenz zu dem im Luftmantel vorbeiströmenden Kraftstoffstrahl einen besseren Wärmeübergang.
  • Ein weiterer wesentlicher Vorteil der erfindungsgemäßen Einrichtung besteht darin, daß das Heizelement den Kraftstoffstrahl berührungslos aufheizt. Dabei heizt besonders die intensive Infrarotstrahlung die Kraftstofftröpfchen der Luft-Kraftstoffverwirbelung auf, während die Luft durch Konvektion dort, wo sie am Heizelement vorbeiströmt, erhitzt wird. Das Kraftstoff-Luftgemisch ist somit wirkungsvoll für seine leichte Entflammbarkeit vorgeheizt, ohne daß das Heizelement mit Kraftstoff in Berührung kommt.
  • An den Bereichen, an denen das Heizelement eine niedrigere Temperatur aufweist, befindet sich die mechanische Halterung. Diese Halterung ist bei niedrigerer Temperatur wesentlich zuverlässiger auszuführen.
  • Diese gewünschte Temperaturverteilung wird in Weiterentwicklung des Erfindungsgedankens dadurch erzielt, daß das Heizelement als ein von elektrischem Strom durchflossenes Widerstandsheizelement ausgebildet ist, dessen Heizwiderstand in seinem mittleren Bereich höher ist, als in seinen äußeren Bereichen. Somit kann sehr genau ein am Heizelement gewünschtes Temperaturprofil gestaltet werden. Ein Widerstandsheizelement muß sehr betriebssicher kontaktiert werden, was in den Bereichen mit niedrigerer Temperatur gutbeherrschbar ist, ohne daß auf die Vorteile eines guten Wärmeüberganges und einer kurzen Aufheizzeit verzichtet werden muß.
  • Ein vorteilhaftes Konstruktionsmerkmal besteht darin, daß das Widerstandsheizelement als ein zylindrischer Glühkörper ausgebildet ist, der an seinen beiden Stirnflächen kontaktierbar ist. Dabei kann es günstig sein, daß der Durchmesser des zylindrischen Glühkörpers zu den Stirnflächen hin vergrößert ist. Der Glühkörper kann in dieser Ausgestaltung der Erfindung Träger des Heizwiderstandes sein und für die notwendige mechanische Festigkeit sorgen. Außerdem ermöglicht der größere Durchmesser der Stirnflächen einen größeren elektrisch wirksamen Querschnitt und eine besonders sichere Kontaktierung. Der Heizwiderstand wird dabei günstigerweise dadurch mit Speisestrom versorgt, daß an den Stirnflächen des Glühkörpers Kontaktierungsscheiben mittels geeigneten Lotes angebracht sind.
  • In vorteilhafter Weiterbildung der Erfindung ist der Glühkörper mindestens in seinem mittleren Bereich als Wendelförmiger Heizwiderstand ausgebildet, dessen Widerstandswendel in seinem mittleren Bereich einen geringeren Querschnitt aufweisen, als in seinen äußeren Bereichen. Dieses Merkmal erlaubt auf einfache Weise, das Temperaturprofil über den Querschnitt des Widerstandswendel festzulegen, denn der elektrische Widerstand je Längeneinheit des wendelförmigen;Heizwiderstandes bedingt die erzeugte elektrische Heizleistung.
  • Insbesondere für keramische Widerstandsmaterialien lassen sich gut reproduzierbare Eigenschaften dadurch erzielen, daß der wendelförmige Heizwiderstand aus einem Rohr eines Widerstandsmaterials herausgefräst ist, wobei zur Querschnittsänderung der Widerstandswendel die Steigerung der gefrästen Wendel variabel ist. Dabei besteht in einer vorteilhaften Ausführungsform der wendelförmige Heizwiderstand aus dem Material Molybdändisilizid (MoSi2) , Die temperaturkritischen Zonen des Glühkörpers können nach diesem Erfindungsmerkmal den thermisch wenig belasteten Zonen an den Stirnseiten des Glühkörpers zugeordnet werden, denn bei dem Werkstoff MoSi2 kann im Langzeitbetrieb bei ca. 500° - 600° C sogenannte Tieftemperaturoxydation auftreten, andererseits erlauben geeignete Temperaturen an den Stirnseiten des Glühkörpers, daß die Kontaktierungsscheiben schmelzsicher an den Glühkörper anlötbar sind.
  • Ist der wendelförmige Heizwiderstand aus dem Material MOSi2 gefertigt, und' aus einem Rohr dieses Materials herausgefräst, so kann es zur Verbesserung der mechanischen Festigkeit vorteilhaft sein, daß Stützmittel zwischen mindestens einigen Windungen des wendelförmigen Heizwiderstandes in der Art von Stegen vorhanden sind. Diese Stützmittel können dabei aus axial angebrachten Schichten elektrisch isolierender Keramikpaste bestehen, so daß die Vorteile von gewünschtem Temperaturprofil des Glühkörpers mit den Vorteilen des Widerstandsmaterials MoSi2 kombinierbar sind. Ein Vorteil des MOSi2 besteht darin, daß es einen sogenannten PTC-Effekt aufweist (Widerstandserhöhung bei Temperaturanstieg), so daß die Aufheizzeiten sehr kurz sind, und daß sich die aufgenommene elektrische Leistung ohne externes Steuergerät an wechselnde Lastzustände selbsttätig anpasst. Da MoSi2 sehr gute Hochtemperaturfestigkeit;aufweist, ist es als gut verfügbarer Stoff geeignet, Platinheizelemente zu ersetzen. Ein mechanisch besonders stabiler Glühkörper ist dadurch gekennzeichnet, daß als Stützmittel ein elektrisch isolierender Zylinder vorhanden ist, der den wendelförmigen Heizwiderstand umfaßt.
  • Eine weitere vorteilhafte Ausführung des Erfindungsgedanken besteht darin, daß der zylindrische Glühkörper auf seiner Mantelfläche Löcher in der Art einer Perforation aufweist und daß die Dichte der Löcher in seinen mittleren Bereichen höher, als in seinen äußeren Bereichen ist. Dabei kann es für die Erzeugung des gewünschten Temperaturprofils bereits ausreichen, daß die Perforation nur in mittleren Bereichen des zylindrischen Glühkörpers vorhanden ist. Eine der Perforation gleichweritige Struktur kann auch dadurch erzielt werden, daß der zylindrische Glühkörper mindestens teilweise in der Art einer Zellenstruktur aufgebaut ist, wobei der wirksame elektrische Widerstand im mittleren Bereich,durch die Zellstruktur bedingt,höher, als in den äußeren Bereichen ist.
  • Weitere vorteilhafte Konstruktionsmerkmale gehen aus den in Verbindung mit der Zeichnung nachfolgend beschriebenen Ausführungsbeispielen hervdr.
  • Zeichnung
  • Fig. 1 zeigt an einer Einspritzdüse ein Ausführungsbeispiel der erfindungsgemäßen Einrichtung. Fig. 2 zeigt einen wendelförmigen Heizwiderstand, der als zylindrischer Glühkörper ausgebildet ist. Fig. 3 zeigt einen wendelförmigen Heizwiderstand mit Kontaktierungsscheiben. Fig. 4 zeigt zwei Ausgestaltungen.des Glühkörpers und Fig. 5 zeigt ein Ausführungsbeispiel mit einem Glühkörper, der von einem Keramikschutzrohr umschlossen ist.
  • Beschreibung der Ausführungsbeispiele
  • Bei dem in Fig. 1 dargestellten Ausführungsbeispiel ist in einem Motorblock lo über einem Distanzring 11 eine Kraftstoffeinspritzdüse 12 mittels einer Düsenspannmutter 13 eingesetzt. Die Kraftstoffeinspritzdüse 12 weist eine in einem Düsenkörper 14 arbeitende Ventilnadel 15 auf. Mit der Düsenspannmutter 13 ist der Düsenkörper 14 an einen nicht in der Fig. 1 dargestellten Düsenhalter gespannt. In eine eingedrehte Nut 16 am brennraumseitigen Ende der Düsenspannmutter 13 ist ein Gehäuse 17 einer Heizvorrichtung befestigt. Der Boden des Düsenkörpers 14 ist über einen Stützteller 18 gegen das Gehäuse 17 der Heizvorrichtung abgestützt. Das Gehäuse 17 ist mit einem Deckel 19 brennraumseitig abgeschlossen. Stützteller 18 und Deckel 19 sind als konzentrische Elemente ausgebildet, so daß der Kraftstoffstrahl 2o ungehindert in den in der Fig. nicht weiter dargestellten Brennraum gelangen kann. Zwischen einer Kontaktierungsscheibe 21 und dem zur Kontaktierung mitverwendeten Deckel 19 befindet sich ein zylindrischer Glühkörper 22, dessen mechanische Festigkeit von einem oder mehreren Stützstegen 23 verbessert wird. Zur sicheren Kontaktierung des Deckels 19 über den Stützteller 18 mit dem Boden des Düsenkörpers 14 kann zwischen Stützteller 18 und Deckel 19 ein Kontaktsteg 24 vorgesehen sein. Die Betriebsspannung wird dem Glühkörper 22 über die mit ihm verbundene Kontaktierungsscheibe 21 zugeführt, die über einen Drahtbügel 25 und einen Kontaktstift 26 mit einer Zuleitung 27 verbunden ist. Der Kontaktstift 26 ist dabei Teil einer temperatur- und druckdicht eingelöteten elektrischen Durchführung 28 im Gehäuse 17. Das Gehäuse 17 weist Öffnungen 29 auf, durch die einerseits der Drahtbügel 25 zur Kontaktierungsscheibe 21 geführt ist und durch die andererseits ein Luftstrom aus dem Brennraum an den Boden des Düsenkörpers 14 gelangen kann, und zwar genau an die Stelle, wo der Kraftstoffstrahl 2o zwischen Düsenkörper 14 und Ventilnadel 15 entsteht.
  • Die Arbeitsweise des dargestellten Beispiels ist folgende: Ist die Kraftstoffeinspritzdüse für die Dauer eines Einspritzaktes geöffnet, so saugt der Kraftstoffstrahl nach dem Strahlpumpenprinzip Luft an, die ihn mantelförmig umgibt und so den zylindrischen Glühkörper passiert, daß dieser mit dem Kraftstoff nicht in Berührung kommt, sondern den Luftmantel aufheizt, der dann seinerseits den Kraftstoffmantel aufheizt. Es wird jedoch nicht nur der vorbeiströmende Luftmantel von dem Heizelement aufgeheizt, sondern die Infrarotstrahlung des Heizelementes wirkt auf die Kraftstofftröpfchen des eingespritzten Kraftstoffstrahles 'ein und erhitzt sie. Dadurch, daß der Düsenboden mit Frischluft umspült wird, kann sich die Düse nicht mit Rußteilen zusetzen und die Qualität bezüglich Menge und Tröpfchengröße des Kraftstoffstrahels bleibt über lange Betriebszeiten gleichbleibend.
  • Die Fig. 2 zeigt einen als wendelförmigen Heizwiderstand ausgebildeten zylindrischen Glühkörper ohne Kontaktierungsscheiben. Der zylindrische Glühkörper 22 besteht aus einem wendelförmigen Heizwiderstand 36, wobei dessen Querschnitt in einem mittleren Bereich 37 des Glühkörpers 22 niedriger und somit der Widerstand höher ist, als in seinen äußeren Bereichen 38. Dadurch wirkt der Bereich 37 als Hochtemperaturbereich, da sein auf die Länge des Heizwiderstandes bezogener Widerstand höher ist, als in den äußeren Bereichen 38. Die äußeren Bereiche 38 werden zu einem Niedertemperaturbereich, der geringere elektrische Widerstand hat eine geringere Stromwärme zur Folge, so daß hier eine haltbare Kontaktierung und Befestigung möglich ist.
  • In der Fig. 3 ist der wendelförmige Heizwiderstand 36, der zwischen zwei Kontaktierungsscheiben 21 befestigt ist, zwischen seinen Wendeln mit axial angebrachten Schichten 41 aus Keramikpaste mechsnisch verfestigt.
  • Das in Fig. 4 gezeigte Ausführungsbeispiel eines zylindrischen Glühkörpers 22 ist in den beiden Varianten A und B dargestellt. Beide Varianten enthalten zur Halterung und Kontaktierung Endbünde 42. Bei der Variante A wird der als Hochtemperaturbereich arbeitende mittlere Bereich 37 durch eine zellenähnliche Perforation 4o gebildet, die den Querschnitt des Widerstandsmaterials verringert und damit eine Widerstandserhöhung herbeiführt. In der Variante B der Fig. 4 ist der wendelförmige Heizwiderstand 36 gezeigt, der aufgrund der gleichförmigen Steigung im gesamten Wendelbereich gleichen Querschnitt aufweist. Die gewünschte Temperaturabsenkung im Kontaktierbereich bewirkt hier die stark ausgebildeten Endbünde 42 durch ihren niederen elektrischen Widerstand. Die Wendel 36 . kann, ebenso wie in Fig. 3 gezeigt, abgestützt sein.
  • Das in Fig. 5 gezeigte Heizelement zeigt den zylindrischen Glühkörper 22 innerhalb eines Keramikstützrohres 43. Der Glühkörper weist dabei in diesem Ausführungsbeispiel nur einen Endbund 42 auf. Er ist, wie in der Fig. angedeutet, als wendelförmiger Heizwiderstand ausgebildet, der nun nicht gleichzeitig nach mechanischen Fertigkeitskriterien konstruiert ist, da das Keramikstutzrohr 43 für mechanische Festigkeit sorgt.
  • Der Glühkörper liegt zwischen den beiden Kontaktierungsschei- ben (21) und wird von dort her mit Betriebsspannung versorgt.

Claims (15)

1. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen, insbesondere für selbstzündende Brennkraftmaschinen, mit einer Kraftstoffeinspritzdüse, die entsprechend des Arbeitszyklus' der Brennkraftmaschine einen Kraftstoffstrahl erzeugt,mit einer Luftleitvorrichtung, durch die der Kraftstoffstrahl nach Art einer Strahlpumpe Verbrennungsluft ansaugt, die den Kraftstoffstrahl mit einem Luftmantel umhüllt und mit einer Heizvorrichtung, dadurch gekennzeichnet, daß die Heizvorrichtung aus einem Heizelement besteht, dessen Wärmeerzeugung über seine Längsabmessung in der Art verteilt ist, daß in seinem mittleren Bereich (37) eine andere Temperatur als in seinen äußeren Bereichen (38) herrscht.
2. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch 1, dadurch gekennzeichnet, daß die Temperatur des Heizelementes in seinem mittleren Bereich (37) höher als in seinen äußeren Bereichen (38) ist.
3. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch 2, dadurch gekennzeichnet, daß das Heizelement als ein von elektrischem Strom durchflossenes Widerstandsheizelement ausgebildet ist, dessen Heizwiderstand in seinem mittleren Bereich (37) höher als in seinen äußeren Bereichen (38) ist.
4. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch 3, dadurch gekennzeichnet, daß das Widerstandsheizelement als ein zylindrischer Glühkörper (22) ausgebildet ist, der an seinen beiden Stirnflächen kontaktierbar ist.
5. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch 4, dadurch gekennzeichnet, daß der Durchmesser des zylindrischen Glühkörpers zu den Stirnflächen hin (42) vergrößert ist.
6. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß an den Stirnflächen des Glühkörpers Kontaktierungsscheiben (21) mittels geeigneten Lotes angebracht sind.
7. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch 4 und einem der Unteransprüche, dadurch gekennzeichnet, daß der zylinderförmige Glühkörper (22) mindestens in seinem mittleren Bereich (37) als wendelförmiger Heizwiderstand (36) ausgebildet ist, dessen Widerstandswendel in seinem mittleren Bereich (37) einen geringeren Querschnitt aufweisen, als in den äußeren Bereichen (38).
8. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch 7, dadurch gekennzeichnet, daß der wendelförmige Heizwiderstand (36) aus einem Rohr eines Widerstandsmaterials herausgefräst ist, wobei zur Querschnittsänderung der Widerstandswendel die Steigung der gefrästen Wendel variabel ist.
9. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch 7 und 8, dadurch gekennzeichnet, daß der wendeiförmige Heizwiderstand (36) aus dem Material MOSi2 besteht.
lo. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch 7 und weiteren Unteransprüchen, dadurch gekennzeichnet, daß Stützmittel zwischen mindestens einigen Windungen des wendelförmigen Heizwiderstandes (36)in der Art von Stegen vorhanden sind.
11. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch lo, dadurch gekennzeichnet, daß die Stützmittel aus axial angebrachten Schichten (41) isolierender Keramikpaste gebildet sind.
12. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch 10, dadurch gekennzeichnet, daß als Stützmittel ein isolierender Zylinder (43) vorhanden ist, der den wendelförmigen Heizwiderstand umfaßt.
13. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch 4 und einem der folgenden Unteransprüche, dadurch gekennzeichnet, daß der zylindrische Glühkörper (22) auf seiner Mantelfläche Löcher in der Art einer Perforation (4o) aufweist, und daß die Dichte der Löcher in seinem mittleren Bereich (37) höher als in seinen äußeren Bereichen (37) ist.
14. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch 12, dadurch gekennzeichnet, daß die Perforation (4o) nur im mittleren Bereich (37) des zylindrischen Glühkörpers vorhanden ist.
15. Einrichtung zum Einspritzen von Kraftstoff in Brennräumen nach Anspruch 12 oder 13, dadurch gekennzeichnet, daß der zylindrische Glühkörper (22) mindestens teilweise in der Art einer Zellstruktur aufgebaut ist, wobei der wirksame elektrische Widerstand im mittleren Bereich (37) durch die Zellstruktur bedingt höher als in den äußeren Bereichen (37) ist.
EP84116262A 1984-04-14 1984-12-22 Einrichtung zum Einspritzen von Kraftstoff in Brennräumen Expired EP0158739B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843414201 DE3414201A1 (de) 1984-04-14 1984-04-14 Einrichtung zum einspritzen von kraftstoff in brennraeumen
DE3414201 1984-04-14

Publications (3)

Publication Number Publication Date
EP0158739A2 true EP0158739A2 (de) 1985-10-23
EP0158739A3 EP0158739A3 (en) 1986-11-26
EP0158739B1 EP0158739B1 (de) 1988-06-01

Family

ID=6233634

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84116262A Expired EP0158739B1 (de) 1984-04-14 1984-12-22 Einrichtung zum Einspritzen von Kraftstoff in Brennräumen

Country Status (4)

Country Link
US (1) US4572146A (de)
EP (1) EP0158739B1 (de)
JP (1) JPS60219450A (de)
DE (2) DE3414201A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987006978A1 (fr) * 1986-05-09 1987-11-19 Robert Bosch Gmbh Dispositif d'injection de carburant dans la chambre de combustion d'un moteur a combustion interne
WO1987006977A1 (fr) * 1986-05-09 1987-11-19 Robert Bosch Gmbh Dispositif d'injection de carburant dans la chambre de combustion d'un moteur a combustion
DE3805933A1 (de) * 1988-02-25 1989-09-07 Bosch Gmbh Robert Einrichtung zum einspritzen von kraftstoff
FR2636676A1 (fr) * 1988-09-21 1990-03-23 Bosch Gmbh Robert Dispositif pour l'injection de carburant dans la chambre a explosion d'un moteur a combustion interne a auto-allumage, comprenant un diaphragme regulant et dirigeant les jets de carburants et l'air aspire
EP0423108B1 (de) * 1986-12-16 1993-04-07 Siemens Aktiengesellschaft Dampfphaseneinspritzventil
EP0302637B1 (de) * 1987-08-07 1993-12-08 LUCAS INDUSTRIES public limited company Brennstoffeinspritzventil

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3614226A1 (de) * 1986-04-26 1987-10-29 Bosch Gmbh Robert Einrichtung zum einspritzen von kraftstoff in brennraeume von brennkraftmaschinen
DE3617353A1 (de) * 1986-05-23 1987-11-26 Bosch Gmbh Robert Kraftstoff-einspritzduese fuer brennkraftmaschinen
DE3631473A1 (de) * 1986-09-16 1988-03-24 Pischinger Franz Prof Dipl Ing Zuendvorrichtung fuer eine luftverdichtende brennkraftmaschine
US4886032A (en) * 1988-11-22 1989-12-12 Chrysler Motors Corporation Fuel injector heating method
JPH02206690A (ja) * 1989-02-06 1990-08-16 Hideyo Tada 燃料の活性化方法及び燃料の活性化装置
US5288025A (en) * 1992-12-18 1994-02-22 Chrysler Corporation Fuel injector with a hydraulically cushioned valve
US5271565A (en) * 1992-12-18 1993-12-21 Chrysler Corporation Fuel injector with valve bounce inhibiting means
US5331930A (en) * 1993-04-05 1994-07-26 Mcwhorter Edward M Univalve engine
US5401935A (en) * 1993-05-28 1995-03-28 Heaters Engineering, Inc. Fuel heating assembly
EP0677653B1 (de) * 1994-04-12 1997-04-23 ULEV GmbH Einrichtung zur Vernebelung von Kraftstoff
DE4446242A1 (de) * 1994-12-23 1996-06-27 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für einen Verbrennungsmotor
GB2300224B (en) * 1995-04-28 1999-04-07 Perkins Ltd An internal combustion engine including a fuel vaporising chamber
US6109543A (en) * 1996-03-29 2000-08-29 Siemens Automotive Corporation Method of preheating fuel with an internal heater
US6102303A (en) * 1996-03-29 2000-08-15 Siemens Automotive Corporation Fuel injector with internal heater
US5758826A (en) * 1996-03-29 1998-06-02 Siemens Automotive Corporation Fuel injector with internal heater
US5836289A (en) * 1997-06-10 1998-11-17 Southwest Research Institute Porous element fuel vaporizer
DE19733803A1 (de) * 1997-08-05 1999-02-11 Markus Kalla Vorrichtung zur Kraftstoffvorheizung für eine Kolben-Brennkraftmaschine mit Kraftstoffheißverdampfung
US6422481B2 (en) 1998-06-01 2002-07-23 Siemens Automotive Corporation Method of enhancing heat transfer in a heated tip fuel injector
US6135360A (en) * 1998-06-01 2000-10-24 Siemens Automotive Corporation Heated tip fuel injector with enhanced heat transfer
KR200178341Y1 (ko) * 1999-11-22 2000-04-15 박재승 연료 미세분사장치
US20070295314A1 (en) * 2000-08-23 2007-12-27 Naiqiang Dong Fuel saving heater for internal combustion engine
AU2003201184B2 (en) * 2002-01-04 2008-07-17 Glew Technologies Pty Ltd Fuel supply system for an internal combustion engine
AUPR983202A0 (en) * 2002-01-04 2002-01-31 Glew, Wayne Kenneth Fuel supply system for an internal combustion engine
US7481376B2 (en) * 2006-03-17 2009-01-27 Continental Automotive Systems Us, Inc. Variable inductive heated injector
US7992549B2 (en) * 2007-05-21 2011-08-09 Casey Loyd Method of fueling an internal combustion engine using pressurized and heated fuel

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1100293A (en) * 1914-01-06 1914-06-16 Lester L Forde Electrical vaporizer attachment for gas-engines.
US1230909A (en) * 1916-08-09 1917-06-26 John Henry Lepper Internal-combustion engine.
US1379060A (en) * 1919-07-14 1921-05-24 Henry W Sumner Igniter
US1464253A (en) * 1920-05-21 1923-08-07 Mathaniel B Wales Method of and structure for utilizing superheated liquid fuels
US1472233A (en) * 1921-12-15 1923-10-30 Bernard F Cummings Vaporizer for internal-combustion engines
US1497390A (en) * 1922-03-31 1924-06-10 Theodore O Strauss Fuel-igniting device
US1525624A (en) * 1923-06-04 1925-02-10 Suter Ernest Electric heating device
US1641421A (en) * 1925-07-24 1927-09-06 Louis O French Ignition device
US1780499A (en) * 1929-08-07 1930-11-04 Novelli Luis System of ignition for explosive mixtures
DE834467C (de) * 1949-08-14 1954-08-16 Wehrmann Motoren Ing Zimmer & Brennkraftmaschine mit Brennstoffeinspritzung und Selbstzuendung
US2855908A (en) * 1954-05-25 1958-10-14 Pflaum Walter Method of combustion and internal combustion engines
DE2210250C2 (de) * 1972-03-03 1982-05-13 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzvorrichtung für den Kaltstart und den Warmlauf fremdgezündeter Brennkraftmaschinen
US3915137A (en) * 1974-03-04 1975-10-28 Hugh K Evans Fuel vaporizer
JPS53139014A (en) * 1977-05-11 1978-12-05 Nippon Denso Co Ltd Fuel injection valve for internal combustion engine
JPS5453714A (en) * 1977-10-06 1979-04-27 Toyota Motor Corp Internal combustion engine fuel injector
JPS6056908B2 (ja) * 1978-11-06 1985-12-12 株式会社日立製作所 燃料噴射装置のための燃料制御装置
US4308845A (en) * 1979-10-22 1982-01-05 Chrysler Corporation Early fuel evaporation with bypass
DE3224048A1 (de) * 1982-06-28 1983-12-29 Robert Bosch Gmbh, 7000 Stuttgart Gluehzuendvorrichtung fuer eine brennkraftmaschine
DE3307109A1 (de) * 1982-08-14 1984-03-15 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zum einspritzen von kraftstoff in brennraeume von insbesondere selbstzuendenen brennkraftmaschinen
DE3335144A1 (de) * 1982-09-30 1984-04-05 Isuzu Motors Ltd., Tokyo Einlassbrenner
DE3327773A1 (de) * 1983-05-13 1984-11-15 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zur kraftstoffeinspritzung in brennraeume
JPH0452866A (ja) * 1990-06-15 1992-02-20 Hitachi Ltd 業務プログラム自動生成方式

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987006978A1 (fr) * 1986-05-09 1987-11-19 Robert Bosch Gmbh Dispositif d'injection de carburant dans la chambre de combustion d'un moteur a combustion interne
WO1987006977A1 (fr) * 1986-05-09 1987-11-19 Robert Bosch Gmbh Dispositif d'injection de carburant dans la chambre de combustion d'un moteur a combustion
US4788953A (en) * 1986-05-09 1988-12-06 Robert Bosch Gmbh Device for injecting fuel into a combustion chamber of an internal combustion engine
US4821696A (en) * 1986-05-09 1989-04-18 Robert Bosch Gmbh Device for injecting fuel into a combustion chamber of an internal combustion engine
EP0423108B1 (de) * 1986-12-16 1993-04-07 Siemens Aktiengesellschaft Dampfphaseneinspritzventil
EP0302637B1 (de) * 1987-08-07 1993-12-08 LUCAS INDUSTRIES public limited company Brennstoffeinspritzventil
DE3805933A1 (de) * 1988-02-25 1989-09-07 Bosch Gmbh Robert Einrichtung zum einspritzen von kraftstoff
DE3805933C2 (de) * 1988-02-25 1998-04-23 Bosch Gmbh Robert Einrichtung zum Einspritzen von Kraftstoff
FR2636676A1 (fr) * 1988-09-21 1990-03-23 Bosch Gmbh Robert Dispositif pour l'injection de carburant dans la chambre a explosion d'un moteur a combustion interne a auto-allumage, comprenant un diaphragme regulant et dirigeant les jets de carburants et l'air aspire

Also Published As

Publication number Publication date
EP0158739B1 (de) 1988-06-01
JPS60219450A (ja) 1985-11-02
US4572146A (en) 1986-02-25
DE3471718D1 (en) 1988-07-07
EP0158739A3 (en) 1986-11-26
DE3414201A1 (de) 1985-10-17

Similar Documents

Publication Publication Date Title
EP0158739A2 (de) Einrichtung zum Einspritzen von Kraftstoff in Brennräumen
EP0142513B1 (de) Einrichtung zur kraftstoffeinspritzung in brennräume
DE3010591C2 (de)
DE2802625C3 (de) Glühkerze
AT391543B (de) Verfahren zum betrieb eines verdampfungsbrenners
DE2912519C2 (de) Brenner für flüssigen Brennstoff und Verbrennungsluft
EP0151122B1 (de) Einrichtung zum einspritzen von kraftstoff in brennräume
DE3233319A1 (de) Verdampfungsbrenner
DE3416948A1 (de) Sauerstoffsensor mit heizeinrichtung
DE3417170A1 (de) Sauerstoffuehler mit heizeinrichtung
DE4001296A1 (de) Gluehkerze fuer einen dieselmotor
WO1996027104A1 (de) Glühstiftkerze für dieselmotoren
DE3805933C2 (de) Einrichtung zum Einspritzen von Kraftstoff
DE3318458C2 (de)
DE19959768A1 (de) Glühstiftkerze
DE3911506A1 (de) Gluehstiftkerze
EP0392181B1 (de) Glühstiftkerze
DE2750080A1 (de) Einrichtung zur kraftstoffaufbereitung
DE3309133A1 (de) Flammgluehstiftkerze zum vorwaermen der ansaugluft von brennkraftmaschinen
DE2927978C2 (de) Glühkerze
DE2912000C2 (de) Vorrichtung zum Vorwärmen von Heizöl vor der Düse eines Brenners
DE1915097C3 (de) Gasbrenner
DE3516410A1 (de) Verdampferelement
DE2751145C2 (de) Glühkerze für mit flüssigem Brennstoff betriebene Fahrzeug-Zusatzheizgeräte
WO2001042713A1 (de) Vorrichtung zur abgasbehandlung einer brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19841222

AK Designated contracting states

Designated state(s): DE FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REUM, HELMUT

Inventor name: SCHMID, GUENTHER

Inventor name: MAYER, ROLF, DIPL.-ING.

Inventor name: KOMAROFF, IWAN

Inventor name: IMHOF, ERNST

Inventor name: GRUENWALD, WERNER, DR. DIPL.-PHYS.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19870429

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3471718

Country of ref document: DE

Date of ref document: 19880707

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920228

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920311

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920514

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921222

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST