EP0153900B1 - Steuerung und Sicherung einer durch eine Fernstelleinrichtung (Stellwerk) oder eine Ortsstelleinrichtung bedienbaren Weiche - Google Patents

Steuerung und Sicherung einer durch eine Fernstelleinrichtung (Stellwerk) oder eine Ortsstelleinrichtung bedienbaren Weiche Download PDF

Info

Publication number
EP0153900B1
EP0153900B1 EP85730006A EP85730006A EP0153900B1 EP 0153900 B1 EP0153900 B1 EP 0153900B1 EP 85730006 A EP85730006 A EP 85730006A EP 85730006 A EP85730006 A EP 85730006A EP 0153900 B1 EP0153900 B1 EP 0153900B1
Authority
EP
European Patent Office
Prior art keywords
points
control
current
drive
protection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85730006A
Other languages
English (en)
French (fr)
Other versions
EP0153900A3 (en
EP0153900A2 (de
Inventor
Alfred Ing.-Grad Lotz
Harri Dipl.-Ing. Brauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Licentia Patent Verwaltungs GmbH
Original Assignee
Licentia Patent Verwaltungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Licentia Patent Verwaltungs GmbH filed Critical Licentia Patent Verwaltungs GmbH
Priority to AT85730006T priority Critical patent/ATE49167T1/de
Publication of EP0153900A2 publication Critical patent/EP0153900A2/de
Publication of EP0153900A3 publication Critical patent/EP0153900A3/de
Application granted granted Critical
Publication of EP0153900B1 publication Critical patent/EP0153900B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/10Locking mechanisms for points; Means for indicating the setting of points
    • B61L5/107Locking mechanisms for points; Means for indicating the setting of points electrical control of points position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/06Electric devices for operating points or scotch-blocks, e.g. using electromotive driving means
    • B61L5/062Wiring diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L7/00Remote control of local operating means for points, signals, or track-mounted scotch-blocks
    • B61L7/06Remote control of local operating means for points, signals, or track-mounted scotch-blocks using electrical transmission
    • B61L7/061Remote control of local operating means for points, signals, or track-mounted scotch-blocks using electrical transmission using electromotive driving means
    • B61L7/062Wiring diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L7/00Remote control of local operating means for points, signals, or track-mounted scotch-blocks
    • B61L7/06Remote control of local operating means for points, signals, or track-mounted scotch-blocks using electrical transmission
    • B61L7/067Supply for electric safety arrangements

Definitions

  • the invention relates to a circuit arrangement for controlling and securing a switch, as defined in the preamble of claim 1.
  • Turnouts are used to adjust the travel routes of local and long-distance rail vehicles, which today are generally changed over by means of electric or hydraulic turnout drives. Manual adjustment is essentially only intended as a reserve for emergency operation.
  • the turnout drives are usually from control desks from a higher-level position z.
  • B. a remote control device (signal box) or a local control device in the vicinity controlled by control commands.
  • the modern interlockings known today generally work with turnout control devices which are constructed with signal relays, with four-wire cables going out for each turnout drive, via which the drive is controlled on the one hand and the turnout positions are also checked or reported.
  • the disadvantage is u. a. the limited distance between the signal box and the switch (maximum 6.5 km), the high contact wear, the volume and the power consumption of the relays. In addition, and this is particularly important, there is no direct, verifiable report of the switch position taken.
  • a fully electronic turnout control has already been proposed (DE-P 3219366), in which the aforementioned disadvantages are avoided by locally assigning the turnout controls to the turnout drives and reliably receiving the control commands from the signal box via data transmission channels. From the point controls to the point drives there is a strict separation of the drive control on the one hand and the monitoring function on the other. In addition to the actual four-wire control cable, an additional six-wire end position test cable is required.
  • the advantages and disadvantages are obvious. The advantages are the increased possible job distance up to 100 km through secure data transmission and the associated rationalization effect, as well as the lower energy consumption (avoidance of relays).
  • the contactless control of the power electronics, the targeted error diagnosis through the use of microelectronics and the now directly checkable turnout position signaling are advantageous.
  • the disadvantage lies in the additional end position test cable and the retrofitting or retrofitting of existing systems that is not easily implemented.
  • the object of the invention is to eliminate the shortcomings indicated and to make the conventional four-wire switch drive circuits usable by adapting the microprocessor-controlled control and safety concept of the aforementioned fully electronic switch control.
  • FIG. 1 shows an overview of the functional structure of the electronic switch control. Then the switch is initiated by a remote control unit FE, the actual signal box or also a local control unit OE.
  • the remote control device FE can act via a remote data transmission line 50 to 100 km away on a computer-controlled or microprocessor-controlled turnout control WST, which is located in a switchgear close to the turnout or turnouts is housed in the z.
  • WST computer-controlled or microprocessor-controlled turnout control
  • B. is also the local control unit OE.
  • the actual point machine WA to be controlled is a conventional four-wire point machine.
  • a track vacancy detection device GF belonging to the turnout section complements the overview.
  • the track vacancy detection device GF influences the turnout protection WSI. Effect arrows show the mutual influences.
  • the invention relates to the process peripherals in the switchgear with the interacting elements three-phase circuit breaker LS, supervisor ÜW and fuse switch SS in connection with the point machine WA and the point control WST and point fuse WSI.
  • the point machine WA is controlled via the three-phase circuit breaker LS with the interposition of the monitor ÜW by the point controller WST, which is in operative connection with the point fuse WSI and the fuse switch SS, the latter influencing the three-phase circuit breaker LS.
  • the point machine WA is connected to the supervisor ÜW by means of the usual four-wire cable SK, whereby the control current runs as well as the position and feedback.
  • impact arrows in different directions indicate this.
  • the operating principle of the switch control is three-stage and as follows: 1. Setting the switch, 2. Securing the switch, 3. Monitoring the switch.
  • the turnout control WST has a control command either from the local control unit OE or from the remote control unit FE, this leads to the changeover of the turnout to the desired position. However, this is only possible if the switch is neither locked nor blocked, or is not otherwise available for conversion (e.g. due to a defect). If the test is positive, the positioning job leads to the output of the actuating current to the point machine WA. Here the leaving of the end position, the turnout and the reaching of the desired end position are monitored. When the turnout has reached the end position, the actuating current is safely switched off in terms of signaling and the turnout protection requested by the turnout fuse WSI.
  • the three-phase power shareholder LS controls see FIG.
  • Securing the turnout against unintentional changeover is carried out safely in terms of signaling as soon as the turnout has reached the required end position or when there is a requirement for this.
  • This can be e.g. B. the lock job after the desired turnout end position or a lock job after occupying the associated turnout section.
  • Turnout position, turnout drive WA, turnout control WST and turnout protection WSI are constantly monitored.
  • the type of monitoring is different and is divided into static and dynamic monitoring. Further information is given in the following.
  • the signal-safe computer functional unit for switch control - it is not the subject of the invention here - is, however, to be briefly outlined. It works on the "fail-safe" principle, i. H. a functional failure or a fault lead directly or indirectly to the safe shutdown of the computer from the process.
  • the computer functional unit contains security functions for failure and fault detection as well as indirect shutdown. After failure or fault detection, depending on the cause, the fault is isolated. I.e. depending on the detected failure, only the part that cannot guarantee proper functioning is switched off safely. Is z. B. the safe function of the point machine is no longer guaranteed, it is safely switched off. The safe state that has been assumed in this way can only be left in a targeted manner after the failure has been remedied.
  • the turnout control WST itself is not safe and could try to reverse the WA drive at any time with an error.
  • the switch is therefore secured in certain cases.
  • a lock or lock order for one or more turnouts is carried out via the turnout protection WSI. He can be triggered by a command from the FE remote control unit or occurs automatically as soon as the turnout has reached the desired end position or the corresponding turnout section has been occupied.
  • the turnout is locked regardless of a lock command if there is a fault in the turnout control or the turnout.
  • the turnout fuse WSI then safely switches off the actuating current for the turnout drive WA using the fuse switch SS (positively driven relay contacts). As a rule, this switch SS is actuated in the de-energized state. In the event of a fault, switching under load is also possible.
  • the switching status of the safety switch SS is continuously monitored fail-safe.
  • the turnout is locked when the turnout section is occupied and remains locked as long as the assignment is available. With the release of the switch section, the lock can be released automatically after the order has been placed.
  • the turnouts can also be controlled locally. This makes work easier for the shunting staff and simplifies the signaling for the maintenance service.
  • the function of the local control corresponds to that of a hand switch, which is set electrically via a control panel or directly from a vehicle.
  • the circulation and the position of the turnouts is indicated either on the control panel or by a turnout signal.
  • a locally operated switch can only be carried out if there is a release from the higher-level remote control device FE.
  • the actuating and backup orders are transmitted from the remote control device FE to the turnout control and turnout protection device WST / WSI and the messages in the opposite direction. Since the transmission should also take place over larger distances, serial data transmission is provided. The data transfer rate depends on the data transfer device. Both types of telegrams (commands and messages) are byte-oriented and contain, in addition to the actual data, addressing information, security information and general control information (e.g. start and stop characters, start and end characters).
  • the turnout control WST receives the incoming commands, determines the useful information and checks for transmission errors.
  • complete message telegrams are formed from the user information of the point control and transmitted at the request of the central facility. The message telegrams are transmitted cyclically to ensure security. Command telegrams are spontaneous by nature, but can also be transmitted cyclically if required and used. At the same time, they serve as an incentive for controlled reporting.
  • the three-phase circuit breaker LS is controlled by the switch control WST via electrically isolated digital output stages DA via the control inputs R1, R2, R3, R4, R5, M (cf. also FIG. 2).
  • the three-phase circuit breaker LS is connected to a three-phase network 3 x 220/380 V / 50 Hz via the safety switch SS and is an actuator for the point machine WA under the supervision of a supervisor ÜW.
  • the three-phase circuit breaker LS switches the three-phase current to the WA point machine without contact (wear-free).
  • 2 shows the basic circuit structure of the three-phase circuit breaker LS and in FIG. 3 the four-wire point machine WA actuated thereby.
  • the three-phase circuit breaker LS consists of five AC shaders WS1 to WS5, which are connected in the feed lines R, S, T to the windings of a point machine.
  • the AC switches WS in the two phases R and S are arranged twice and work as a pole reverser.
  • the switch drive motor runs clockwise or counterclockwise.
  • the Mp conductor is switchless.
  • the three-phase circuit breaker LS is connected to the three-phase network with center conductor via the fuse switch SS to supply the actuating power to the point machine WA.
  • the test voltage switch PS of the fuse switch SS is used to switch to the test voltage 60 V, 50 Hz.
  • Thyristors connected in antiparallel are preferably used as the AC switch WS and the control is carried out by the switch control WST via digital outputs DA.
  • the thyristors are controlled so that the load is switched immediately. The conductive state can only be removed for the duration of one or more whole AC half-waves.
  • the three-phase circuit breaker LS is controlled via the digital output DA of the point control with DC voltage. The thyristor fires when a DC voltage is applied to the input of the respective AC switch.
  • the electric turnout drive WA is controlled accordingly. It usually has a circuit as shown in FIG. 3.
  • the figure is executed in signaling representation of the DB, whereby absolute cross stroke means work contact and half cross stroke means break contact.
  • the required actuating force is provided by a three-phase motor 380/220 V / 50 Hz, with windings WZ, VY, UX.
  • the drive converts the motor rotation into longitudinal adjustment movements, which are transmitted to the switch tongues via an adjusting rod.
  • the switch drive uses two switch tester bars (not shown), each of which engages a switch tongue, to check whether the tongues have followed the actuating movement of the control rod and whether they have reached the prescribed end position.
  • MK3 / 3a and MK4 / 4a denote the motor contacts which cause the motor to be switched off in its end positions
  • STA1, STA2, STA3 and STA4 represent contacts of a hand crank switch with which the current supply in all leads of the three-phase phases RST and Mp- Conductor (terminals 1, 2, 3, 4) is interrupted if the drive should or must be operated by hand with the hand crank.
  • the motor always starts with phase S against Mp and phase R against T.
  • the MK 4 / 4a motor contact and the ÜK 2 / 2a monitoring contact change their position.
  • the center conductor Mp is switched off from phase S via contact MK 4 / 4a and the windings of all three phases are connected via contact ÜK 2 / 2a.
  • the motor then runs at full power in star connection until the new end position is reached.
  • Fig. 5 shows the fuse switch SS with actuating and test power supply in detail.
  • the purpose of the safety switch SS is to safely switch off the control or operating voltage from the three-phase circuit breaker LS. This prevents the turnout from rotating unintentionally.
  • the fuse switch SS is part of the process periphery, is controlled by the turnout fuse WSI and also carries out all the backup tasks for the turnout. As soon as the switch has reached the end position after a changeover process and the circuit breakers have switched off the control current, the safety voltage SS safely disconnects the control voltage from the three-phase circuit breaker LS.
  • the safety switch SS is controlled by a safe output of the turnout fuse WSI.
  • relay SS relay technology
  • the fuse switch SS is also responsible for the test power supply with a secured switch, which is done via relay PS and contacts PS02, 03, 04, 15.
  • the safety switch SS implements the functions of turnout locking, release of the turnout lock, locking of the turnout, unlocking of the turnout locking and securing of the turnout.
  • the fuse switch SS safely disconnects the three-phase circuit breaker LS from the three-phase network. This disconnection usually takes place in the de-energized state, since the three-phase circuit breaker LS has previously assumed the off state.
  • the dimensioning of the fuse switch SS is designed so that, in the event of a fault in the circuit breaker LS, switching can also be carried out under load.
  • the test voltage 60 V, 50 Hz
  • Fig. 6 shows the schematic structure of the monitor ÜW.
  • the supervisor ÜW consists of six separate current monitors Ü1.1, Ü1.2, Ü2.1, Ü2.2, Ü3.1, Ü3.2.
  • the current monitors are constructed identically, with the two current monitors connected in series each working redundantly and without feedback. See FIG. 6a, which shows such a current monitor, the input resistance is again ohmic, due to the current transformer T1 located in the input.
  • the current monitor offers the possibility to control the current flow of the control current and to transmit this to the turnout protection by means of a potential-free transistor output when switching on and interrupting the control circuit.
  • the current transformers are dimensioned on the input side in such a way that they work perfectly with both the control current of approx. 2A and the test current of approx. 0.3A.
  • the three-phase circuit breaker LS controls the three-phase voltage to circulate the switch.
  • the control currents initially flow through the current monitors Ü1, Ü2 and Ü3 and give (see also FIG. 7) a corresponding message to the outputs Ei, E2, E3 (ie E1.1 and E1.2 etc.) (bit pattern 111).
  • bit pattern 110 This change of message (bit pattern 110) in the turnout control WST leads to the acknowledgment of the start-up monitoring (turnout has left its end position).
  • the turnout drive WA If the turnout reaches an end position again, the corresponding end position contacts MK3 / 3a and ÜK1 / 1a on the turnout drive WA are actuated. Current flows again via Ü3 and message 111 is issued. In the turnout control, this change in message leads to the acknowledgment of the circulation monitoring (turnout has reached the end position).
  • the actuating current is switched off (bit pattern 000) and the monitoring current is switched on when the switch tongues have reached their end position when the switch is changed, which is constantly monitored by the tester rods. If the turnout is moved from the monitored end position by external influences, the monitoring current is interrupted. When switching to the test current, the actuating current is also interrupted again in the SS fuse switch (double safety).
  • phase T is switched off via the corresponding AC switches WS1, WS2. Then test current is sent over the phases R and S.
  • Fig. 7 shows in table form the interaction of the circuit breaker LS and monitor ÜW during the actuating processes clockwise / counterclockwise rotation and the bit patterns at the outputs E1, E2, E3 of the monitor ÜW.
  • bit pattern 111 according to a bit pattern 110 is not yet a criterion that the correct end position has really been reached, which is why the actuating current is always switched off and the end position checked first.
  • test voltage switch PS is then actuated with the fuse switch SS and the test voltage 60 V, 50 Hz is continuously switched to the three-phase circuit breaker LS.
  • FIG. 8 and 9 show state diagrams for the setting of the switch and the subsequent end position monitoring after the end position has been reached. For setting a turnout from left to right ("Right" end position) in Fig. 8 and for setting it from right to left ("Left” end position) in Fig. 9.
  • the two AC switches WS1 and WS2 are controlled via inputs R 1 and R 2 from position 13 to monitor the position.
  • the test current flows - cf. 2, 6 and 3 - via phase R, switch WS1, current monitor 01, motor winding WZ, motor contact MK3 / 3a, via cable 4 and current monitor Ü3 back to the center conductor Mp.
  • the outputs E1 and E3 of the current monitor 01 and Ü3 carry L signal and 02-0 signal; Code 101 indicates the legal situation.
  • the end position check for the left position is carried out similarly to FIG. 9.
  • the AC switches WS1 and WS2 are in turn controlled via R1 and R2 (from item 13). However, the test current flows back through phase S, AC switch WS2, current monitor Ü2, motor winding VY, motor contact MK4 / 4a via cable wire 4 and current monitor Ü3 to the center point Mp.
  • the test currents are briefly controlled by the AC switches WS1 to WS5 in a certain cycle as part of an on-line test, all three messages E1 to E3 of the monitoring unit ÜW briefly output a certain bit pattern.
  • FIGS. 10 and 11 from which the algorithm can be derived once for the right position FIG. 10 and once for the left position. It can be seen that the control inputs R1, R2, R3, R4, R5 of the AC switch WS switch the test current cyclically.
  • the bit patterns for the end position monitoring go cf. Fig. 1 to the turnout protection WSI, are compared there and influence the turnout control WST.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Selective Calling Equipment (AREA)
  • Burglar Alarm Systems (AREA)
  • Control Of Electric Motors In General (AREA)
  • Lock And Its Accessories (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Control Of Ac Motors In General (AREA)

Description

  • Die Erfindung bezieht sich auf eine Schaltungsanordnung zur Steuerung und Sicherung einer Weiche, wie sie im Oberbegriff des Anspruches 1 näher definiert ist.
  • Zum Einstellen der Fahrwege von Schienenfahrzeugen des Nahund Fernverkehrs werden Weichen verwendet, die heute im allgemeinen mittels elektrischer oder auch hydraulischer Weichenantriebe umgestellt werden. Eine Handverstellung ist im wesentlichen nur noch als Reserve für Notbetrieb vorgesehen. Die Weichenantriebe werden normalerweise von Stellpulten aus von einer übergeordneten Stelle z. B. einer Fernstelleinrichtung (Stellwerk) bzw. einer Ortsstelleinrichtung in der Nähe mittels Steuerbefehle gesteuert. Die heute bekannten modernen Stellwerke arbeiten allgemein mit Weichensteuerungseinrichtungen, die mit Signal-Relais aufgebaut sind, wobei für jeden Weichenantrieb Vier- draht-Kabel abgehen, über die einerseits der Antrieb gesteuert und auch die Weichenstellungen kontrolliert bzw. rückgemeldet werden. Nachteilig ist dabei u. a. die begrenzte Stellentfemung zwischen Stellwerk und Weiche (maximal 6,5 km), der hohe Kontaktverschleiß, das Volumen und der Leistungsverbrauch der Relais. Hinzu kommt, und das ist besonders wichtig, daß keine direkte überprüfbare Meldung der eingenommenen Weichenlage erfolgt.
  • Bei den bekannten vorhandenen Vierdraht-Weichenantrieben wird nur indirekt Rechts- bzw. Linkslage rückgemeldet, wobei die Markierung durch sogenannte Stützreiais erfolgt. Damit kann versehentlich bei Stromausfall und anschließender Wiederinbetriebsetzung, oder nach Umstellung des Weichenantriebes durch Handkurbel die tatsächliche Weichenlage mit der Stelltischausleuchtung nicht mehr übereinstimmen. Deshalb muß bei diesen herkömmlichen Steuerungen der Mensch die Sicherheitsverantwortung tragen.
  • Es ist bereits eine vollelektronische Weichensteuerung vorgeschlagen worden (DE-P 3219366), bei der die vorgenannten Nachteile dadurch vermieden werden, daß den Weichenantrieben die Weichensteuerungen lokal zugeordnet werden und diese die Steuerbefehle vom Stellwerk aus über Datenübertragungskanäle sicher empfangen. Von den Weichensteuerungen aus zu den Weichenantrieben erfolgt eine strikte Trennung einerseits der Antriebssteuerung und andererseits der Überwachungsfunktion. Dazu ist jeweils neben dem eigentlichen vieradrigen Stellkabel ein zusätzliches sechsadriges Endlagenprüfkabel erforderlich. Vor- und Nachteile liegen auf der Hand. Die Vorteile liegen in der erhöhten möglichen Stellentfemung bis zu 100 km durch sichere Datenübertragung und den damit verbundenen Rationalisierungseffekt, ferner dem geringeren Energieverbrauch (Vermeidung von Relais). Ferner sind von Vorteil die kontaktlose Steuerung der Leistungselektronik, die gezielte Fehlerdiagnose durch Einsatz von Mikroelektronik sowie die jetzt direkte überprüfbare Weichenlageendmeldung. Der Nachteil liegt im zusätzlichen Endlagenprüfkabel und der nicht ohne weiteres vollziehbaren Um- oder Nachrüstung vorhandener Anlagen.
  • Aufgabe der Erfindung ist es, die aufgezeigten Mängel auszuschalten und die herkömmlichen Vierdraht-Weichenantriebsschaltungen durch Anpassung für das mikroprozessorgesteuerte Steuerungs-und Sicherungskonzept der vorerwähnten vollelektronischen Weichensteuerung brauchbar zu machen.
  • Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst. Die Unteransprüche stellen zweckmäßige Ausgestaltungen der Erfindung dar.
  • Anhand von Ausführungsbeispielen wird die Erfindung im nachstehenden näher erläutert.
  • Es zeigen :
    • Fig. 1 den funktionellen Aufbau einer elektronischen Weichensteuerung und -sicherung in Blockbilddarstellung
    • Fig. 2 die Prinzipschaltung des Drehstrom-Leistungsschalters LS
    • Fig. 3 die Schaltung eines Vier-Draht-Weichenantriebes
    • Fig. 4 ein Zustandsdiagramm der Motor- und Überwachungskontakte
    • Fig. 5 die Prinzipschaltung des Sicherungsschalters SS
    • Fig. 6 die Prinzipschaltung des Überwachers ÜW
    • Fig. 6a Schaltung eines Stromüberwachers
    • Fig. 7 eine tabellarische Darstellung der Bitmuster beim Umlauf
    • Fig. 8 ein Zustandsdiagramm für das Stellen der Weiche (Lauf von links nach rechts, Endstellung rechts)
    • Fig. 9 ein Zustandsdiagramm für das Stellen der Weiche (Lauf von rechts nach links, Endstellung links)
    • Fig. 10 ein Zustandsdiagramm der dynamischen Endlagen- und Motorüberwachung des Weichenantriebes und der Weichensteuerung (Endstellung rechts)
    • Fig. 11 ein Zustandsdiagramm der dynamischen Endlagen- und Motorüberwachung des Weichenantriebes und der Weichensteuerung (Endstellung links)
  • Die Fig. 1 zeigt in einer Übersicht zunächst den funktionellen Aufbau der elektronischen Weichensteuerung. Danach wird von einer Femstelleinrichtung FE, dem eigentlichen Stellwerk oder auch einer Ortsstelleinrichtung OE die Weichenumstellung veranlaßt. Die Fernstelleinrichtung FE kann dabei über eine 50 bis 100 km entfernte Datenfemübertragungsleitung auf eine rechner- oder mikroprozessorgesteuerte Weichensteuerung WST wirken, die in einem Schalthaus in der Nähe der Weiche oder Weichen untergebracht ist, in der sich z. B. auch die Ortsstelleinrichtung OE befindet. Im Schalthaus befinden sich weiterhin eine elektronische Weichensicherung WSI, sowie zur Prozeßperipherie gehörende Elemente wie ein Drehstrom-Leistungsschalter LS, ein Überwacher ÜW und ein Sicherungsschalter SS. Als koordinierender Rechner für die Weichensteuerung WST bzw. Weichensicherung WSI dient ein sogenannter SIRE = sicherer Rechner. Der eigentliche Weichenantrieb WA, den es zu steuern gilt, ist ein herkömmlicher Vier-Draht-Weichenantrieb. Er kann bis zu 6,5 km vom Schalthaus entfernt liegen und ist mit diesem über ein herkömmliches Vier-Draht-Kabel SK verbunden. Eine zum Weichenabschnitt gehörende Gleisfreimeldeeinrichtung GF ergänzt die Übersicht. Die Gleisfreimeldeeinrichtung GF beeinflußt die Weichensicherung WSI. Wirkungspfeile zeigen die gegenseitigen Beeinflussungen.
  • Die Erfindung bezieht sich auf die Prozeßperipherie im Schalthaus mit den zusammenwirkenden Elementen Drehstrom-Leistungsschalter LS, Überwacher ÜW und Sicherungsschalter SS in Verbindung mit dem Weichenantrieb WA sowie der Weichensteuerung WST und Weichensicherung WSI.
  • Der Weichenantrieb WA wird über den Drehstrom-Leistungsschalter LS unter Zwischenschaltung des Überwachers ÜW von der Weichensteuerung WST gesteuert, die in Wirkverbindung mit der Weichensicherung WSI und dem Sicherungsschalter SS steht, wobei letzterer den Drehstrom-Leistungsschalter LS beeinflußt.
  • Der Weichenantrieb WA steht mit dem Überwacher ÜW mittels der üblichen Vier-Draht-Leitung SK in Verbindung, wobei über diese sowohl der Stellstrom läuft als auch die Stellungs- und Rückmeldungen erfolgen. Auch hier deuten Wirkungspfeile verschiedener Richtung dies an.
  • Das Arbeitsprinzip der Weichensteuerung ist dreistufig und wie folgt : 1. Stellen der Weiche, 2. Sichern der Weiche, 3. Überwachen der Weiche.
  • 1. Stellen der Weiche
  • Liegt bei der Weichensteuerung WST ein Steuerkommando entweder von der Ortsstelleinrichtung OE oder von der Femsteiieinrichtung FE vor, so führt dies zum Umstellen der Weiche in die gewünschte Lage. Dies ist jedoch nur möglich, wenn die Weiche weder verschlossen noch gesperrt ist, noch anderweitig nicht zur Umstellung zur Verfügung steht (z. B. durch Defekt). Verläuft die Prüfung positiv, führt der Stellauftrag zur Stellstromausgabe an den Weichenantrieb WA. Hierbei wird das Verlassen der Endlage, der Weichenumlauf und das Erreichen der gewünschten Endlage überwacht. Hat die Weiche die Endlage erreicht, wird der Stellstrom signaltechnisch sicher abgeschaltet und die Sicherung der Weiche durch die Weichensicherung WSI angefordert. Der Drehstrom-Leistungsschafter LS steuert (vgl. Fig. 2) entsprechend seinen Eingängen R1 bis R5 den Weichenantrieb WA in die gewünschte Laufrichtung. Die jeweilige Stellung der Steuerkontakte im Weichenantrieb WA geben an den Ausgängen Ei, E2 und E3 des Überwachers ÜW (vgl. Fig. 6) ein Bitmuster entsprechend Fig. 7 aus.
  • 2. Sichern der Weiche
  • Die Sicherung der Weiche gegen unbeabsichtigtes Umstellen wird signaltechnisch sicher ausgeführt, sobald die Weiche die geforderte Endlage erreicht hat, bzw., wenn hierfür eine Anforderung vorliegt. Dies kann sein z. B. der Verschlußauftrag nach Vorliegen der gewünschten Weichenendlage oder ein Verschlußauftrag nach Belegen des zugehörigen Weichenabschnittes.
  • Tritt ein Fehler in der Weichensteuerung und Weichensicherung auf und ist dieser eindeutig auf eine bestimmte Weiche lokalisierbar, so wird diese abgeschaltet. Ist hierbei noch die Lage signaltechnisch sicher überwacht, so gilt sie in dieser Lage als gesperrt. Dieser Sperrzustand kann nur durch einen gezielten manuellen Eingriff aufgehoben werden.
  • 3. Überwachen der Weiche
  • Weichenlage, Weichenantrieb WA, Weichensteuerung WST und Weichensicherung WSI werden ständig überwacht. Die Art der Überwachung ist unterschiedlich und unterteilt sich in statische und dynamische Überwachung. Dazu wird im nachstehenden noch weiteres ausgesagt.
  • Die signaltechnisch sichere Rechner-Funktionseinheit zur Weichensteuerung - sie ist hier nicht Gegenstand der Erfindung - soll jedoch kurz umrissen werden. Sie arbeitet nach dem « fail-safe »-Prinzip, d. h. ein funktionswirksamer Ausfall oder eine Störung führen unmittelbar oder mittelbar zur sicheren Abschaltung des Rechners vom Prozeß. Die Rechner-Funktionseinheit enthält dazu Sicherungsfunktionen zur Ausfall- und Störungserkennung sowie mittelbaren Abschaltung. Nach Ausfall- oder Störungserkennung wird, in Abhängigkeit von der Ursache, der Fehler isoliert. D. h. in Abhängigkeit des erkannten Ausfalls wird nur der Teil gezielt sicher abgeschaltet, der keine einwandfreie Funktion gewährleisten kann. Ist z. B. die sichere Funktion des Weichenantriebes nicht mehr gewährleistet, so wird dieser sicher abgeschaltet. Der so einmal eingenommene sichere Zustand kann erst nach Behebung des Ausfalls gezielt verlassen werden.
  • Die Weichensteuerung WST selbst ist nicht sicher und könnte jederzeit durch einen Fehler versuchen, den Antrieb WA umzusteuem. Die Weiche wird deshalb in bestimmten Fällen gesichert. Ein Verschluß- oder Sperrauftrag für eine oder mehrere Weichen erfolgt über die Weichensicherung WSI. Er kann per Kommando von der Fernstelleinrichtung FE ausgelöst werden oder tritt selbsttätig ein, sobald die Weiche die gewünschte Endlage erreicht hat oder der dazu gehörende Weichenabschnitt belegt ist. Eine Sperrung der Weiche tritt unabhängig von einem Sperrkommando ein, wenn eine Störung in der Weichensteuerung oder der Weiche vorliegt. In allen Fällen wird dann von der Weichensicherung WSI der Stellstrom für den Weichenantrieb WA mittels des Sicherungsschalters SS (zwangsgeführte Relaiskontakte) sicher abgeschaltet. Im Regelfall wird dieser Schalter SS im stromlosen Zustand betätigt. Im Störungsfall ist auch ein Schalten unter Last möglich. Der Schaltzustand des Sicherungsschalters SS wird kontinuierlich fail-safe überwacht.
  • Die Weiche wird verschlossen, wenn der Weichenabschnitt belegt ist und bleibt solange verschlossen, wie die Belegung vorliegt. Mit dem Freiwerden des Weichenabschnittes kann nach vorliegendem Auftrag der Verschluß automatisch aufgelöst werden.
  • Die Weichen können auch ortsbedient gesteuert werden. Dadurch ergibt sich eine Arbeitserleichterung für das Rangierpersonal, sowie eine signaltechnische Vereinfachung für den Wartungsdienst. Die Ortsbedienung entspricht in ihrer Funktion einer Handweiche, die elektrisch über eine Bedientafel oder von einem Fahrzeug direkt gestellt wird. Das Umlaufen und die Lage der Weichen wird entweder auf der Bedientafel oder durch ein Weichensignal angezeigt. Ein ortsbedientes Stellen einer Weiche ist jedoch nur durchführbar, wenn hierfür eine Freigabe von der übergeordneten Femstelleinrichtung FE vorliegt.
  • Die Stell- und Sicherungsaufträge werden von der Fernstelleinrichtung FE zur Weichensteuerungs-und Weichensicherungseinrichtung WST/WSI und die Meldungen in umgekehrter Richtung übertragen. Da die Übertragung auch über größere Entfernungen erfolgen soll, ist eine serielle Datenübertragung vorgesehen. Die Datenübertragungsrate hängt von der Datenübertragungseinrichtung ab. Beide Telegrammtypen (Kommandos und Meldungen) sind byte-orientiert und enthalten neben den eigentlichen Daten Informationen zur Adressierung, Sicherungsinformationen und allgemeine Steuerinformationen (z. B. Start- und Stopzeichen, Anfang- und Endezeichen). Die Weichensteuerung WST empfängt die einlaufenden Kommandos, ermittelt die Nutzinformation und nimmt die Prüfung auf Übertragungsfehler vor. Gleichzeitig! werden aus den Nutzinformationen der Weichensteuerung komplette Meldetelegramme gebildet und auf Anforderung der zentralen Einrichtung übertragen. Zur Gewährung der Sicherheit werden die Meldetelegramme zyklisch übertragen. Kommandotelegramme sind von Natur aus spontan, können aber im Bedarfs- und Anwendungsfall auch zyklisch übertragen werden. Dabei dienen sie gleichzeitig als Anreiz zur kontrollierten Meldungsausgabe.
  • Von der Weichensteuerung WST wird über potentialgetrennte Digital-Ausgabestufen DA der Drehstrom-Leistungsschalter LS über die Steuereingänge R1, R2, R3, R4, R5, M angesteuert (vgl. auch Fig. 2). Der Drehstrom-Leistungsschalter LS steht mit einem Drehstromnetz 3 x 220/380 V/50 Hz über den Sicherungsschalter SS in Verbindung und ist Stellglied für den Weichenantrieb WA unter Durchlauf eines Überwachers ÜW. Der Drehstrom-Leistungsschalter LS schaltet kontaktlos (verschleißfrei) den Drehstrom zum Weichenantrieb WA. In Fig. 2 ist der prinzipielle Schaltungsaufbau des Drehstrom-Leistungsschalters LS und in Fig. 3 der damit angesteuerte Vier-Draht-Weichenantrieb WA wiedergegeben.
  • Nach Fig. 2 besteht der Drehstrom-Leistungsschalter LS aus fünf Wechsetstromschattem WS1 bis WS5, die in die Zuleitungen R, S, T zu den Wicklungen eines Weichenantriebsmotors geschaltet sind. Die Wechselstromschalter WS in den beiden Phasen R und S sind doppelt angeordnet und arbeiten als Polwender. Durch Vertauschen der beiden Phasen R und S mittels der Polwenderschaltung (WS1 und WS2 bzw. WS4 und WS5) erfolgt der Rechts- bzw. Linkslauf des Weichenantriebsmotors. Der Mp-Leiter ist schalterlos. Zur Stellstromversorgung des Weichenantriebes WA ist der Drehstrom-Leistungsschalter LS über den Sicherungsschalter SS an das Drehstromnetz mit Mittelpunktleiter angeschlossen. Über den Prüfspannungsschalter PS des Sicherungsschalters SS wird auf Prüfspannung 60 V, 50 Hz umgeschaltet. Als Wechselstromschalter WS dienen bevorzugt antiparallel geschaltete Thyristoren und die Ansteuerung erfolgt von der Weichensteuerung WST über Digitalausgaben DA. Zwischen Steuer- und Lastkreis herrscht strikte Potentialtrennung. Die Thyristoren werden derart gesteuert, daß die Last sofort geschaltet wird. Der leitende Zustand kann nur für die Dauer einer oder mehrerer ganzer Wechselspannungshalbwellen aufgehoben werden. Die Ansteuerung des Drehstrom-Leistungsschalters LS erfolgt über die Digitalausgabe DA der Weichensteuerung mit Gleichspannung. Beim Anlegen einer Gleichspannung am Eingang des jeweiligen Wechselstromschalters zündet der Thyristor.
  • Soll die Weiche umgesteuert werden, wird somit der elektrische Weichenantrieb WA entsprechend angesteuert. Er weist üblicherweise eine Schaltung auf, wie sie in Fig. 3 dargestellt ist. Die Figur ist in signaltechnischer Darstellung der DB ausgeführt, wobei absoluter Querstrich Arbeitskontakt und halber Querstrich Ruhekontakt bedeutet. Die erforderliche Stellkraft liefert ein Drehstrommotor 380/220 V/50 Hz, mit Wicklungen WZ, VY, UX. Der Antrieb setzt die Motordrehung in Längsverstellbewegungen um, die über eine Stellstange auf die Zungen der Weichen übertragen wird. Über zwei Zungenprüferstangen (nicht dargestellt), die jeweils an einer Weichenzunge angreifen, wird im Weichenantrieb geprüft, ob die Zungen der Stellbewegung der Stellstange gefolgt sind und die vorgeschriebene Endlage erreicht haben. Dabei werden Endlagen- bzw. Überwachungskontakte ÜK1/1a und ÜK2/2a betätigt. Mit MK3/3a und MK4/4a sind die eine Abschaltung des Motors in seinen Endlagen beweirkenden Motorkontakte bezeichnet, STA1, STA2, STA3 und STA4 stellen Kontakte eines Handkurbelschalters dar, mit dem die Stromzuführung in allen Zuleitungen der Drehstrom-Phasen RST und dem Mp-Leiter (Klemmen 1, 2, 3, 4) unterbrochen wird, wenn der Antrieb von Hand mit der Handkurbel bedient werden soll oder muß.
  • Zur Begrenzung des Anlaufstromes - und um einen weicheren Anlauf zu gewährleisten - läuft der Motor zunächst stets mit der Phase S gegen Mp und Phase R gegen T an. Nach Anlaufen des Motors wechseln der Motorkontakt MK 4/4a und der Überwachungskontakt ÜK 2/2a ihre Lage. Über Kontakt MK 4/4a wird der Mittelpunktleiter Mp von der Phase S abgeschaltet und über Kontakt ÜK 2/2a werden die Wicklungen aller drei Phasen verbunden. Der Motor läuft dann in voller Leistung in Sternschaltung bis zum Erreichen der neuen Endlage.
  • Das genauer Zusammenwirken der Motorkontakte MK und Weichenüberwachungskontakte ÜK in Abhängigkeit von der Zungenbewegung (Stellweg s) ist der Fig. 4 entnehmbar.
  • Ist die Umstellung der Weiche erfolgreich verlaufen, d. h. die Weichenzungen haben innerhalb einer Überwachungszeit die gewünschte Endlage erreicht und gemeldet, werden von der Weichensteuerung WST die Drehstromphasen über die Wechselstromschalter WS1 bis WS5 abgeschaltet. Der Motor steht - dies wird überwacht - und anschließend wird eine Überprüfung der Endlage der Weiche durchgeführt. Hierzu werden die beiden Wechselstromschalter WS1 und WS2 kurzzeitig eingeschaltet. Die Stromüberwacher Ü1 bis Ü3 des Überwachers ÜW (vgl. Fig. 6) geben entsprechend der vorliegenden Endlage ein bestimmtes Bitmuster aus (Fig. 8 und 9). Stimmen Sollage und Istlage überein, beginnt der Zyklus der dynamischen Überwachung des Weichenantriebes und der Weichensteuerung (Fig. 10 und 11).
  • Fig. 5 zeigt den Sicherungsschalter SS mit Stell- und Prüfstromversorgung im einzelnen. Auch hier wieder in DB-Darstellung. Die Aufgabe des Sicherungsschalters SS ist die sichere Abschaltung der Stell-oder Betriebsspannung vom Drehstrom-Leistungsschalter LS. Damit wird das unbeabsichtigte Umlaufen der Weiche verhindert. Der Sicherungsschalter SS gehört zur Prozeßperipherie, wird von der Weichensicherung WSI gesteuert und führt auch alle Sicherungsaufgaben für die Weiche aus. Sobald die Weiche nach einem Umstellvorgang die Endlage erreicht hat, und die Leistungsschalter haben den Stellstrom abgeschaltet, wird durch den Sicherungsschalter SS die Stellspannung signaltechnisch sicher vom Drehstrom-Leistungsschalter LS abgetrennt. Über eine sichere Ausgabe der Weichensicherung WSI erfolgt die Ansteuerung des signaltechnisch sicher aufgebauten Sicherungsschalters SS. Er ist in Relaistechnik (Relais SS) mit zwangsgeführten Kontakten SS02, 03, 04 bis SS 05 und 15 aufgebaut. Die Ansteuerung erfolgt über Digitalausgaben DA; die Rückmeldung über Digitaleingaben DE. Der Sicherungsschalter SS ist auch für die Prüfstromversorgung bei gesicherter Weiche zuständig, was über Relais PS und die Kontakte PS02, 03, 04, 15 erfolgt.
  • Der Sicherungsschalter SS realisiert die von der Weichensicherung WSI ausgegebenen Funktionen Weichenverschluß, Auflösen des Weichenverschlusses, Sperren der Weiche, Auflösen der Weichensperrung und Sichern der Weiche. Sobald eine Verschluß- oder Sperrbehandlung ausgeführt werden soll, nimmt der Sicherungsschalter SS die signaltechnisch sichere Trennung des Drehstrom-Leistungsschalters LS vom Drehstromnetz vor. Diese Trennung erfolgt in der Regel im stromlosen Zustand, da der Drehstrom-Leistungsschalter LS zeitlich vorher den Auszustand eingenommen hat. Die Dimensionierung des Sicherungsschalters SS ist so ausgelegt, daß im Fehlerfall des Leistungsschalters LS ein Schalten auch unter Last durchführbar ist. Gleichzeitig wird zur Lageüberwachung die Prüfspannung (60 V, 50 Hz) an den Leistungsschalter LS durchgeschaltet.
  • Fig. 6 zeigt den schematischen Aufbau des Überwachers ÜW. Der Überwacher ÜW besteht aus sechs getrennt aufgebauten Stromüberwachem Ü1.1, Ü1.2, Ü2.1, Ü2.2, Ü3.1, Ü3.2. Jeweils zwei hintereinandergeschaltete Stromüberwacher z. B. Ü 1.1 und Ü 1.2 - sie bilden einen Stromwächter, der mit Ü1 bezeichnet ist - sind in den Phasenleiter R, zwei weitere Stromüberwacher Ü2.1 und Ü2.2 in den Phasenleiter S und die Stromüberwacher Ü3.1 und Ü3.2 in den Mittelpunktleiter MP geschaltet.
  • Die Stromüberwacher sind identisch aufgebaut, wobei die jeweils zwei hintereinandergeschalteten Stromüberwacher redundant und rückwirkungsfrei arbeiten. Vgl. Fig. 6a, die einen solchen Stromüberwacher zeigt, ist der Eingangswiderstand wiederohmig, durch den im Eingang liegenden Stromwandler T1. Der Stromüberwacher bietet die Möglichkeit, den Stromfluß des Stellstromes zu kontrollieren und durch einen potentialfreien Transistorausgang beim Einschalten und Unterbrechen des Stellstromkreises dies der Weichensicherung zu übermitteln. Die Stromwandler sind eingangsseitig so dimensioniert, daß sie sowohl mit dem Stellstrom von ca. 2A als auch mit dem Prüfstrom von ca. 0,3A einwandfrei arbeiten.
  • Sobald ein Stell- bzw. Prüfstrom eingangsseitig durch den Stromwandler T1 fließt, wird die induktiv übertragene Spannung gleichgerichtet, geglättet und der Basis eines Darlington-Schalttransistors V2 zugeführt. Die Kollektor-Emitterstrecke des Schalttransistors wird damit niederohmig und ein Steuerstrom bei 24V = Spannungsversorgung fließt über einen extern an den Emitter geschalteten Arbeitswiderstandes R1 gegen Nullpotential. Das am Emitter E auftretende Spannungspotential wird der Weichensicherung als Steuerspannung über die Klemmen E1.1 bis E3.2 zugeführt. E1.1 geht an Rechner Kanal I und E1.2 an Rechner Kanal II usw. (wie angedeutet). UB1 ist die Versorgungsspannung 24V vom Rechnerkanal I und UB2 ist die Versorgungsspannung vom Rechnerkanal 11. Die primären Meldungen der Stromwächter stehen als Bitmuster der Weichensteuerung und Weichensicherung zur Weiterverarbeitung zur Verfügung.
  • Zum Umlauf der Weiche steuert der Drehstrom-Leistungsschalter LS dreiphasig die Drehspannung durch. Während des Anlaufes fließen zunächst durch die Stromwächter Ü1, Ü2 und Ü3 die Stellströme und geben (vgl. auch Fig. 7) eine entsprechende Meldung an die Ausgänge Ei, E2, E3 (d. h. E1.1 und E1.2 usw.) (Bitmuster 111) ab. Am Ende der Anlaufphase, nach Schalten des entsprechenden Motorkontaktes MK4/4a und Überwachungskontakte ÜK2/2a im Weichenantrieb fließt durch Ü3 (Mp) kein Strom mehr. Diese Meldungsänderung (Bitmuster 110) führt in der Weichensteuerung WST zur Quittierung der Anlaufüberwachung (Weiche hat ihre Endlage verlassen). Erreicht die Weiche erneut eine Endlage, so werden die entsprechenden Endlagekontakte MK3/3a und ÜK1/1a am Weichenantrieb WA bebetätigt. Über Ü3 fließt erneut Strom und es wird die Meldung 111 abgegeben. Diese Meldungsänderung führt in der Weichensteuerung zur Quittierung der Umlaufüberwachung (Weiche hat Endlage erreicht). Der Stellstrom wird abgeschaltet (Bitmuster 000) und der Überwachungsstrom eingeschaltet, wenn beim Umstellen der Weiche die Weichenzungen ihre Endlage erreicht haben, was von den Prüferstangen ständig überwacht wird. Wird die Weiche durch äußere Einflüsse aus der überwachten Endlage bewegt, wird der Überwachungsstrom unterbrochen. Mit der Umschaltung auf Prüfstrom wird der Stellstrom auch im Sicherungsschalter SS nochmals unterbrochen (doppelte Sicherheit).
  • Zur Festlegung der Weichenendlage werden über die entsprechenden Wechselstromschalter WS1, WS2 die Phasen R und S durchgeschaltet und die Phase T abgeschaltet. Dann wird Prüfstrom über die Phasen R und S geschickt.
  • Fig. 7 zeigt tabellarisch das Zusammenwirken des Leistungsschalters LS und Überwachers ÜW während der Stellvorgänge Rechtslauf/Linkslauf und die Bitmuster an den Ausgängen E1, E2, E3 des Überwachers ÜW.
  • Das Erscheinen eines Bitmusters 111 nach einem Bitmuster 110 ist noch kein Kriterium, daß auch wirklich die richtige Endlage erreicht wurde, deshalb erfolgt nachfolgend stets erst einmal Abschaltung des Stellstromes und Prüfung der Endlage.
  • Befindet sich die Weiche in einer Endlage, wird sie elektrisch gesichert (Stellstrom abgeschaltet). Es wird dann nach der Erfindung mit dem Sicherungsschalter SS der Prüfspannungsschalter PS betätigt und die Prüfspannung 60 V, 50 Hz dauernd auf den Drehstrom-Leistungsschalter LS geschaltet.
  • Der Prüfstrom liegt ständig an und ist so dimensioniert, daß der Weichenantrieb darauf nicht reagieren kann, d. h. nicht belastet wird und anläuft (z. B. Einphasenspannung 60V, 50 Hz, le = 300 mA durch die Motorwicklungen).
  • Mittels der Prüfspannung und dem Durchschalten von zwei Wechselstromschaltem (entsprechend der vorangegangenen Umlaufrichtung der Weiche) in den Phasen R und S erfolgt die kontinuierliche signaltechnisch sichere Endlagenüberwachung der Weiche.
  • Die Fig. 8 und 9 zeigen Zustandsdiagramme für das Stellen der Weiche und die anschließende Endlagenüberwachung nach erreichter Endstellung. Für das Stellen einer Weiche von links nach rechts (Endstellung « Rechts ») in Fig. 8 und für das Stellen von rechts nach links (Endstellung « Links ») in Fig. 9.
  • Nach Fig. 8 sind ab Pos. 13 zur Überwachung der Lage die beiden Wechselstromschalter WS1 und WS2 über die Eingänge R1 und R2 angesteuert. Der Prüfstrom fließt - vgl. auch in Reihenfolge Fig. 2, 6 und 3 - über die Phase R, Schalter WS1, Stromwächter 01, Motorwicklung WZ, Motorkontakt MK3/3a, über Kabelader 4 und Stromwächter Ü3 zum Mittelpunktleiter Mp zurück. Die Ausgänge E1 und E3 der Stromwächter 01 und Ü3 führen L-Signal und 02-0-Signal ; mit dem Code 101 wird Rechtslage angezeigt. Die Endlagenprüfung für Linkslage erfolgt nach Fig. 9 ähnlich. Dabei sind wiederum die Wechselstromschalter WS1 und WS2 über R1 und R2 angesteuert (ab Pos. 13). Der Prüfstrom fließt allerdings über Phase S, Wechselstromschalter WS2, Stromwächter Ü2, Motorwicklung VY, Motorkontakt MK4/4a über Kabelader 4 und Stromwächter Ü3 zum Mittelpunkt Mp zurück.
  • Die Ausgänge E1 bis E3 des Überwachers ÜW ergeben somit folgende Bitmuster:
    Figure imgb0001
    Figure imgb0002
  • Zur Überprüfung des Überwachers ÜW und der Peripherie werden im Rahmen eines On-line-Tests die Prüfströme kurzzeitig durch die Wechselstromschalter WS1 bis WS5 in einem bestimmten Zyklus gesteuert, wobei alle drei Meldungen E1 bis E3 des Überwachers ÜW kurzzeitig ein bestimmtes Bitmuster ausgeben. Hierzu wird auf die Fig. 10 und 11 verwiesen, aus denen der Algorithmus einmal für Rechtslage Fig. 10 und einmal für Linkslage ableitbar ist. Ersichtlich ist, daß die Steuereingänge R1, R2, R3, R4, R5 der Wechselstromschalter WS den Prüfstrom zyklisch schalten. Die Bitmuster für die Endlagenüberwachung gehen vgl. Fig. 1 an die Weichensicherung WSI, werden dort verglichen und beeinflussen die Weichensteuerung WST. Patentansprüche

Claims (10)

1. Schaltungsanordnung zur Steuerung und Sicherung einer durch eine Femstelleinrichtung (FE) (Stellwerk) oder Ortsstelleinrichtung (OE) bedienbaren Weiche, bei der die Kommandos durch Datenübertragung signaltechnisch sicher einer einem Drehstrom-Weichenantrieb (WA) lokal zugeordneten elektronischen Weichensteuerungs- (WST) und Weichensicherungsschaltung (WSI) zugeführt werden, mit der über einen kontaktlosen Drehstrom-Leistungsschalter (LS), Stromüberwachem (ÜW) sowie ein vieradriges Stellkabel (SK) der Weichenantrieb (WA) an ein Drehstromnetz mit Mittelpunktleiter (Mp) gelegt wird, wobei über Motor- (MK) und Endlagen-bzw. Überwachungskontakte (ÜK) eine Abschaltung des Antriebes (WA), sowie eine Endlagemeldung mit Überwachung erfolgt, gekennzeichnet durch folgende Merkmale :
a) der Überwacher (ÜW) erfaßt die Ströme in Zwei Phasenleitungen (R, S) und dem Mittelpunktleiter (Mp), koppelt bei Stromfluß jeweils ein High-Signal aus und überträgt Bitmuster der Ströme an die Weichensteuerungs- (WST) und -sicherungsschaltung (WSI) zur Auswertung,
b) bei Übereinstimmung des von der Stellung der Weiche, d. h. des von der entsprechenden Lage der Motor- (MK) und Endlagen-bzw. Überwachungskontakte (ÜK) im Weichenantrieb (WA) abhängigen Bitmusters mit dem vorgegebenen Sollmuster in der Weichensteuerungsschaltung (WST) wird von dieser der Weichenantrieb (WA) durch Abschaltung des Drehstrom-Leistungsschalters (LS) stillgesetzt,
c) ein vorgeschalteter Sicherungsschalter (SS) trennt anschließend zusätzlich die Leiter des Weichenantriebs (WA) vom Drehstromnetz (R, S, T, Mp) und schaltet die Leiter um auf eine einphasige Wechselprüfspannung, wobei der Schaltzustand des Sicherungsschalters (SS) durch die Weichensicherungsschaltung (WSI) überwacht wird,
d) über die Prüfspannung und die einzelnen Wechselstromschalter (WS) des Drehstrom-Leistungsschalters (LS), die in einem automatischen Prüfmodus angesteuert werden, werden laufend überwachungsprüfströme durch den Weichenantrieb geschickt, wobei mittels der dabei vom Überwacher (ÜW) abgegebenen Bitmuster die exakte Lage der Weiche signaltechnisch sicher erfaßbar ist.
2. Schaltungsanordnung zur Steuerung und Sicherung nach Anspruch 1, dadurch gekennzeichnet, daß mittels der Prüfspannung und dem Durchschalten von zwei Wechselstromschaltem (WS1 und WS2) des Drehstrom-Leistungsschalters (LS) in den Phasen R und S die signaltechnisch sichere Endlagenerfassung erfolgt.
3. Schaltungsanordnung zur Steuerung und Sicherung nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß zur Überprüfung des Überwachers (ÜW) mittels On-line-Tests die Prüfströme regelmäßig kurzzeitig unterbrochen werden, wobei alle drei Meldungen (Bitmuster E1, E2, E3) der Stromüberwacher (Ü1, Ü2, Ü3) kurzzeitig Null sein müssen.
4. Schaltungsanordnung zur Steuerung und Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Drehstrom-Leistungsschalter (LS) aus drei in den Phasen (R, S, T) liegenden Wechselstromschaltern (WS1, WS2, WS3) sowie zwei die Phasenfolge (R und S) vertauschenden Wechselstromschaltem (WS5, WS4) bei schalterlos durchgeführten Mp-Leiter besteht (Fig. 2).
5. Schaltungsanordnung zur Steuerung und Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Überwacher (ÜW) drei redundant aufgebaute Stromüberwacher (Ü1, Ü2, Ü3) aufweist, die in die Phasen (R und S) und den Mittelpunktleiter (Mp) geschaltet sind, aus denen bei Stromfluß ein High-Signal auskoppelbar ist.
6. Schaltungsanordnung zur Steuerung und Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Weichensteuerungs- (WST) und Weichensicherungsschaltung (WSI) in einer gemeinsamen sicheren Rechnerfunktionseinheit (SIRE) integriert sind.
7. Schaltungsanordnung zur Steuerung und Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß Weichenansteuerungs- (WST) und Weichensicherungsschaltung (WSI) in getrennten Einheiten realisiert sind.
8. Schaltungsanordnung zur Steuerung und Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehrere Weichenansteuerungs- (WST) und Weichensicherungsschaltungen (WSI) in einer zentralen Femsteiieinrichtung (Stellwerk) zusammengefaßt sind.
9. Schaltungsanordnung zur Steuerung und Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Weichensteuerungs- (WST) und die Weichensicherungsschaltungen (WSI) dezentral in separaten Schalthäusem in der Nähe der jeweiligen Weichen angeordnet sind.
10. Schaltungsanordnung zur Steuerung und Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei einem erkannten Ausfall die Weichensicherungsschaltung (WSI) den betroffenen Weichenantrieb (WA) abschaltet.
EP85730006A 1984-02-09 1985-01-18 Steuerung und Sicherung einer durch eine Fernstelleinrichtung (Stellwerk) oder eine Ortsstelleinrichtung bedienbaren Weiche Expired - Lifetime EP0153900B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85730006T ATE49167T1 (de) 1984-02-09 1985-01-18 Steuerung und sicherung einer durch eine fernstelleinrichtung (stellwerk) oder eine ortsstelleinrichtung bedienbaren weiche.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3404825A DE3404825C2 (de) 1984-02-09 1984-02-09 Schaltungsanordnung zur Steuerung und Sicherung einer durch eine Fernstelleinrichtung (Stellwerk) oder eine Ortsstelleinrichtung bedienbaren Weiche
DE3404825 1984-02-09

Publications (3)

Publication Number Publication Date
EP0153900A2 EP0153900A2 (de) 1985-09-04
EP0153900A3 EP0153900A3 (en) 1987-09-30
EP0153900B1 true EP0153900B1 (de) 1990-01-03

Family

ID=6227396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85730006A Expired - Lifetime EP0153900B1 (de) 1984-02-09 1985-01-18 Steuerung und Sicherung einer durch eine Fernstelleinrichtung (Stellwerk) oder eine Ortsstelleinrichtung bedienbaren Weiche

Country Status (7)

Country Link
EP (1) EP0153900B1 (de)
AT (1) ATE49167T1 (de)
DD (1) DD232237A5 (de)
DE (2) DE3404825C2 (de)
DK (1) DK50485A (de)
FI (1) FI79987C (de)
HU (1) HU191165B (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3715478A1 (de) * 1987-05-06 1988-11-17 Licentia Gmbh Schaltungsanordnung zur ueberwachung einer weiche
AT396843B (de) 1988-05-27 1993-12-27 Voest Alpine Eisenbahnsysteme Einrichtung zum erfassen des zustandes von schienenweichen oder kreuzungen
AT399401B (de) * 1988-05-27 1995-05-26 Voest Alpine Eisenbahnsysteme Einrichtung zum erfassen des zustandes von schienenweichen oder kreuzungen
DE9101653U1 (de) * 1991-02-13 1991-05-02 Siemens AG, 8000 München Schaltung zum dezentralen Abschalten von Weichenantrieben bei Stellzeitüberschreitung
ATE232805T1 (de) * 1995-03-28 2003-03-15 Alcatel Austria Ag Anordnung zum überwachen von mit drehstromantrieben verstellbaren aussenanlagen
ATE314240T1 (de) * 2003-10-17 2006-01-15 Cit Alcatel Weichenantriebssystem
EP1593574B1 (de) * 2004-05-07 2006-06-28 Alcatel Elektronische Weichensteuerung in einem elektronischen Stellwerk
ATE397846T1 (de) * 2004-06-10 2006-05-15 Alcatel Lucent Verfahren zur adernschlusserkennung für weichenantriebe
CZ297931B6 (cs) * 2004-11-02 2007-05-02 Azd Praha S. R. O. Bezpecný trojfázový bezkontaktní spínac
DE102008055651A1 (de) * 2008-10-29 2010-05-06 Siemens Aktiengesellschaft Weichendiagnosesystem
AT509241B1 (de) * 2010-01-14 2012-03-15 Vae Eisenbahnsysteme Gmbh Verfahren zum überprüfen der schalter bzw. der kabel einer überwachungseinrichtung des antriebs von schienenweichen sowie vorrichtung zur durchführung dieses verfahrens
NL1040284C2 (nl) * 2013-07-03 2015-01-26 Railservice Nederland B V Motorstroomregelaar nse-wisselsteller.
CN113650646B (zh) * 2021-09-16 2022-09-27 杨荣兵 一种交流供电制式人工驾驶过分相限速保护方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2445618C2 (de) * 1974-09-25 1986-02-27 Standard Elektrik Lorenz Ag, 7000 Stuttgart Schaltungsanordnung zum gemeinsamen Stellen von mindestens zwei Gleiselementen
DE2607328C3 (de) * 1976-02-23 1979-12-06 Siemens Ag, 1000 Berlin Und 8000 Muenchen Steuer- und Überwachungsschaltung für Drehstrom-Weichenantriebe
DE3007960C2 (de) * 1980-03-01 1982-08-12 Standard Elektrik Lorenz Ag, 7000 Stuttgart Elektronisches Stellwerk
DE3043661A1 (de) * 1980-11-19 1982-07-08 Siemens AG, 1000 Berlin und 8000 München Einrichtung bei einem elektronischen stellwerk zum speisen und fernueberwachen von weichenantrieben
DE3219366A1 (de) * 1982-05-19 1983-11-24 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Elektronische weichensteuerung

Also Published As

Publication number Publication date
EP0153900A3 (en) 1987-09-30
HUT36410A (en) 1985-09-30
HU191165B (en) 1987-01-28
FI850534L (fi) 1985-08-10
DE3575106D1 (de) 1990-02-08
ATE49167T1 (de) 1990-01-15
FI79987C (fi) 1990-04-10
DE3404825A1 (de) 1985-08-14
DD232237A5 (de) 1986-01-22
DK50485D0 (da) 1985-02-05
FI850534A0 (fi) 1985-02-08
DE3404825C2 (de) 1989-01-12
FI79987B (fi) 1989-12-29
EP0153900A2 (de) 1985-09-04
DK50485A (da) 1985-08-10

Similar Documents

Publication Publication Date Title
DE3614979C3 (de) Sicherheitssystem für eine Druckmaschine
EP0153900B1 (de) Steuerung und Sicherung einer durch eine Fernstelleinrichtung (Stellwerk) oder eine Ortsstelleinrichtung bedienbaren Weiche
EP0082300B2 (de) Multiplex-Verkabelungssystem für Fahrzeuge
EP0917169B1 (de) Verfahren zur Überwachung eines Stufenschalters
EP0052759B1 (de) Einrichtung bei einem elektronischen Stellwerk zum Speisen und Fernüberwachen von Weichenantrieben
DE2908363A1 (de) Einrichtung zur steuerung der ein- und abschaltfolge von spannungen
DE2607328C3 (de) Steuer- und Überwachungsschaltung für Drehstrom-Weichenantriebe
DE102019112718A1 (de) Verfahren zum Durchführen einer Umschaltung von mindestens einem Schaltmittel eines Betriebsmittels und Antriebssystem für mindestens ein Schaltmittel eines Betriebsmittels
DE3026126C2 (de) Einrichtung zum automatischen Betrieb und zum Schutz eines Energieversorgungsnetzes
DE3638681C2 (de)
DE3122109C2 (de)
DE3029851C2 (de) Schaltungsanordnung zur signaltechnisch sicheren Ansteuerung eines Stromverbrauchers
EP0165464B1 (de) Schaltungsanordnung zum Betrieb eines Lichtsignales in einer Eisenbahnanlage
DE3219366A1 (de) Elektronische weichensteuerung
EP1090870B1 (de) Sicherheitskreis für eine Aufzugsanlage
DE3006854A1 (de) Kuehlanlage mit ueberwachungsanordnung fuer die transformatorkuehlung eines kraftwerks-maschinentransformators
DE917373C (de) Schaltung von Achszaehlanlagen im Eisenbahn-Sicherungswesen
DE2038031C3 (de) Schaltungsanordnung zum Umstellen und Überwachen von Weichen mit Drehstromantrieben
DE4032920C2 (de) Verfahren und Einrichtung zur sendeseitigen Ansteuerung von Übertragungsinformation und zur signaltechnisch sicheren Prüfung von Übertragungscodes für Stellwerke, insbesondere für elektronische Stellwerke
DE841606C (de) Stellwerk mit elektrischen Verschluessen, insbesondere Gleisbildstellwerk
DE2002339C3 (de) Ersatzbetriebsanordnung für Programmsteuerungen bei der Fernbedienung elektrischer Schaltanlagen
DE907783C (de) Schaltung fuer elektrische Antriebe von Weichen, Gleissperren und aehnlichen Einrichtungen in elektrischen Stellwerken, insbesondere fuer Gleisbildstellwerke und aehnliche Stellwerke mit elektrischen Verschluessen
EP0397913B1 (de) Gleichrichteranordnung
WO2020229128A1 (de) Schalteranordnung und verfahren zum sicheren betrieb einer schalteranordnung
DE759011C (de) UEberwachung des Gleichlaufes von Schrittschaltern bei Fernsteuerungseinrichtungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB LI NL SE

17P Request for examination filed

Effective date: 19870827

17Q First examination report despatched

Effective date: 19890221

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB LI NL SE

REF Corresponds to:

Ref document number: 49167

Country of ref document: AT

Date of ref document: 19900115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3575106

Country of ref document: DE

Date of ref document: 19900208

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911224

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911231

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920110

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920114

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920123

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920131

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19920212

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930118

Ref country code: AT

Effective date: 19930118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930131

Ref country code: CH

Effective date: 19930131

Ref country code: BE

Effective date: 19930131

BERE Be: lapsed

Owner name: LICENTIA PATENT-VERWALTUNGS G.M.B.H.

Effective date: 19930131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930118

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 85730006.5

Effective date: 19930810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030705

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040803