EP0157167B1 - Circuit de refroidissement pour moteurs à combustion interne - Google Patents

Circuit de refroidissement pour moteurs à combustion interne Download PDF

Info

Publication number
EP0157167B1
EP0157167B1 EP85102118A EP85102118A EP0157167B1 EP 0157167 B1 EP0157167 B1 EP 0157167B1 EP 85102118 A EP85102118 A EP 85102118A EP 85102118 A EP85102118 A EP 85102118A EP 0157167 B1 EP0157167 B1 EP 0157167B1
Authority
EP
European Patent Office
Prior art keywords
pressure
coolant
relief valve
pump
cooling circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP85102118A
Other languages
German (de)
English (en)
Other versions
EP0157167A1 (fr
Inventor
Erwin Dipl.-Ing. Schweiger (Fh)
Axel Dipl.-Ing. Temmesfeld (Fh)
Erwin Starmühler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP0157167A1 publication Critical patent/EP0157167A1/fr
Application granted granted Critical
Publication of EP0157167B1 publication Critical patent/EP0157167B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • F01P11/0209Closure caps
    • F01P11/0247Safety; Locking against opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • F01P11/0209Closure caps
    • F01P11/0238Closure caps with overpressure valves or vent valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/028Deaeration devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/0204Filling
    • F01P11/0209Closure caps
    • F01P11/0247Safety; Locking against opening
    • F01P2011/0266Safety; Locking against opening activated by pressure

Definitions

  • the invention relates to a cooling circuit according to the design of claim 1.
  • cooling circuits of this type it is customary to arrange a pressure relief valve and a vacuum valve in the filler cap.
  • a pressure relief valve and a vacuum valve in the filler cap.
  • pressure relief valves with an opening value of approx. 0.8 to 1.5 bar overpressure are used.
  • the filler cap and the pressure relief valves are arranged either in the flow or return of the cooling circuit, for example shortly after exiting the machine's cooling jacket and after the cooler valve of a thermostat arranged there, in the flow line itself, in the flow or return water tank of vertical or cross flow -Coolers or also in an expansion tank which absorbs the thermal expansion of the coolant with an air cushion or serves for air collection and separation with a bypass flow and filling connection line to the suction side of the coolant pump.
  • the pressure in the cooling circuit is higher by the pressure difference between the different arrangements, even on the suction side of the coolant pump.
  • This pressure corresponds directly to the opening value of the pressure relief valve.
  • the pressure in the flow area increases by the reduced proportion that corresponds to the volume proportion escaping at the pressure relief valve.
  • the pressure on the suction side of the coolant pump also drops by a corresponding value up to the boiling pressure of the coolant at the given coolant temperature.
  • the object of the invention is to develop a cooling circuit of the type described in claim 1 so that both a drop in the pressure on the suction side of the coolant pump to the boiling pressure is avoided and an excessively high pressure build-up in the flow area, in particular in the flow water tank of the cooler, is excluded.
  • a cooling circuit is to be created which has a high efficiency over the entire working range of an internal combustion engine.
  • the invention solves this problem by dimensioning the pressure relief valve according to the characterizing part of patent claim 1. In this way it is ensured that the pressure on the suction side of the coolant pump does not drop to the boiling pressure of the coolant even when the pump delivery capacity changes, if at least approximately the maximum permissible coolant temperature reached this point, and that at the same time the pressure in the flow area of the cooling circuit does not reach higher values than has previously been the case with known cooling circuits with a pressure relief valve controlled by the return area.
  • the arrangement of the pressure relief valve according to claim 2 gives in connection with the pressure drop at the outlet of the cooling jacket of the machine the advantage that during the operation of the machine, the pressure curve of the coolant is within normal limits, but after the machine has been switched off for the post-heating process by temperature compensation between the components and the coolant there is an overpressure higher by the mentioned pressure drop to avoid re-boiling. Since there is only a static pressure load on the cooling circuit, this is within the usual limits, especially since the coolant in the cooler cools down very quickly after it has been switched off, and due to its negative thermal expansion, the pressure in the entire cooling circuit drops correspondingly quickly to lower values.
  • the features of claim 3 provide a lesson for coordinating the overall elasticity of the cooling circuit and the pressure changes of the coolant via its temperature changes by means of elastic hose lines, which means that when the coolant temperature drops, an excess of the boiling pressure, particularly on the suction side of the coolant pump, is excluded without additional construction costs.
  • the invention is shown for example in the drawing. It shows a cooling circuit for internal combustion engines in a schematic representation with a pressure relief valve according to the invention in the flow water tank of a cooler.
  • An internal combustion engine 1 contains a cooling jacket indicated by an arrow 2, into which the coolant is conveyed under pressure by means of a coolant pump 3.
  • a flow 5 is connected as a line connection with a free passage to a cooler 6.
  • the flow 5 opens into a cooler flow water tank 7.
  • a short circuit 8 branches off from the flow 5 and flows into one Mixing thermostat 9, this mouth being controlled by a short-circuit valve 10 of the mixing thermostat 9.
  • a line forming the return 12 from the cooler 6 likewise leads into the mixing thermostat 9, which contains a cooler valve 13 for controlling the mouth of the return 12.
  • a suction line 15 opens from a mixing chamber 14 of the mixing thermostat 9 and opens into the suction side 16 of the coolant pump 3.
  • a pressure relief valve 17 is arranged on the cooler flow water tank 7 and is connected by means of an outflow line 18 to an expansion tank 19 which is open to the atmosphere and is equipped with a slotted sealing disk 19 'in its filling opening to prevent evaporation of the coolant.
  • the pressure relief valve 17 can alternatively (17 'or 17 ") be connected to the flow line 5 or to the cooling jacket 2 of the machine 1.
  • the expansion tank 19 with the suction side 16 of the coolant pump 3 is connected via a suction line 20 and a vacuum valve 21, which preferably acts as a non-return valve While the outflow line 18 can alternatively (18 ') also be connected to the upper region of the interior of the expansion tank 19, the after-suction line 20 opens out from the interior of the expansion tank 19 near the floor.
  • the outflow line 18 can also be separated (18 ") open into the expansion tank 19 near the bottom thereof.
  • the vacuum valve 21 is combined with a filler neck 21 'to form a structural unit.
  • the outflow line 18 is connected to a vent valve 22 which, due to its design as a sniffing, non-return or float valve or the like, is opened by the action of gravity when air and pressure-free cooling circuit are applied.
  • a vent valve 22 which, due to its design as a sniffing, non-return or float valve or the like, is opened by the action of gravity when air and pressure-free cooling circuit are applied.
  • One or more relatively large-area fine screens 23 in the cooler 6 or in the expansion tank 19 prevent the valves from becoming leaky due to dirt particles entrained by the coolant.
  • a further pressure relief valve 24 is arranged in the filler neck 21 '.
  • This further pressure relief valve 24 is effective via the suction line 20 directly on the suction side 16 of the coolant pump 3 and thus on its suction pressure.
  • a vent line 25 opens into the interior of the filler neck 21 'and is located with a throttle 26 to reduce the pressure difference between its connections on the one hand on the supply water tank 7 and on the other hand via the suction line 20 on the suction side 16 of the coolant pump 3.
  • a level float switch 21 is installed in the filler neck 21 'or in the filler neck cover, which controls a display circuit when air accumulates in the filler neck 21', regardless of whether or not an optically recognizable reserve quantity is still contained in the expansion tank 19 .
  • the cooling circuit is filled with coolant in the filler neck 21 '.
  • the machine 1 fills through the suction line 20 and the coolant pump 3, while at the same time the air contained therein through the supply line 5, the cooler pre-water tank 7 and the vent line 25 into the filler neck 21 'as well as through the open vent valve 22 and the outflow line 18 escapes to the atmosphere in the expansion tank 19.
  • the mixing chamber 14 and the open short-circuit valve 10 of the mixing thermostat 9 in the short-circuit 8 also fill up to the cooler valve 13 , which can also be equipped with a conventional ventilation device.
  • the vent valve 22 in the cooler 6 closes the filled cooler flow water tank 7 towards the outflow line 18, while the vent line 25 and the filler neck 21 fill completely.
  • the level float switch 21 "controls an electrical indicator lamp on the fittings of the machine or the vehicle.
  • the expansion tank 19 can be partially filled with an additional reserve quantity. In the event of thermal expansion, this flows through the ambient and cooling circuit Temperature fluctuations and, in particular, due to the operational heating of the part of the coolant displaced from the cooling circuit by the pressure relief valves 17, 17 'or 17 "and 24.
  • the expansion tank 19 contains a corresponding minimum content.
  • the first increase in rotational speed immediately leads to the construction of a conveying amount of the coolant pump 3, on the one hand downstream a decrease in the Pumpensaugdruckes among before the start in the entire cooling circuit given ambient pressure and subsequently dererse i ts a structure of a positive pressure in the coolant pump 3 Cooling circuit sections, cooling jacket 2, flow 5, short circuit 8, cooler 6 and return 12 causes.
  • the vacuum valve 21 which responds to the slightest pressure difference and the suction line 20 from the expansion tank 19, draws coolant into the cooling circuit until the ambient pressure is reached on the suction side 16 of the coolant pump 3.
  • the overpressure in the parts of the cooling circuit downstream of the coolant pump 3 simultaneously increases further.
  • the elastic hose lines and any residual air inclusions in this area allow an increase in the volume of coolant contained therein.
  • the engine speed is decisive because the low head of the coolant pump 3 that occurs at low to medium speeds first enables the pressure relief valve 24 to respond, which responds with an overpressure opening value that is just that pressure difference lower than the overpressure opening value of the pressure relief valve 17 which builds up between standstill or idling speed and maximum speed of the machine at the connection point of the pressure relief valve 17, 17 * or 17 ".
  • the pressure relief valve 24 responds, which is connected to the suction side 16 of the coolant pump 3 via the suction line 20
  • the pressure opening value of the pressure relief valve 17, 17 'or 17 is decisive only in the area of the maximum speed of the machine.
  • a pressure overload of the cooling circuit components does not exist due to this relatively low, exclusively statically effective overpressure.
  • This higher overpressure is thus limited to a relatively small proportion of the operating time of the machine, particularly when driving vehicles the cooling circuit components, in particular the cooler and the hose lines, are thereby favored.
  • the negative pressure in the coolant also causes the excess pressure in the cooling circuit to drop. So that the overpressure, especially on the suction side of the coolant pump 3, does not drop below the boiling pressure at the respective temperature of the coolant, the overall elasticity of the cooling circuit is adjusted accordingly, above all by means of the elasticity of the hose lines.
  • the cooling circuit With the start of operation of the machine 1 after the cooling circuit has been filled with coolant, the cooling circuit also begins to be vented automatically from residual air portions which have remained at various points during the filling or during operation, for example through the seals of which are briefly loaded with negative pressure during the cold start Coolant pump 3, get into the cooling circuit. These residual air fractions are flushed with the flow of the coolant from the machine 1 through the free continuous flow 5 into the cooler flow water tank 7, in which only the one determined by the throttle 26 relative to the thermostat 9 during the heating of the machine with the cooler valve 13 closed low ventilation flow.
  • the remaining part of the flow 5 and the cooler Flow water tank 7 separate a large part of the residual air from the coolant when the flow is calm and, in the event of a larger accumulation, flow out through the then opening vent valve 22 via the outflow line 18 and possibly 18 "to the expansion tank 19.
  • a corresponding volume of coolant can simultaneously flow through the after-suction line 20 and the pressure relief valve 21 are sucked into the filler neck 21 ', which is due to the effect of the pump suction pressure via the suction line 20 leading to the suction side 16.
  • venting current flows to the filler neck 21', which the remaining small residual air fractions in conducts the filler neck and there upstream of the further pressure relief valve 24.
  • the overpressure value of approximately 1.5 bar of this pressure relief valve 24 is reached due to the heating of the machine 1 and the coolant, as well as due to the thermal expansion and pressure increase of the coolant, this opens and leaves the sat residual air flow through the suction line 20 into the expansion tank 19. This process continues or repeats itself until the heat steady state of the cooling circuit is reached. Venting also occurs when the overpressure opening value of approximately 2.0 bar of the overpressure valve 17 is reached in the cooler flow water tank.
  • the overpressure opening value of about 2 bar of the overpressure valve 17 is namely at least approximately reached at first and, in contrast, the overpressure opening value of about 1.5 bar of the further overpressure valve 24 is substantially undercut.
  • the overpressure values then largely adapt to one another, so that the overpressure in the filler neck 21 ′ increases approximately to the overpressure opening value of the overpressure valve 24 there.
  • the overpressure opening value of the pressure relief valve 24 is exceeded by the corresponding thermal expansion of the coolant.
  • the residual air which may have been upstream in the filler neck 21 ' is discharged into the expansion tank 19 together with a portion of coolant.
  • expansion tank 19 differs at atmospheric pressure and ambient temperature, for.
  • a sealing washer 19 'slotted without waste allows air to enter and leave the expansion tank 19 for volume compensation, but prevents constant air movement due to convection flow. This largely prevents evaporation losses in the coolant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Closures For Containers (AREA)

Claims (3)

1. Circuit de refroidissement pour des moteurs à combustion interne refroidis dans un liquide, avec une pompe (3) d'agent de refroidissement disposée à l'entrée de la chemise de refroidissement (2) du moteur (1), et qui assure, dans la chemise de refroidissement (2), dans un radiateur (6), dans un thermostat (9), et dans leurs canalisations de liaison (arrivée 5, retour 12 et dérivation 8), la circulation d'un agent de refroidissement liquide, notamment d'un mélange d'eau avec des ajouts de protection contre le gel et la corrosion, avec une chute de pression variant avec la vitesse de rotation du moteur, et avec une soupape de surpression (17, 17', ou bien 17") ouvrant vers l'atmosphère et commandée par la pression de l'agent de refroidissement dans la zone d'entrée, englobant la chemise de refroidissement (2), l'entrée (5) et la caisse à eau (7) à l'entrée du radiateur, afin de limiter la pression maximale de l'agent de refroidissement, circuit caractérisé en ce que la soupape de surpression (17) a, dans le cas où des mélanges à base d'eau sont utilisés comme agent de refroidissement, une valeur d'ouverture à la surpression d'environ 1.5 à 2,2 bars, supérieure à la température d'ébullition de l'agent de ,refroidissement, pour la température maximale admissible de l'agent de refroidissement (environ 90 à 120 °C pour des mélanges à base d'eau utilisés comme agent de refroidissement), du côté aspiration (16) de la pompe (3) d'agent de refroidissement, d'au moins la différence de pression, habituellement de l'ordre de 0,5 à 1,2 bar, qui s'établit entre le côté aspiration (16) de la pompe (3) de l'agent de refroidissement et le raccordement de la soupape de surpression (17, 17', 17*), lorsque, en pratique, la pompe (3) d'agent de refroidissement donne sa puissance de refoulement maximale, la soupape de radiateur (13) du thermostat (9) étant complètement ouverte.
2. Circuit de refroidissement selon la revendication 1, caractérisé en ce que la soupape de surpression (17") est raccordée à la chemise de refroidissement (2) devant la sortie de celle-ci.
3. Circuit de refroidissement selon la revendication 1, caractérisé en ce qu'il comporte des canalisations élastiques souples (pour l'entrée 5, la dérivation 8, le retour 12, la canalisation d'aspiration 15, la canalisation de réaspiration 20 et la canalisation de désaération 25), dans la zone d'entrée et de retour entre la chemise de refroidissement (2), le radiateur 6, le thermostat (9) et/ou la pompe d'agent de refroidissement (3), canalisations souples dont l'élasticité, en corrélation avec l'élasticité des autres espaces creux contenant l'agent de refroidissement et/ou des quantités d'air ou de gaz contenues dans ces espaces, est en accord avec les variations de volume et de pression dues aux changements de température, aux variations dans l'évolution de la pression dues à la puissance de refoulement de la pompe, et à la valeur d'ouverture à la surpression de la soupape de surpression (17, 17', ou bien 17"), de façon que, lorsque la température de l'agent de refroidissement et la vitesse de rotation du moteur ou de la pompe de l'agent de refroidissement se modifient, la pression de l'agent de refroidissement sur le côté aspiration (16) de la pompe (3) d'agent de refroidissement se situe toujours au-dessus de la pression d'ébullition de l'agent de refroidissement à ce même instant.
EP85102118A 1982-07-15 1983-07-15 Circuit de refroidissement pour moteurs à combustion interne Expired EP0157167B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3226508A DE3226508C2 (de) 1982-07-15 1982-07-15 Kühlkreis für Brennkraftmaschinen
DE3226508 1982-07-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP83106971.1 Division 1983-07-15

Publications (2)

Publication Number Publication Date
EP0157167A1 EP0157167A1 (fr) 1985-10-09
EP0157167B1 true EP0157167B1 (fr) 1987-10-21

Family

ID=6168511

Family Applications (3)

Application Number Title Priority Date Filing Date
EP85102118A Expired EP0157167B1 (fr) 1982-07-15 1983-07-15 Circuit de refroidissement pour moteurs à combustion interne
EP83106971A Expired EP0100917B1 (fr) 1982-07-15 1983-07-15 Circuit de refroidissement pour moteurs à combustion interne
EP85101659A Withdrawn EP0163006A1 (fr) 1982-07-15 1983-07-15 Circuit de refroidissement à suspension pour des moteurs à combustion interne à refroidissement liquide

Family Applications After (2)

Application Number Title Priority Date Filing Date
EP83106971A Expired EP0100917B1 (fr) 1982-07-15 1983-07-15 Circuit de refroidissement pour moteurs à combustion interne
EP85101659A Withdrawn EP0163006A1 (fr) 1982-07-15 1983-07-15 Circuit de refroidissement à suspension pour des moteurs à combustion interne à refroidissement liquide

Country Status (5)

Country Link
US (1) US4510893A (fr)
EP (3) EP0157167B1 (fr)
JP (1) JPH071005B2 (fr)
DE (3) DE3226508C2 (fr)
ES (1) ES524135A0 (fr)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620509A (en) * 1985-08-05 1986-11-04 Cummins Engine Company, Inc. Twin-flow cooling system
US4677943A (en) * 1986-03-03 1987-07-07 Skinner Alan A Automotive non-pressure cooling system
JPH0620012Y2 (ja) * 1987-01-28 1994-05-25 木村工機株式会社 定水量機構を組込んだ電動三方弁
DE3716555A1 (de) * 1987-05-18 1988-12-08 Bayerische Motoren Werke Ag Befuell-, entlueftungs- und drucksteuer-vorrichtung fuer den fluessigkeits-kuehlkreis von kraft- und arbeitsmaschinen, insbesondere brennkraftmaschinen
US4768484A (en) * 1987-07-13 1988-09-06 General Motors Corporation Actively pressurized engine cooling system
FR2639675B1 (fr) * 1988-11-28 1991-03-22 Peugeot Circuit de refroidissement d'un moteur a combustion interne d'un vehicule automobile
IT1234093B (it) * 1989-05-30 1992-04-29 Mec Tappi Stampati Di Cau Giul Tappo di sicurezza per contenitori in pressione
JP2950553B2 (ja) * 1989-09-26 1999-09-20 株式会社日本自動車部品総合研究所 内燃機関の冷却装置
DE4039993A1 (de) * 1990-12-14 1992-03-26 Daimler Benz Ag Entlueftungsleitung im kuehlkreis einer brennkraftmaschine
JP2554188Y2 (ja) * 1991-03-19 1997-11-12 東洋ラジエーター株式会社 ラジエータタンクのフィラーネック
FR2675570A1 (fr) * 1991-04-18 1992-10-23 Journee Paul Sa Dispositif de securite pour un bouchon de fermeture d'un echangeur thermique.
EP0729429B1 (fr) * 1993-11-22 1997-05-21 Reutter Metallwarenfabrik GmbH Bouchon de fermeture vissable sur un col reservoir
WO1995014621A1 (fr) * 1993-11-22 1995-06-01 Reutter Metallwarenfabrik Gmbh Bouchon de fermeture vissable sur un col de reservoir
DE4339663A1 (de) * 1993-11-22 1995-05-24 Reutter Metallwaren Auf einen Behälterstutzen aufschraubbarer Verschlußdeckel
US5410991A (en) * 1994-05-05 1995-05-02 Standard-Thomson Corporation Coolant fill housing with integral thermostat
US5463986A (en) * 1994-09-14 1995-11-07 Hollis; Thomas J. Hydraulically operated restrictor/shutoff flow control valve
US5657722A (en) * 1996-01-30 1997-08-19 Thomas J. Hollis System for maintaining engine oil at a desired temperature
US5699759A (en) * 1995-12-21 1997-12-23 Thomas J. Hollis Free-flow buoyancy check valve for controlling flow of temperature control fluid from an overflow bottle
FR2740830B1 (fr) * 1995-11-08 1997-12-05 Journee Paul Sa Bouchon de circuit de refroidissement de vehicule automobile muni d'un dispositif de degazage
FR2741132B1 (fr) * 1995-11-15 1997-12-12 Journee Paul Sa Dispositif d'obturation d'un circuit de refroidissement muni de moyens perfectionnes d'etancheite
DE19611095A1 (de) * 1996-03-21 1997-09-25 Bayerische Motoren Werke Ag Kühlsystem für eine flüssigkeitsgekühlte Brennkraftmaschine
DE29611514U1 (de) * 1996-07-02 1997-10-30 Reutter, Heinrich, 71336 Waiblingen Verschlußdeckel mit temperaturabhängiger Abschraubsicherung
DE19720403A1 (de) * 1997-05-15 1998-11-19 Bayerische Motoren Werke Ag Sicherheitsverschluß-Vorrichtung für ein Druckgefäß, insbesondere Ausgleichsbehälter für das Kühlsystem einer Brennkraftmaschine
DE10035729A1 (de) 2000-07-22 2002-01-31 Heinrich Reutter Verschlussdeckel mit Verdrehsicherung
US6532910B2 (en) * 2001-02-20 2003-03-18 Volvo Trucks North America, Inc. Engine cooling system
US7152555B2 (en) * 2001-02-20 2006-12-26 Volvo Trucks North America, Inc. Engine cooling system
US6364213B1 (en) * 2001-04-18 2002-04-02 Ford Global Technologies, Inc. Engine cooling system
DE20120676U1 (de) * 2001-12-21 2003-04-30 Reutter, Heinrich, 71336 Waiblingen Verschlußdeckel für Kraftfahrzeugkühler
DE10246590A1 (de) * 2002-10-05 2004-04-22 Daimlerchrysler Ag Behälter für flüssige und/oder gasförmige Medien und Kühlsystem für eine Brennkraftmaschine
SE529541C2 (sv) * 2005-12-05 2007-09-11 Volvo Lastvagnar Ab Kylsystem
US7377237B2 (en) * 2006-09-13 2008-05-27 Cummins Power Generation Inc. Cooling system for hybrid power system
US20080060370A1 (en) * 2006-09-13 2008-03-13 Cummins Power Generation Inc. Method of cooling a hybrid power system
US7552839B2 (en) * 2006-09-13 2009-06-30 Cummins Power Generation Inc. Fluid tank with clip-in provision for oil stick tube
US7343884B1 (en) * 2006-09-13 2008-03-18 Cummins Power Generation Inc. Coolant system for hybrid power system
DE102007033535A1 (de) 2007-07-19 2009-01-22 Bayerische Motoren Werke Aktiengesellschaft Verschlussorgan für einen Kraftstofftank eines Kraftfahrzeugs
DE102008035961A1 (de) * 2008-07-31 2010-02-04 Schaeffler Kg Wärmemanagementmodul des Kühlsystems einer Verbrennungskraftmaschine
US20100319902A1 (en) * 2009-06-19 2010-12-23 Wan Ching Chou Auxiliary apparatus for vehicle water tank
US20110253346A1 (en) * 2010-04-15 2011-10-20 Hamilton Sundstrand Corporation Auxilliary reservoir for a liquid system
DE102010018089B3 (de) * 2010-04-24 2011-07-14 Audi Ag, 85057 Ventilanordnung zur Entlüftung eines Kühlmittelkreislaufs einer Brennkraftmaschine
DE102010033715A1 (de) 2010-08-07 2012-02-09 Audi Ag Ausgleichsbehälter für einen Kühlmittelkreislauf
DE102011078293B4 (de) * 2011-06-29 2017-06-29 Röchling Automotive AG & Co. KG Ausgleichsbehälter mit einem Flüssigkeitssperrventilkörper und einem relativ zu diesem beweglich an diesem aufgenommenen Gasunterdruckventilkörper sowie eine solche Ventilstruktur tragender Deckel für einen Ausgleichsbehälter
WO2014118780A1 (fr) * 2013-01-30 2014-08-07 Fishman Thermo Technologies Ltd. Thermostats à actionnement hydraulique
DE102013012754B3 (de) * 2013-07-31 2015-01-08 Audi Ag Ausgleichbehälter für einen Fluidkreislauf sowie Verfahren zum Betreiben eines Ausgleichsbehälters
DE102013226420A1 (de) * 2013-12-18 2015-06-18 Volkswagen Aktiengesellschaft Entlüftungsventil und Kühlsystem für eine Brennkraftmaschine
GB2554443A (en) * 2016-09-28 2018-04-04 Mclaren Automotive Ltd Coolant header tank
DE102017204824B3 (de) * 2017-03-22 2018-06-14 Ford Global Technologies, Llc Kühlsystem einer Fahrzeugkraftmaschine aufweisend eine Separationseinheit
DE102017116600A1 (de) * 2017-07-24 2019-01-24 Volkswagen Aktiengesellschaft Kühlsystem und Kraftfahrzeug
US11760193B2 (en) * 2017-09-29 2023-09-19 Illinois Tool Works Inc. Reservoir tank cap closure indicators
CN109184893B (zh) * 2018-11-22 2021-02-09 卡特彼勒S.A.R.L公司 发动机冷却系统和用于其中的箱体以及作业机械
US10760473B1 (en) * 2019-03-06 2020-09-01 Hyundai Motor Company Method for charging coolant in cooling system for vehicle

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US27965A (en) * 1860-04-24 Looking-glass ob mirror
US1311809A (en) * 1919-07-29 Cooling system fob internal-combustion engines
US2067924A (en) * 1932-10-24 1937-01-19 Frank P Illsley Pressure relief valve
GB896850A (en) * 1957-06-01 1962-05-16 British Leyland Motor Corp Engine cooling systems for vehicles
US3132634A (en) * 1962-09-10 1964-05-12 Charles R Butler Cooling system for internal combustion engines
GB1154642A (en) * 1966-09-28 1969-06-11 Ford Motor Co Internal Combustion Engine Cooling Liquid Systems.
US3587912A (en) * 1968-08-23 1971-06-28 Nippon Denso Co Pressure cap unit with pressure releasing means for radiators of internal combustion engines
FR1600373A (fr) * 1968-12-31 1970-07-20
DE2531629A1 (de) * 1974-07-18 1976-01-29 Walter C Avrea Kuehlereinrichtung
US3981279A (en) * 1975-08-26 1976-09-21 General Motors Corporation Internal combustion engine system
US4167159A (en) * 1977-04-29 1979-09-11 Deere & Company Pressurized liquid cooling system for an internal combustion engine
FR2408722A1 (fr) * 1977-11-10 1979-06-08 Berliet Automobiles Circuit de refroidissement perfectionne pour un moteur a combustion interne
DE2821872B2 (de) * 1978-05-19 1980-05-14 Audi Nsu Auto Union Ag, 7107 Neckarsulm Überdruck-Kühlsystem für eine flüssigkeitsgekühlte Brennkraftmaschine, insbesondere in einem Kraftfahrzeug
DE2845644A1 (de) * 1978-10-20 1980-04-24 Bayerische Motoren Werke Ag Verschluss fuer die einfuelloeffnung eines behaelters
DE3045357C2 (de) * 1980-12-02 1986-01-09 Daimler-Benz Ag, 7000 Stuttgart Kühlsystem für eine Brennkraftmaschine

Also Published As

Publication number Publication date
EP0100917B1 (fr) 1986-10-01
EP0157167A1 (fr) 1985-10-09
DE3226508C2 (de) 1985-12-12
ES8404010A1 (es) 1984-04-16
EP0163006A1 (fr) 1985-12-04
EP0100917A1 (fr) 1984-02-22
DE3366593D1 (en) 1986-11-06
JPH071005B2 (ja) 1995-01-11
DE3374143D1 (en) 1987-11-26
DE3226508A1 (de) 1984-01-26
US4510893A (en) 1985-04-16
ES524135A0 (es) 1984-04-16
JPS5923029A (ja) 1984-02-06

Similar Documents

Publication Publication Date Title
EP0157167B1 (fr) Circuit de refroidissement pour moteurs à combustion interne
EP0295445B1 (fr) Circuit de refroidissement par liquide pour machines, notamment pour moteurs à combustion interne
DE3504038C2 (fr)
DE102010017766B4 (de) Kühlanordnung für Brennkraftmaschinen
DE3615974C2 (fr)
DE3516762A1 (de) Verfahren und vorrichtung zum kuehlen von verbrennungsmotoren
DE2058995A1 (de) Vorrichtung zum Entlueften der Kuehlfluessigkeit einer Brennkraftmaschine
DE3226509A1 (de) Kuehlkreis fuer brennkraftmaschinen
DE102006010470A1 (de) Turbolader mit Konvektionskühlung
DE3809136C2 (de) Einrichtung zur Verdampfungskühlung einer Brennkraftmaschine und zum Betreiben eines Heizungswärmetauschers durch das Kühlmittel
DD231386A1 (de) Verdampfungskuehlung fuer verbrennungsmotoren
DE3134475A1 (de) Kraftfahrzeugkuehlanlage mit drucklosem ausgleichsbehaelter
EP0496942A1 (fr) Moteur à combustion interne refroidi par ébullition
EP0437772B1 (fr) Système de refroidissement à ébullition pour un moteur à combustion interne refroidi par liquide
DE3700494C2 (fr)
DE69115865T2 (de) Verdampfungskühlverfahren für eine Brennkraftmaschine und Einrichtung zur Durchführung dieses Verfahrens
EP0536470A1 (fr) Moteur à combustion interne refroidi par ébullition
EP0888494B1 (fr) Systeme de refroidissement pour moteur a combustion interne refroidi par fluide
DE2852725A1 (de) Ausgleichsbehaelter fuer kuehlfluessigkeit
DE3534543C2 (fr)
DE2553174A1 (de) Warmluft abgebende heizvorrichtung fuer durch eine fluessigkeitsgekuehlte brennkraftmaschine angetriebene fahrzeuge, insbesondere kraftfahrzeuge
DE904364C (de) Verdampfungskuehleinrichtung fuer Brennkraftmaschinen, insbesondere fuer Flugmotoren
DE4431133C2 (de) Verfahren zur Reduktion der wärmeaktiven Masse und der Wärmeverluste im Schmierölsystem von Verbrennungsmotoren mit Hilfe eines zusätzlichen Ölwärmetauschers
DE597159C (de) Mit geschlossenem Fluessigkeitsumlauf durch eine Pumpe arbeitende, insbesondere fuerBrennkraftmaschinen zum Antrieb von Fahrzeugen bestimmte Kuehlanlage
DE1288360B (de) Kuehlkreislauf fuer Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 100917

Country of ref document: EP

AK Designated contracting states

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19850820

17Q First examination report despatched

Effective date: 19860421

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 100917

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 3374143

Country of ref document: DE

Date of ref document: 19871126

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 85102118.8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020711

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020712

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020730

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020829

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20030714

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

EUG Se: european patent has lapsed