EP0157167B1 - Circuit de refroidissement pour moteurs à combustion interne - Google Patents
Circuit de refroidissement pour moteurs à combustion interne Download PDFInfo
- Publication number
- EP0157167B1 EP0157167B1 EP85102118A EP85102118A EP0157167B1 EP 0157167 B1 EP0157167 B1 EP 0157167B1 EP 85102118 A EP85102118 A EP 85102118A EP 85102118 A EP85102118 A EP 85102118A EP 0157167 B1 EP0157167 B1 EP 0157167B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- coolant
- relief valve
- pump
- cooling circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001816 cooling Methods 0.000 title claims description 66
- 238000002485 combustion reaction Methods 0.000 title claims description 7
- 239000002826 coolant Substances 0.000 claims description 118
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 238000009835 boiling Methods 0.000 claims description 15
- 230000000694 effects Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 108010053481 Antifreeze Proteins Proteins 0.000 claims description 2
- 230000002528 anti-freeze Effects 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000000654 additive Substances 0.000 claims 1
- 230000001419 dependent effect Effects 0.000 claims 1
- 239000000945 filler Substances 0.000 description 19
- 238000002156 mixing Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000013022 venting Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005293 physical law Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/0204—Filling
- F01P11/0209—Closure caps
- F01P11/0247—Safety; Locking against opening
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/0204—Filling
- F01P11/0209—Closure caps
- F01P11/0238—Closure caps with overpressure valves or vent valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/028—Deaeration devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P11/00—Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
- F01P11/02—Liquid-coolant filling, overflow, venting, or draining devices
- F01P11/0204—Filling
- F01P11/0209—Closure caps
- F01P11/0247—Safety; Locking against opening
- F01P2011/0266—Safety; Locking against opening activated by pressure
Definitions
- the invention relates to a cooling circuit according to the design of claim 1.
- cooling circuits of this type it is customary to arrange a pressure relief valve and a vacuum valve in the filler cap.
- a pressure relief valve and a vacuum valve in the filler cap.
- pressure relief valves with an opening value of approx. 0.8 to 1.5 bar overpressure are used.
- the filler cap and the pressure relief valves are arranged either in the flow or return of the cooling circuit, for example shortly after exiting the machine's cooling jacket and after the cooler valve of a thermostat arranged there, in the flow line itself, in the flow or return water tank of vertical or cross flow -Coolers or also in an expansion tank which absorbs the thermal expansion of the coolant with an air cushion or serves for air collection and separation with a bypass flow and filling connection line to the suction side of the coolant pump.
- the pressure in the cooling circuit is higher by the pressure difference between the different arrangements, even on the suction side of the coolant pump.
- This pressure corresponds directly to the opening value of the pressure relief valve.
- the pressure in the flow area increases by the reduced proportion that corresponds to the volume proportion escaping at the pressure relief valve.
- the pressure on the suction side of the coolant pump also drops by a corresponding value up to the boiling pressure of the coolant at the given coolant temperature.
- the object of the invention is to develop a cooling circuit of the type described in claim 1 so that both a drop in the pressure on the suction side of the coolant pump to the boiling pressure is avoided and an excessively high pressure build-up in the flow area, in particular in the flow water tank of the cooler, is excluded.
- a cooling circuit is to be created which has a high efficiency over the entire working range of an internal combustion engine.
- the invention solves this problem by dimensioning the pressure relief valve according to the characterizing part of patent claim 1. In this way it is ensured that the pressure on the suction side of the coolant pump does not drop to the boiling pressure of the coolant even when the pump delivery capacity changes, if at least approximately the maximum permissible coolant temperature reached this point, and that at the same time the pressure in the flow area of the cooling circuit does not reach higher values than has previously been the case with known cooling circuits with a pressure relief valve controlled by the return area.
- the arrangement of the pressure relief valve according to claim 2 gives in connection with the pressure drop at the outlet of the cooling jacket of the machine the advantage that during the operation of the machine, the pressure curve of the coolant is within normal limits, but after the machine has been switched off for the post-heating process by temperature compensation between the components and the coolant there is an overpressure higher by the mentioned pressure drop to avoid re-boiling. Since there is only a static pressure load on the cooling circuit, this is within the usual limits, especially since the coolant in the cooler cools down very quickly after it has been switched off, and due to its negative thermal expansion, the pressure in the entire cooling circuit drops correspondingly quickly to lower values.
- the features of claim 3 provide a lesson for coordinating the overall elasticity of the cooling circuit and the pressure changes of the coolant via its temperature changes by means of elastic hose lines, which means that when the coolant temperature drops, an excess of the boiling pressure, particularly on the suction side of the coolant pump, is excluded without additional construction costs.
- the invention is shown for example in the drawing. It shows a cooling circuit for internal combustion engines in a schematic representation with a pressure relief valve according to the invention in the flow water tank of a cooler.
- An internal combustion engine 1 contains a cooling jacket indicated by an arrow 2, into which the coolant is conveyed under pressure by means of a coolant pump 3.
- a flow 5 is connected as a line connection with a free passage to a cooler 6.
- the flow 5 opens into a cooler flow water tank 7.
- a short circuit 8 branches off from the flow 5 and flows into one Mixing thermostat 9, this mouth being controlled by a short-circuit valve 10 of the mixing thermostat 9.
- a line forming the return 12 from the cooler 6 likewise leads into the mixing thermostat 9, which contains a cooler valve 13 for controlling the mouth of the return 12.
- a suction line 15 opens from a mixing chamber 14 of the mixing thermostat 9 and opens into the suction side 16 of the coolant pump 3.
- a pressure relief valve 17 is arranged on the cooler flow water tank 7 and is connected by means of an outflow line 18 to an expansion tank 19 which is open to the atmosphere and is equipped with a slotted sealing disk 19 'in its filling opening to prevent evaporation of the coolant.
- the pressure relief valve 17 can alternatively (17 'or 17 ") be connected to the flow line 5 or to the cooling jacket 2 of the machine 1.
- the expansion tank 19 with the suction side 16 of the coolant pump 3 is connected via a suction line 20 and a vacuum valve 21, which preferably acts as a non-return valve While the outflow line 18 can alternatively (18 ') also be connected to the upper region of the interior of the expansion tank 19, the after-suction line 20 opens out from the interior of the expansion tank 19 near the floor.
- the outflow line 18 can also be separated (18 ") open into the expansion tank 19 near the bottom thereof.
- the vacuum valve 21 is combined with a filler neck 21 'to form a structural unit.
- the outflow line 18 is connected to a vent valve 22 which, due to its design as a sniffing, non-return or float valve or the like, is opened by the action of gravity when air and pressure-free cooling circuit are applied.
- a vent valve 22 which, due to its design as a sniffing, non-return or float valve or the like, is opened by the action of gravity when air and pressure-free cooling circuit are applied.
- One or more relatively large-area fine screens 23 in the cooler 6 or in the expansion tank 19 prevent the valves from becoming leaky due to dirt particles entrained by the coolant.
- a further pressure relief valve 24 is arranged in the filler neck 21 '.
- This further pressure relief valve 24 is effective via the suction line 20 directly on the suction side 16 of the coolant pump 3 and thus on its suction pressure.
- a vent line 25 opens into the interior of the filler neck 21 'and is located with a throttle 26 to reduce the pressure difference between its connections on the one hand on the supply water tank 7 and on the other hand via the suction line 20 on the suction side 16 of the coolant pump 3.
- a level float switch 21 is installed in the filler neck 21 'or in the filler neck cover, which controls a display circuit when air accumulates in the filler neck 21', regardless of whether or not an optically recognizable reserve quantity is still contained in the expansion tank 19 .
- the cooling circuit is filled with coolant in the filler neck 21 '.
- the machine 1 fills through the suction line 20 and the coolant pump 3, while at the same time the air contained therein through the supply line 5, the cooler pre-water tank 7 and the vent line 25 into the filler neck 21 'as well as through the open vent valve 22 and the outflow line 18 escapes to the atmosphere in the expansion tank 19.
- the mixing chamber 14 and the open short-circuit valve 10 of the mixing thermostat 9 in the short-circuit 8 also fill up to the cooler valve 13 , which can also be equipped with a conventional ventilation device.
- the vent valve 22 in the cooler 6 closes the filled cooler flow water tank 7 towards the outflow line 18, while the vent line 25 and the filler neck 21 fill completely.
- the level float switch 21 "controls an electrical indicator lamp on the fittings of the machine or the vehicle.
- the expansion tank 19 can be partially filled with an additional reserve quantity. In the event of thermal expansion, this flows through the ambient and cooling circuit Temperature fluctuations and, in particular, due to the operational heating of the part of the coolant displaced from the cooling circuit by the pressure relief valves 17, 17 'or 17 "and 24.
- the expansion tank 19 contains a corresponding minimum content.
- the first increase in rotational speed immediately leads to the construction of a conveying amount of the coolant pump 3, on the one hand downstream a decrease in the Pumpensaugdruckes among before the start in the entire cooling circuit given ambient pressure and subsequently dererse i ts a structure of a positive pressure in the coolant pump 3 Cooling circuit sections, cooling jacket 2, flow 5, short circuit 8, cooler 6 and return 12 causes.
- the vacuum valve 21 which responds to the slightest pressure difference and the suction line 20 from the expansion tank 19, draws coolant into the cooling circuit until the ambient pressure is reached on the suction side 16 of the coolant pump 3.
- the overpressure in the parts of the cooling circuit downstream of the coolant pump 3 simultaneously increases further.
- the elastic hose lines and any residual air inclusions in this area allow an increase in the volume of coolant contained therein.
- the engine speed is decisive because the low head of the coolant pump 3 that occurs at low to medium speeds first enables the pressure relief valve 24 to respond, which responds with an overpressure opening value that is just that pressure difference lower than the overpressure opening value of the pressure relief valve 17 which builds up between standstill or idling speed and maximum speed of the machine at the connection point of the pressure relief valve 17, 17 * or 17 ".
- the pressure relief valve 24 responds, which is connected to the suction side 16 of the coolant pump 3 via the suction line 20
- the pressure opening value of the pressure relief valve 17, 17 'or 17 is decisive only in the area of the maximum speed of the machine.
- a pressure overload of the cooling circuit components does not exist due to this relatively low, exclusively statically effective overpressure.
- This higher overpressure is thus limited to a relatively small proportion of the operating time of the machine, particularly when driving vehicles the cooling circuit components, in particular the cooler and the hose lines, are thereby favored.
- the negative pressure in the coolant also causes the excess pressure in the cooling circuit to drop. So that the overpressure, especially on the suction side of the coolant pump 3, does not drop below the boiling pressure at the respective temperature of the coolant, the overall elasticity of the cooling circuit is adjusted accordingly, above all by means of the elasticity of the hose lines.
- the cooling circuit With the start of operation of the machine 1 after the cooling circuit has been filled with coolant, the cooling circuit also begins to be vented automatically from residual air portions which have remained at various points during the filling or during operation, for example through the seals of which are briefly loaded with negative pressure during the cold start Coolant pump 3, get into the cooling circuit. These residual air fractions are flushed with the flow of the coolant from the machine 1 through the free continuous flow 5 into the cooler flow water tank 7, in which only the one determined by the throttle 26 relative to the thermostat 9 during the heating of the machine with the cooler valve 13 closed low ventilation flow.
- the remaining part of the flow 5 and the cooler Flow water tank 7 separate a large part of the residual air from the coolant when the flow is calm and, in the event of a larger accumulation, flow out through the then opening vent valve 22 via the outflow line 18 and possibly 18 "to the expansion tank 19.
- a corresponding volume of coolant can simultaneously flow through the after-suction line 20 and the pressure relief valve 21 are sucked into the filler neck 21 ', which is due to the effect of the pump suction pressure via the suction line 20 leading to the suction side 16.
- venting current flows to the filler neck 21', which the remaining small residual air fractions in conducts the filler neck and there upstream of the further pressure relief valve 24.
- the overpressure value of approximately 1.5 bar of this pressure relief valve 24 is reached due to the heating of the machine 1 and the coolant, as well as due to the thermal expansion and pressure increase of the coolant, this opens and leaves the sat residual air flow through the suction line 20 into the expansion tank 19. This process continues or repeats itself until the heat steady state of the cooling circuit is reached. Venting also occurs when the overpressure opening value of approximately 2.0 bar of the overpressure valve 17 is reached in the cooler flow water tank.
- the overpressure opening value of about 2 bar of the overpressure valve 17 is namely at least approximately reached at first and, in contrast, the overpressure opening value of about 1.5 bar of the further overpressure valve 24 is substantially undercut.
- the overpressure values then largely adapt to one another, so that the overpressure in the filler neck 21 ′ increases approximately to the overpressure opening value of the overpressure valve 24 there.
- the overpressure opening value of the pressure relief valve 24 is exceeded by the corresponding thermal expansion of the coolant.
- the residual air which may have been upstream in the filler neck 21 ' is discharged into the expansion tank 19 together with a portion of coolant.
- expansion tank 19 differs at atmospheric pressure and ambient temperature, for.
- a sealing washer 19 'slotted without waste allows air to enter and leave the expansion tank 19 for volume compensation, but prevents constant air movement due to convection flow. This largely prevents evaporation losses in the coolant.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Temperature-Responsive Valves (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Closures For Containers (AREA)
Claims (3)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3226508A DE3226508C2 (de) | 1982-07-15 | 1982-07-15 | Kühlkreis für Brennkraftmaschinen |
DE3226508 | 1982-07-15 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83106971.1 Division | 1983-07-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0157167A1 EP0157167A1 (fr) | 1985-10-09 |
EP0157167B1 true EP0157167B1 (fr) | 1987-10-21 |
Family
ID=6168511
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP85102118A Expired EP0157167B1 (fr) | 1982-07-15 | 1983-07-15 | Circuit de refroidissement pour moteurs à combustion interne |
EP83106971A Expired EP0100917B1 (fr) | 1982-07-15 | 1983-07-15 | Circuit de refroidissement pour moteurs à combustion interne |
EP85101659A Withdrawn EP0163006A1 (fr) | 1982-07-15 | 1983-07-15 | Circuit de refroidissement à suspension pour des moteurs à combustion interne à refroidissement liquide |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP83106971A Expired EP0100917B1 (fr) | 1982-07-15 | 1983-07-15 | Circuit de refroidissement pour moteurs à combustion interne |
EP85101659A Withdrawn EP0163006A1 (fr) | 1982-07-15 | 1983-07-15 | Circuit de refroidissement à suspension pour des moteurs à combustion interne à refroidissement liquide |
Country Status (5)
Country | Link |
---|---|
US (1) | US4510893A (fr) |
EP (3) | EP0157167B1 (fr) |
JP (1) | JPH071005B2 (fr) |
DE (3) | DE3226508C2 (fr) |
ES (1) | ES524135A0 (fr) |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4620509A (en) * | 1985-08-05 | 1986-11-04 | Cummins Engine Company, Inc. | Twin-flow cooling system |
US4677943A (en) * | 1986-03-03 | 1987-07-07 | Skinner Alan A | Automotive non-pressure cooling system |
JPH0620012Y2 (ja) * | 1987-01-28 | 1994-05-25 | 木村工機株式会社 | 定水量機構を組込んだ電動三方弁 |
DE3716555A1 (de) * | 1987-05-18 | 1988-12-08 | Bayerische Motoren Werke Ag | Befuell-, entlueftungs- und drucksteuer-vorrichtung fuer den fluessigkeits-kuehlkreis von kraft- und arbeitsmaschinen, insbesondere brennkraftmaschinen |
US4768484A (en) * | 1987-07-13 | 1988-09-06 | General Motors Corporation | Actively pressurized engine cooling system |
FR2639675B1 (fr) * | 1988-11-28 | 1991-03-22 | Peugeot | Circuit de refroidissement d'un moteur a combustion interne d'un vehicule automobile |
IT1234093B (it) * | 1989-05-30 | 1992-04-29 | Mec Tappi Stampati Di Cau Giul | Tappo di sicurezza per contenitori in pressione |
JP2950553B2 (ja) * | 1989-09-26 | 1999-09-20 | 株式会社日本自動車部品総合研究所 | 内燃機関の冷却装置 |
DE4039993A1 (de) * | 1990-12-14 | 1992-03-26 | Daimler Benz Ag | Entlueftungsleitung im kuehlkreis einer brennkraftmaschine |
JP2554188Y2 (ja) * | 1991-03-19 | 1997-11-12 | 東洋ラジエーター株式会社 | ラジエータタンクのフィラーネック |
FR2675570A1 (fr) * | 1991-04-18 | 1992-10-23 | Journee Paul Sa | Dispositif de securite pour un bouchon de fermeture d'un echangeur thermique. |
EP0729429B1 (fr) * | 1993-11-22 | 1997-05-21 | Reutter Metallwarenfabrik GmbH | Bouchon de fermeture vissable sur un col reservoir |
WO1995014621A1 (fr) * | 1993-11-22 | 1995-06-01 | Reutter Metallwarenfabrik Gmbh | Bouchon de fermeture vissable sur un col de reservoir |
DE4339663A1 (de) * | 1993-11-22 | 1995-05-24 | Reutter Metallwaren | Auf einen Behälterstutzen aufschraubbarer Verschlußdeckel |
US5410991A (en) * | 1994-05-05 | 1995-05-02 | Standard-Thomson Corporation | Coolant fill housing with integral thermostat |
US5463986A (en) * | 1994-09-14 | 1995-11-07 | Hollis; Thomas J. | Hydraulically operated restrictor/shutoff flow control valve |
US5657722A (en) * | 1996-01-30 | 1997-08-19 | Thomas J. Hollis | System for maintaining engine oil at a desired temperature |
US5699759A (en) * | 1995-12-21 | 1997-12-23 | Thomas J. Hollis | Free-flow buoyancy check valve for controlling flow of temperature control fluid from an overflow bottle |
FR2740830B1 (fr) * | 1995-11-08 | 1997-12-05 | Journee Paul Sa | Bouchon de circuit de refroidissement de vehicule automobile muni d'un dispositif de degazage |
FR2741132B1 (fr) * | 1995-11-15 | 1997-12-12 | Journee Paul Sa | Dispositif d'obturation d'un circuit de refroidissement muni de moyens perfectionnes d'etancheite |
DE19611095A1 (de) * | 1996-03-21 | 1997-09-25 | Bayerische Motoren Werke Ag | Kühlsystem für eine flüssigkeitsgekühlte Brennkraftmaschine |
DE29611514U1 (de) * | 1996-07-02 | 1997-10-30 | Reutter, Heinrich, 71336 Waiblingen | Verschlußdeckel mit temperaturabhängiger Abschraubsicherung |
DE19720403A1 (de) * | 1997-05-15 | 1998-11-19 | Bayerische Motoren Werke Ag | Sicherheitsverschluß-Vorrichtung für ein Druckgefäß, insbesondere Ausgleichsbehälter für das Kühlsystem einer Brennkraftmaschine |
DE10035729A1 (de) | 2000-07-22 | 2002-01-31 | Heinrich Reutter | Verschlussdeckel mit Verdrehsicherung |
US6532910B2 (en) * | 2001-02-20 | 2003-03-18 | Volvo Trucks North America, Inc. | Engine cooling system |
US7152555B2 (en) * | 2001-02-20 | 2006-12-26 | Volvo Trucks North America, Inc. | Engine cooling system |
US6364213B1 (en) * | 2001-04-18 | 2002-04-02 | Ford Global Technologies, Inc. | Engine cooling system |
DE20120676U1 (de) * | 2001-12-21 | 2003-04-30 | Reutter, Heinrich, 71336 Waiblingen | Verschlußdeckel für Kraftfahrzeugkühler |
DE10246590A1 (de) * | 2002-10-05 | 2004-04-22 | Daimlerchrysler Ag | Behälter für flüssige und/oder gasförmige Medien und Kühlsystem für eine Brennkraftmaschine |
SE529541C2 (sv) * | 2005-12-05 | 2007-09-11 | Volvo Lastvagnar Ab | Kylsystem |
US7377237B2 (en) * | 2006-09-13 | 2008-05-27 | Cummins Power Generation Inc. | Cooling system for hybrid power system |
US20080060370A1 (en) * | 2006-09-13 | 2008-03-13 | Cummins Power Generation Inc. | Method of cooling a hybrid power system |
US7552839B2 (en) * | 2006-09-13 | 2009-06-30 | Cummins Power Generation Inc. | Fluid tank with clip-in provision for oil stick tube |
US7343884B1 (en) * | 2006-09-13 | 2008-03-18 | Cummins Power Generation Inc. | Coolant system for hybrid power system |
DE102007033535A1 (de) | 2007-07-19 | 2009-01-22 | Bayerische Motoren Werke Aktiengesellschaft | Verschlussorgan für einen Kraftstofftank eines Kraftfahrzeugs |
DE102008035961A1 (de) * | 2008-07-31 | 2010-02-04 | Schaeffler Kg | Wärmemanagementmodul des Kühlsystems einer Verbrennungskraftmaschine |
US20100319902A1 (en) * | 2009-06-19 | 2010-12-23 | Wan Ching Chou | Auxiliary apparatus for vehicle water tank |
US20110253346A1 (en) * | 2010-04-15 | 2011-10-20 | Hamilton Sundstrand Corporation | Auxilliary reservoir for a liquid system |
DE102010018089B3 (de) * | 2010-04-24 | 2011-07-14 | Audi Ag, 85057 | Ventilanordnung zur Entlüftung eines Kühlmittelkreislaufs einer Brennkraftmaschine |
DE102010033715A1 (de) | 2010-08-07 | 2012-02-09 | Audi Ag | Ausgleichsbehälter für einen Kühlmittelkreislauf |
DE102011078293B4 (de) * | 2011-06-29 | 2017-06-29 | Röchling Automotive AG & Co. KG | Ausgleichsbehälter mit einem Flüssigkeitssperrventilkörper und einem relativ zu diesem beweglich an diesem aufgenommenen Gasunterdruckventilkörper sowie eine solche Ventilstruktur tragender Deckel für einen Ausgleichsbehälter |
WO2014118780A1 (fr) * | 2013-01-30 | 2014-08-07 | Fishman Thermo Technologies Ltd. | Thermostats à actionnement hydraulique |
DE102013012754B3 (de) * | 2013-07-31 | 2015-01-08 | Audi Ag | Ausgleichbehälter für einen Fluidkreislauf sowie Verfahren zum Betreiben eines Ausgleichsbehälters |
DE102013226420A1 (de) * | 2013-12-18 | 2015-06-18 | Volkswagen Aktiengesellschaft | Entlüftungsventil und Kühlsystem für eine Brennkraftmaschine |
GB2554443A (en) * | 2016-09-28 | 2018-04-04 | Mclaren Automotive Ltd | Coolant header tank |
DE102017204824B3 (de) * | 2017-03-22 | 2018-06-14 | Ford Global Technologies, Llc | Kühlsystem einer Fahrzeugkraftmaschine aufweisend eine Separationseinheit |
DE102017116600A1 (de) * | 2017-07-24 | 2019-01-24 | Volkswagen Aktiengesellschaft | Kühlsystem und Kraftfahrzeug |
US11760193B2 (en) * | 2017-09-29 | 2023-09-19 | Illinois Tool Works Inc. | Reservoir tank cap closure indicators |
CN109184893B (zh) * | 2018-11-22 | 2021-02-09 | 卡特彼勒S.A.R.L公司 | 发动机冷却系统和用于其中的箱体以及作业机械 |
US10760473B1 (en) * | 2019-03-06 | 2020-09-01 | Hyundai Motor Company | Method for charging coolant in cooling system for vehicle |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US27965A (en) * | 1860-04-24 | Looking-glass ob mirror | ||
US1311809A (en) * | 1919-07-29 | Cooling system fob internal-combustion engines | ||
US2067924A (en) * | 1932-10-24 | 1937-01-19 | Frank P Illsley | Pressure relief valve |
GB896850A (en) * | 1957-06-01 | 1962-05-16 | British Leyland Motor Corp | Engine cooling systems for vehicles |
US3132634A (en) * | 1962-09-10 | 1964-05-12 | Charles R Butler | Cooling system for internal combustion engines |
GB1154642A (en) * | 1966-09-28 | 1969-06-11 | Ford Motor Co | Internal Combustion Engine Cooling Liquid Systems. |
US3587912A (en) * | 1968-08-23 | 1971-06-28 | Nippon Denso Co | Pressure cap unit with pressure releasing means for radiators of internal combustion engines |
FR1600373A (fr) * | 1968-12-31 | 1970-07-20 | ||
DE2531629A1 (de) * | 1974-07-18 | 1976-01-29 | Walter C Avrea | Kuehlereinrichtung |
US3981279A (en) * | 1975-08-26 | 1976-09-21 | General Motors Corporation | Internal combustion engine system |
US4167159A (en) * | 1977-04-29 | 1979-09-11 | Deere & Company | Pressurized liquid cooling system for an internal combustion engine |
FR2408722A1 (fr) * | 1977-11-10 | 1979-06-08 | Berliet Automobiles | Circuit de refroidissement perfectionne pour un moteur a combustion interne |
DE2821872B2 (de) * | 1978-05-19 | 1980-05-14 | Audi Nsu Auto Union Ag, 7107 Neckarsulm | Überdruck-Kühlsystem für eine flüssigkeitsgekühlte Brennkraftmaschine, insbesondere in einem Kraftfahrzeug |
DE2845644A1 (de) * | 1978-10-20 | 1980-04-24 | Bayerische Motoren Werke Ag | Verschluss fuer die einfuelloeffnung eines behaelters |
DE3045357C2 (de) * | 1980-12-02 | 1986-01-09 | Daimler-Benz Ag, 7000 Stuttgart | Kühlsystem für eine Brennkraftmaschine |
-
1982
- 1982-07-15 DE DE3226508A patent/DE3226508C2/de not_active Expired
-
1983
- 1983-07-11 JP JP58124888A patent/JPH071005B2/ja not_active Expired - Lifetime
- 1983-07-14 US US06/513,802 patent/US4510893A/en not_active Expired - Lifetime
- 1983-07-15 EP EP85102118A patent/EP0157167B1/fr not_active Expired
- 1983-07-15 EP EP83106971A patent/EP0100917B1/fr not_active Expired
- 1983-07-15 DE DE8585102118T patent/DE3374143D1/de not_active Expired
- 1983-07-15 DE DE8383106971T patent/DE3366593D1/de not_active Expired
- 1983-07-15 ES ES524135A patent/ES524135A0/es active Granted
- 1983-07-15 EP EP85101659A patent/EP0163006A1/fr not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
EP0100917B1 (fr) | 1986-10-01 |
EP0157167A1 (fr) | 1985-10-09 |
DE3226508C2 (de) | 1985-12-12 |
ES8404010A1 (es) | 1984-04-16 |
EP0163006A1 (fr) | 1985-12-04 |
EP0100917A1 (fr) | 1984-02-22 |
DE3366593D1 (en) | 1986-11-06 |
JPH071005B2 (ja) | 1995-01-11 |
DE3374143D1 (en) | 1987-11-26 |
DE3226508A1 (de) | 1984-01-26 |
US4510893A (en) | 1985-04-16 |
ES524135A0 (es) | 1984-04-16 |
JPS5923029A (ja) | 1984-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0157167B1 (fr) | Circuit de refroidissement pour moteurs à combustion interne | |
EP0295445B1 (fr) | Circuit de refroidissement par liquide pour machines, notamment pour moteurs à combustion interne | |
DE3504038C2 (fr) | ||
DE102010017766B4 (de) | Kühlanordnung für Brennkraftmaschinen | |
DE3615974C2 (fr) | ||
DE3516762A1 (de) | Verfahren und vorrichtung zum kuehlen von verbrennungsmotoren | |
DE2058995A1 (de) | Vorrichtung zum Entlueften der Kuehlfluessigkeit einer Brennkraftmaschine | |
DE3226509A1 (de) | Kuehlkreis fuer brennkraftmaschinen | |
DE102006010470A1 (de) | Turbolader mit Konvektionskühlung | |
DE3809136C2 (de) | Einrichtung zur Verdampfungskühlung einer Brennkraftmaschine und zum Betreiben eines Heizungswärmetauschers durch das Kühlmittel | |
DD231386A1 (de) | Verdampfungskuehlung fuer verbrennungsmotoren | |
DE3134475A1 (de) | Kraftfahrzeugkuehlanlage mit drucklosem ausgleichsbehaelter | |
EP0496942A1 (fr) | Moteur à combustion interne refroidi par ébullition | |
EP0437772B1 (fr) | Système de refroidissement à ébullition pour un moteur à combustion interne refroidi par liquide | |
DE3700494C2 (fr) | ||
DE69115865T2 (de) | Verdampfungskühlverfahren für eine Brennkraftmaschine und Einrichtung zur Durchführung dieses Verfahrens | |
EP0536470A1 (fr) | Moteur à combustion interne refroidi par ébullition | |
EP0888494B1 (fr) | Systeme de refroidissement pour moteur a combustion interne refroidi par fluide | |
DE2852725A1 (de) | Ausgleichsbehaelter fuer kuehlfluessigkeit | |
DE3534543C2 (fr) | ||
DE2553174A1 (de) | Warmluft abgebende heizvorrichtung fuer durch eine fluessigkeitsgekuehlte brennkraftmaschine angetriebene fahrzeuge, insbesondere kraftfahrzeuge | |
DE904364C (de) | Verdampfungskuehleinrichtung fuer Brennkraftmaschinen, insbesondere fuer Flugmotoren | |
DE4431133C2 (de) | Verfahren zur Reduktion der wärmeaktiven Masse und der Wärmeverluste im Schmierölsystem von Verbrennungsmotoren mit Hilfe eines zusätzlichen Ölwärmetauschers | |
DE597159C (de) | Mit geschlossenem Fluessigkeitsumlauf durch eine Pumpe arbeitende, insbesondere fuerBrennkraftmaschinen zum Antrieb von Fahrzeugen bestimmte Kuehlanlage | |
DE1288360B (de) | Kuehlkreislauf fuer Brennkraftmaschinen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 100917 Country of ref document: EP |
|
AK | Designated contracting states |
Designated state(s): DE FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19850820 |
|
17Q | First examination report despatched |
Effective date: 19860421 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 100917 Country of ref document: EP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT SE |
|
REF | Corresponds to: |
Ref document number: 3374143 Country of ref document: DE Date of ref document: 19871126 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
EAL | Se: european patent in force in sweden |
Ref document number: 85102118.8 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020711 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20020712 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020730 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020829 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20030714 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 |
|
EUG | Se: european patent has lapsed |