EP0151213A1 - Verfahren zur Herstellung eines reaktionsgesinterten Siliciumcarbidkörpers - Google Patents
Verfahren zur Herstellung eines reaktionsgesinterten Siliciumcarbidkörpers Download PDFInfo
- Publication number
- EP0151213A1 EP0151213A1 EP84109011A EP84109011A EP0151213A1 EP 0151213 A1 EP0151213 A1 EP 0151213A1 EP 84109011 A EP84109011 A EP 84109011A EP 84109011 A EP84109011 A EP 84109011A EP 0151213 A1 EP0151213 A1 EP 0151213A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- film
- carbon
- silicon carbide
- resin
- flat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims description 15
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 24
- 229920005989 resin Polymers 0.000 claims abstract description 12
- 239000011347 resin Substances 0.000 claims abstract description 12
- 239000011888 foil Substances 0.000 claims abstract description 10
- 239000002131 composite material Substances 0.000 claims abstract description 5
- 238000005470 impregnation Methods 0.000 claims abstract description 5
- 239000010703 silicon Substances 0.000 claims abstract description 4
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims abstract description 3
- 230000007717 exclusion Effects 0.000 claims abstract description 3
- 150000003377 silicon compounds Chemical class 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 claims description 22
- 238000009413 insulation Methods 0.000 claims description 15
- 238000004939 coking Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 239000000835 fiber Substances 0.000 claims description 9
- 239000000919 ceramic Substances 0.000 claims description 8
- 229920001169 thermoplastic Polymers 0.000 claims description 8
- 239000004416 thermosoftening plastic Substances 0.000 claims description 8
- 229920001187 thermosetting polymer Polymers 0.000 claims description 7
- 239000004744 fabric Substances 0.000 claims description 5
- 239000000853 adhesive Substances 0.000 claims description 4
- 230000001070 adhesive effect Effects 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 3
- 239000011226 reinforced ceramic Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000007809 chemical reaction catalyst Substances 0.000 claims description 2
- 239000002657 fibrous material Substances 0.000 claims description 2
- 238000007493 shaping process Methods 0.000 claims description 2
- 239000007858 starting material Substances 0.000 claims description 2
- 239000000567 combustion gas Substances 0.000 claims 1
- 238000001784 detoxification Methods 0.000 claims 1
- 239000008246 gaseous mixture Substances 0.000 claims 1
- 239000011265 semifinished product Substances 0.000 abstract description 11
- 238000000354 decomposition reaction Methods 0.000 abstract 1
- 239000003054 catalyst Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 229920001568 phenolic resin Polymers 0.000 description 5
- 239000005011 phenolic resin Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 229920001342 Bakelite® Polymers 0.000 description 2
- 239000004637 bakelite Substances 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 210000001170 unmyelinated nerve fiber Anatomy 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N C1CC=CCC1 Chemical compound C1CC=CCC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 1
- 240000005702 Galium aparine Species 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 238000010275 isothermal forging Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/10—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
- B32B3/18—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
- B32B3/20—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side of hollow pieces, e.g. tubes; of pieces with channels or cavities
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/524—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/573—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/008—Bodies obtained by assembling separate elements having such a configuration that the final product is porous or by spirally winding one or more corrugated sheets
- C04B38/0083—Bodies obtained by assembling separate elements having such a configuration that the final product is porous or by spirally winding one or more corrugated sheets from one or more corrugated sheets or sheets bearing protrusions by winding or stacking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/02—Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/04—Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/02—Shape or form of insulating materials, with or without coverings integral with the insulating materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/131—Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24149—Honeycomb-like
Definitions
- the invention relates to a method for producing a composite body made of ceramic or fiber-reinforced ceramic, and to a sandwich structure produced by this method.
- Ceramic materials are required to manufacture gas-conducting components in hot gas, rigid high-temperature insulation and high-temperature heat exchangers that are to be operated above the application temperature limits of known metals.
- such bodies In order to achieve a low structural weight and high efficiency per construction volume, such bodies have to be manufactured in lightweight construction with wall thicknesses that are as thin as possible.
- at least the partitions between hot and cold gas must be pressure-tight despite the small wall thickness.
- non-metallic insulation such as oxide or silicate ceramics, mostly in solid plate form, less often in the form of sandwich plates made of sintered fiber felt with glazed cover plates (see e.g. heat shield tiles of the space shuttle space and Re-entry body). Insulations of this type are resistant to oxidation and heat up to approx. 1000 ° C, but only to a very small extent to thermal shock.
- High-temperature graphite insulations from rigid and / or flexible shells or foils with C-fiber felt intermediate layers are also known as non-metallic insulations. Although these are resistant to high temperatures and thermal shocks, they can only be used above 400 ° C under vacuum conditions, i.e. not resistant to thermal oxidation. All of the aforementioned materials cannot be used for heat exchangers.
- bodies made of extruded, ie extruded or slipped material with axially extending round or honeycomb channels are used as non-metallic heat exchangers. Due to the manufacturing process, the duct wall thicknesses are either relatively thick or alternatively comparatively thin and not gas -tight. In addition, due to the lack of resistance to thermal stresses, they cannot be operated in continuous countercurrent, but only as a recuperator with low efficiency (leakage in the face seal).
- Tube bundle heat exchangers made from extruded ceramic tubes are also known. These can be operated in a continuous cross flow, but the wall thickness of the pipes is large due to the manufacturing process, and the exchange efficiency is low. In addition, the pressure-tight connection of the ceramic tubes to the end plates is problematic, and the pressure losses of the cross-flow heat exchanger with a high number of bundles are very high.
- the object of the invention is to provide a method for producing a composite body made of ceramic or fiber-reinforced ceramic, in which the manufactured composite body has a very low weight with a low structural density and high heat and oxidation resistance and yet is gas-tight and comparatively stiff, using simple technical means of production.
- the object on which the invention is based is achieved in that at least one still deformable flat first film made of carbon-containing material and one still deformable regularly profiled second film made of carbon-containing material are arranged flat on top of one another in such a way that cavities or hollow channels are formed and the films are connected that is brought the resulting film structure into a desired final shape and then cured, and that after the curing of the folienverkchten structure in the desired final shape of an a usbrenn and coking under exclusion of air and is carried out under inert gas, and that a for a coking operation, the structure in molten silicon bath is immersed or impregnated with organic silicon compounds or fumes, and that the structure is then burned until silicon carbide is formed.
- the foils are preferably connected by welding or gluing.
- the burnout and coking process should take place between 600 and 1000 ° C.
- Firing to form silicon carbide is preferably carried out at 1350 to 1800 ° C.
- the second film has a hat, trapezoid, corrugated or knob shape.
- the resulting thin-walled, light sandwich body or structure thus consist in all parts of high-temperature oxidation-resistant, thermal shock-insensitive silicon carbide or of fiber-reinforced silicon carbide if a fiber-reinforced film material is used as the film starting material.
- the burnout and coking process is followed by a resin impregnation process with a further burnout and coking process.
- a single flat or plate film is provided together with a profiled adjacent film.
- the development of the invention can also be a third film that is still deformable are arranged on the other side of the still deformable profiled second film and glued or welded before the hardening process or deposition process in silicon carbide is initiated in the final shape of the structure.
- Several glued or welded film structures can be expediently aligned with one another or placed crosswise on one another and then glued or welded with a carbon-containing adhesive before the curing process is initiated in the final shape. Such a structure is thus brought into the desired final shape before the curing process or deposition process and conversion process to silicon carbide is initiated.
- a carbon-rich thermoplastic or thermoset film is advantageously used as the film material, the carbon content of which is preferably 50% to 65% by weight of the film material.
- an organic fiber material e.g. As paper, nonwoven, textile or felt can be used, which is impregnated with a suitable carbon-rich resin, for. B. tar, phenolic resin or the like, the carbon content of which is 60% to 80% by weight.
- a suitable carbon-rich resin for. B. tar, phenolic resin or the like, the carbon content of which is 60% to 80% by weight.
- an organic fiber material can be used for the films, e.g. B. a fabric, scrim, fleece or felt.
- Carbon or silicon carbide fibers are preferably provided, which are impregnated with carbon-rich resin.
- thermoplastic or thermoset material or the drink used for film production parts of silicon carbide powder have already been added to the resin. Such parts do not interfere with the coking process, but, if desired, increase the ceramic part.
- Short fibers of an organic or inorganic nature can advantageously also be admixed to the thermoplastic or duroplastic film material.
- Carbon-rich short fibers, carbon short fibers or silicon carbide short fibers are particularly suitable.
- thermoplastic or thermosetting film material is preferably laminated on one or both sides to an organic or inorganic fabric, scrim or nonwoven or paper, before the shaping takes place to form the flat films or profiled films.
- a ceramic structure manufactured according to the invention is characterized in that it is versatile as a component, for example for internal combustion engines, gas turbines, rocket engines, furnace systems, specifically for hot components determined by strength or rigidity, for insulation purposes, gas routing purposes and / or heat transfer purposes or as a support for reaction catalysts.
- Typical hot gas components in engine construction which can advantageously be produced using this method, are e.g. B. combustion chambers, turbine guide vanes, afterburner flame holder structures, afterburner tubes, thruster flaps, respectively. vector controlled thrusters.
- Insulation hoods for hot isostatic pressing and hot pressing or protective gas heat treatment systems can also be manufactured according to the invention in a sandwich construction.
- Heat exchangers or catalyst carrier bodies produced according to the invention can be produced in a simple manner.
- the heat exchangers consist of semi-finished basic bodies of the same structure.
- the different arrangement of the individual base bodies results in either a heat exchanger working according to the countercurrent principle or a cross-flow heat exchanger.
- the catalyst carrier bodies can be wound as in FIG. 5a.
- the invention generally results in gas-tight insulation or separation planes running parallel to one another in the finished component.
- the component is relatively smooth on its surface, as a result of which there is a high level of heat reflection or low flow pressure losses.
- the overall structure is such that thermal expansions in all directions can be absorbed via elastically deformable structural members. Obviously, there is a cheap manufacturing process with versatile usability of the manufactured items.
- coking begins at around 350 ° C and extends to around 800 ° C.
- FIGS. 1 and 2 show preforms (semi-finished products) of objects manufactured according to the invention.
- the semifinished product comprises a flat film 1 and a profiled film 2a or 2b. Both foils 1, 2a and 2b lie close together and are glued or welded with a high carbon adhesive 5 (e.g. phenolic resin) and are preferably not fully cured.
- a high carbon adhesive 5 e.g. phenolic resin
- the still deformable or not fully hardened flat film 1 has a smooth surface.
- the profiled film 2a has a trapezoidal shape, the profiled film 2b according to FIG. 2 corrugated profile.
- the profiled film can also have an "egg carton” structure (knob or hat shape).
- Both foils 1 and 2a or 2b either consist of an already high carbon paper or are high carbon other non-reinforced or fiber-reinforced Thick films, e.g. organic or inorganic (e.g. C-fiber or SiC-fiber) impregnated with tar or phenolic resins, approx. 0.3 mm thick nonwovens, fabrics or scrims, which are preferably only pre-hardened and not fully hardened.
- organic or inorganic e.g. C-fiber or SiC-fiber impregnated with tar or phenolic resins, approx. 0.3 mm thick nonwovens, fabrics or scrims, which are preferably only pre-hardened and not fully hardened.
- Forms 5 or blanks of a semifinished product according to FIG. 1 can also be arranged at 90 ° according to FIG. 4 crossed and glued together. Another crossing angle is also conceivable.
- the embodiment according to Fig. 4 is e.g. for a heat exchanger that operates on the cross flow principle.
- the structure or structures 5 can possibly still be deformed as required.
- rolled-up corrugated strips according to Fig. 5a can preferably uniaxially curved components such as Insulation pipes or recuperative heat exchangers 8 or catalyst support bodies or, according to FIG. 5b, gas guide or burner pipes are manufactured.
- Fig. 6 the same semi-finished product is used for a guide vane body 6, which can be cooled if necessary.
- the cover 8 together with the lid according to FIG. 7 forms an insulation hood 7 for a HIP or hot press system.
- the cover also has the same basic structure, produced by the method according to the invention.
- Bi- or multi-axis crossed bodies are preferably suitable for flat plate bodies and, under special precautionary measures, single- or biaxially weakly curved components can also be produced.
- bodies of this type are suitable both as lightweight structural parts (e.g. gas turbine parts in the hot area) and as rigid insulation bodies, e.g. Insulation hoods 7 DC high-temperature heat treatment and pressing processes (sintering furnaces, hot isostatic pressing, isothermal forging).
- the level films 1 form the separating membranes between hot and cold gas in heat exchangers.
- the profiled foils 2 serve as webs and thus stabilize the flat foils 1, but at the same time enable thermal stresses in the ebe-Den foils to be reduced due to their shear softness. In addition, they channel the gas flows within the film plate level without major pressure losses and result in a large specific surface area, which is advantageous for heat exchangers and catalyst supports.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Laminated Bodies (AREA)
- Thermal Insulation (AREA)
- Catalysts (AREA)
Abstract
Ein Vorkörper (Halbzeug) umfaßt eine glatte ebene, noch verformbare Folie aus kohlenstoffhaltigem Werkstoff und eine hut-, oder noppenprofilierte weitere Folie aus kohlenstoffhaltigem Werkstoff. Die Folien werden flächig miteinander verbunden. Ein derartiges Halbzeug wird in die gewünschte Endform gebracht und das zusammengesetzte Gebilde nach an sich bekannten Verfahren unter Luftabschluß verkokt, so daß das Kohlenstoffgerüst zurückbleibt. Durch nochmaliges Imprägnieren mit Harz und nachfolgendes Ausbrennen kann nach Bedarf das Gebilde verstärkt werden. Die fertig carbonisierten Teile werden entweder in geschmolzenes metallisches Silizium getaucht oder mit organischen Siliziumverbindungen getränkt oder mit deren Dämpfen begast. Dabei wird Silizium durch Zersetzung abgeschieden und in einem weiteren oder gleichzeitig erfolgenden thermischen Prozeß zur Reaktion C+Si→SiC gebracht.
Description
- Die Erfindung betrifft ein Verfahren zur Herstellung eines Verbundkörpers aus Keramik oder faserverstärkter Keramik sowie ein nach diesem Verfahren gefertigtes Sandwich-Gebilde.
- Zur Herstellung von Gasleit-Bauteilen im Heißgas, von starren Hochtemperatur-Isolationen und Hochtemperatur-Wärmetauschern, die oberhalb der Anwendungstemperaturgrenzen bekannter Metalle betrieben werden sollen, werden keramische Werkstoffe benötigt. Zur Erzielung eines niedrigen Strukturgewichts und hohen Wirkungsgrades pro Bauvolumen müssen solche Körper in Leichtbauweisen mit möglichst dünnen Wandstärken gefertigt werden. Zudem treten hohe Temperaturdifferenzen, d.h. Wärmedehnungen zwischen Heiß- und Ealtseite bzw. Kaltgas- und Heißgaskanälen auf. Außerdem müssen zumindest die Trennwände zwischen Heiß- und Kaltgas druckdicht trotz der geringen Wandstärke sein.
- Bekannt sind nach dem Stand der Technik als nichtmetallische Isolationen z.B. Oxid- bzw. Silikatkeramiken, meist in massiver Plattenform, seltener in Form von Sandwich-Platten aus versinterten Faserfilzen mit glasierten Deckplatten (vgl. z.B. Hitzeschild-Kacheln des Space Shuttle-Raum- und Wiedereintrittskörpers). Derartige Isolationen sind bis ca. 1000°C oxidations- und wärme-, aber nur in sehr geringem Maße thermoschockbeständiz.
- Als nichtmetallische Isolationen kennt man ferner Hochtemperatur-Graphitisolationen aus starren und/oder flexiblen Schalen oder Folien mit C-Faser-Filzzwischenlagen. Diese sind zwar hochtemperatur- und thermoschockbeständig, jedoch über ca. 400°C nur unter Vakuumbedingungen einsetzbar, d.h. nicht thermooxidationsbeständig. Sämtliche vorgenannten Materialien sind für Wärmetauscher nicht ein- setzbar.
- Als nichtmetallische Wärmetauscher verwendet man nach dem Stand der Technik Eörper aus extrudiertem, d.h. stranggepreßtem oder geschlickertem Material mit axial sich erstreckenden runden oder wabenartigen Kanälen. Die Kanalwandstärken sind herstellungsbedingt entweder relativ dick oder alternativ vergleichsweise dünn und nicht gas- dicht. Außerdem können sie wegen mangelnder Beständigkeit gegen Wärmespannungen nicht im kontinuierlichen Gegenstrom, sondern nur als Rekuperator mit geringem Wirkungsgrad betrieben werden (Leckage in der Stirnabdichtung).
- Auch kennt man Rohrbündelwärmetauscher aus extrudierten Keramikrohren. Diese können im kontinuierlichen Querstrom betrieben werden, aber die Wandstärke der Rohre ist herstellungsbedingt groß, der Tauschwirkungsgrad ist gering. Außerdem ist die druckdichte Verbindung der Keramikrohre mit den Abschlußböden problembehaftet,und die Druckverluste der Querstromwärmetauscher hoher Bündelzahl sind sehr hoch.
- Aufgabe der Erfindung ist die Schaffung eines Verfahrens zur Herstellung eines Verbundkörpers aus Keramik oder faserverstärkter Keramik, bei dem der gefertigte Verbundkörper bei geringer Strukturdichte und hoher Wärme- und Oxidationsbeständigkeit ein sehr geringes Gewicht aufweist und dennoch gasdicht und vergleichsweise steif ist, und zwar mit einfachen technischen Herstellmitteln.
- Gelöst wird die der Erfindung zugrunde liegende Aufgabe dadurch, daß zumindest eine noch verformbare ebene erste Folie aus kohlenstoffhaltigem Werkstoff und eine noch verformbare regelmäßig profilierte zweite Folie aus kohlenstoffhaltigem Werkstoff flächig so aufeinander angeordnet werden, daß sich Hohlräume bzw. Hohlkanäle ausbilden und die Folien verbunden werden, daß das entstandene Foliengebilde in eine gewünschte Endform gebracht und dann ausgehärtet wird, und daß nach dem Aushärtungsvorgang des folienverklebten Gebildes in der gewünschten Endform ein Ausbrenn-und Verkokungsvorgang unter Luftabschluß bzw. unter Inertgas erfolgt, und daß nach einem Verkokungsvorgang das Gebilde in ein geschmolzenes Siliziumbad getaucht oder mit organischen Siliziumverbindungen getränkt oder Dämpfen begast wird, und daß anschließend das Gebilde bis zur Ausbildung von Siliziumcarbid gebrannt wird. Vorzugsweise erfolgt die Verbindung der Folien durch Verschweißen oder Verkleben. Der Ausbrenn- und Verkokungsvorgang soll zwischen 600 und 1000 °C stattfinden. Das Brennen zur Ausbildung von Siliziumcarbid erfolgt vorzugsweise bei 1350 bis 1800 °C. Die zweite Folie weist Hut-, Trapez-, Well-, oder Noppenform auf.
- Die so entstandenen dünnwandigen, leichten Sandwich-Körper oder Gebilde bestehen somit in allen Teilen aus hochtemperatur-oxidationsbeständigem, thermoschockunempfindlichen Siliziumcarbid oder aus faserverstärktem Siliziumcarbid, wenn als Folienausgangsmaterial ein faserverstärktes Folienmaterial verwendet wird.
- Vorteilhafterweise wird dem Ausbrenn- und Verkokungsvorgang ein Harzimprägnierungsvorgang mit einem weiteren Ausbrenn- und Verkokungsvorgang angeschlossen. In der Grundform eines Gebildes ist eine einzige ebene bzw. plattige Folie zusammen mit einer profilierten angrenzenden Folie vorgesehen, Die Weiterbildung der Erfindung kann noch eine dritte noch verformbare Folie auf der anderen Seite der noch verformbaren profilierten zweiten Folie flächig angeordnet und verklebt oder verschweißt werden, bevor der Aushärtungsvorgang bzw. Abscheidungsvorgang in Siliziumcarbid in der Endform des Gebildes eingeleitet wird. Mehrere verklebte oder verschweißte Foliengebilde können zweckmäßigerweise zueinander ausgerichtet oder kreuzweise aufeinandergelegt werden und anschließend mit einem kohlenstoffhaltigen Kleber verklebt oder verschweißt werden bevor der Aushärtungsvorgang in der Endform eingeleitet wird. Ein derartiges Gebilde wird also in die gewünschte Endform gebracht, be- vor der Aushärtungsvorgang bzw. Abscheidungsvorgang und Umwandlungsvorgang zum Siliziumcarbid eingeleitet wird.
- Vorteilhafterweise findet als Folienwerkstoff eine kohlenstoffreiche Thermo- oder Duroplastfolie Verwendung, deren Kohlenstoffgehalt vorzugsweise 50 % - 65 % Gew. des Folienwerkstoffs beträgt.
- Es kann aber auch als Folienwerkstoff ein organischer Faserwerkstoff, z. B. Papier, Vlies, Textil oder Filz, verwendet werden, der mit einem geeigneten kohlenstoffreichen Harz getränkt ist, z. B. Teer, Phenolharz oder dergleichen, dessen Kohlenstoffanteil 60 % bis 80 % Gew. beträgt.
- Nicht nur ein organischer, sondern auch ein nichtorganischer Faser-Werkstoff kann für die Folien verwendet werden, z. B. ein Gewebe, Gelege, Vlies oder Filz. Vorzugsweise sind Kohlenstoff- oder Siliziumcarbid-Fasern vorgesehen, die mit kohlenstoffreichem Harz imprägniert werden.
- Zweckmäßig ist es, wenn dem zur Folienherstellung verwendeten Thermo- oder Duroplastwerkstoff bzw. dem Tränkharz bereits Anteile von Siliziumcarbidpulver beigemengt werden. Derartige Anteile stören nicht beim Verkokungsprozeß, erhöhen jedoch wunschgemäß den Keramikanteil.
- Dem thermo- oder duroplastischen Folienwerkstoff können vorteilhafterweise auch Kurzfasern organischer oder anorganischer Natur zugemischt werden. Besonders geeignet sind kohlenstoffreiche Kurzfasern, Kohlekurzfasern oder Siliziumcarbid-Kurzfasern.
- Vorzugsweise wird der thermo- oder duroplastische Folienwerkstoff auf ein organisches oder anorganisches Gewebe, Gelege bzw. Vlies oder Papier ein- oder beidseitig aufkaschiert, bevor die Formgebung zu den ebenen Folien bzw. profilierten Folien erfolgt.
- Ein erfindungsgemäß gefertigtes Keramikgebilde kennzeichnet sich dadurch, daß es vielseitig als Bauteil beispielsweise für Verbrennungsmotoren, Gasturbinen, Raketen-Motoren, Ofenanlagen einsetzbar ist, und zwar für festigkeits-oder steifigkeitsbestimmte Heißbauteile, für Isolationszwecke, Gasführungszwecke und/oder Wärmeübertragungszwecke oder als Träger für Reaktionskatalysatoren.
- Typische Heißgasbauteile im Triebwerkbau, die mit Vorteil nach diesem Verfahren hergestellt werden können, sind z. B. Brennkammern, Turbinenleitschaufeln, Nachbrennerflammhalter-Strukturen, Nachbrenner-Rohre, Schubdüsenklappen resp. vektorgesteuerte Schubdüsen.
- Die erfindungsgemäße Herstellung derartiger thermisch, mechanisch und korrosiv hochbeanspruchter Leichtbauteile in ungekühlter Konfiguration kann angesichts der hohen Verbrennungstemperaturen künftiger Gasturbinentriebwerke zu beträchtlichen Wirkungsgraderhöhungen und damit Treibstoffeinsparungen führen.
- Auch Isolationshauben für heißisostatisches Pressen und Heißpressen oder Schutzgas-Wärmebehandlungsanlagen können erfindungsgemäß in einer Sandwich-Bauweise gefertigt werden.
- Erfindungsgemäß gefertigte Wärmetauscher oder Katalysator- trägerkörper sind auf einfache Weise herstellbar. Die Wärmetauscher bestehen aus Halbzeug-Grundkörpern gleichen Aufbaus. Durch unterschiedliche Anordnung der einzelnen Grundkörper ergibt sich entweder ein nach dem Gegenstromprinzip arbeitender Wärmetauscher oder ein QuerstromWärmetauscher. Die Katalysatorträgerkörper können wie in Fig. 5a gewickelt werden.
- Durch die Erfindung ergeben sich im gefertigten Bauteil zumeist parallel zueinander verlaufende gasdichte Isolations- bzw. Trennebenen. Desgleichen ist das Bauteil an seiner Oberfläche relativ glatt, wodurch eine große Wärmerückstrahlung erfolgt bzw. geringe Strömungsdruckverluste auftreten. Der Aufbau ist insgesamt so getroffen, daß Wärmedehnungen nach allen Richtungen über elastisch verformbare Strukturglieder aufgefangen werden können. Ersichtlich ergibst sich mithin ein billiges Herstellverfahren bei vielseitiger Anwendbarkeit der gefertigten Gegenstände.
- Bei einem bevorzugten Ausführungsbeispiel des erfindungsgemäßen Verfahrens wird der Harzimprägnierungsvorgang und nachfolgende Verkokungsvorgang (ensprechend Patentanspruch 2) ein-oder mehrmals wiederholt, um den Kohlenstoffgehalt bzw. die Dichte in dem endgültigen Foliengebilde zu erhöhen. Für den Harzimprägnierungsvorgang sind folgende kohlenstoffhaltige Materialien besonders geeignet:
- Bakelit EP 60/65 °C
- Phenolharze: Bakelit Fw 247, 433, 435
- Phenolharz: Bakeli 7912 FL
- Polyiimidharze: Technochemie H 795, H 800.
- Bei Verwendung dieser Materialien beginnt die Verkokung bei etwa 350 °C und reicht bis etwa 800 °C.
- Die Erfindung wird nachfolgendanhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung näher beschrieben; es zeigen:
- Fig. 1 ein erfindungsgemäß gefertigtes Halbzeug in perspektivischer Ansicht mit einem Trapezprofil der profilierten Folie,
- Fig. 2 eine der Fig. 1 ähnliche perspektivische Ansicht eines anderen Halbzeugs mit einer wellprofilierten Folie,
- Fig. 3 zwei nach Fig. 2 gefertigte Gebilde in zusammengesetzer Anordnung mit einer weiteren ebenen Zwischenfolie,
- Fig. 4 eine der Fig. 3 ähnliche perspektivische Ansicht zusammengesetzter Gebilde nach Fig. 1,
- Fig. 5a das in Fig. 2 gezeigte Gebilde in aufgerolltem Zustand zwecks Verwendung für ein Gasleit- oder Isolierrohr oder einen Rekuperator-Wärmetauscher oder einen Katalysator-Trägerkörper,
- Fig. 5b ein der Fig. 5a ähnliches Gebilde mit zylindrischem Eohlraun zwecks Verwendung für ein Gasleit- oder Brennerrohr,
- Fig. 6 einen Leitschaufelkörper mit der Grundstruktur eines Gebildes nach Fig. 2, wbbei eine weitere ebene Folie - vorgesehen ist, und
- Fig. 7 und 8 Deckel und Zylinder einer Isolationshaube in Sandwich-Bauweise mit einem Grundmaterial nach Fig. 2.
- In den Figuren 1 und 2 sind Vorkörper (Halbzeug) erfindungsgemäß gefertigter Gegenstände gezeigt.
- Grundsätzlich umfaßt das Halbzeug eine ebene Folie 1 sowie eine profilierte Folie 2a bzw. 2b. Beide Folien 1, 2a bzw. 2b liegen dicht aufeinander und werden mit einem stark kohlenstoffhaltigen Kleber 5 (z.B. Phenolharz) verklebt oderverschweißt und sind vorzugsweise nicht voll ausgehärtet.
- Die noch verformbare bzw. nicht voll ausgehärtete ebene Folie 1 weist eine glatte Oberfläche auf. Die profilierte Folie 2a besitzt Trapezform, die profilierte Folie 2b gemäß Fig. 2 Wellprofil. In Sonderfällen kann die profilierte Folie auch "Eierkarton"-Struktur aufweisen (Noppen- oder Hutform).
- Beide Folien 1 und 2a bzw. 2b bestehen entweder aus einem bereits stark kohlenstoffhaltigem Papier oder sind stark kohlenstoffhaltige sonstige unverstärkte oder faserver- stärkte Folien, z.B. mit Teer oder Phenolharzen getränkte organische oder anorganische (z.B. C-Faser oder SiC-Faser-) ca. 0,3 mm dicke Vliese, Gewebe oder Gelege, die vorzugsweise nur vorgehärtet und nicht voll ausgehärtet sind.
- Zuschnitte aus diesem Halbzeug werden nun in geeigneter Weise angeordnet:
- Gemäß Fig. 3 sind Halbzeuge nach Pig. 2 mit einer weiteren (dritte Folie) glatten Folienhaut 1 versehen und als Wellprofile parallel zueinander geschichtet und miteinander mittels kohlenstoffhaltigem Kleber 3 verklebt. Derartig zusammengesetzte Gebilde 5 eignen sich z.B. für einen Wärmetauscher im Gegenstromprinzip.
- Gebilde 5 bzw. Zuschnitte eines Halbzeugs nach Fig. 1 können auch unter 90° gemäß Fig. 4 gekreuzt aufeinander angeordnet und miteinander verklebt werden. Auch ist ein anderer Kreuzungswinkel denkbar. Die Ausführungsform nach Fig. 4 eignet sich z.B. für einen Wärmetauscher, der nach dem Querstromprinzip betrieben wird.
- Bevor der vollständige Aus härtungsprozeß, Verkokungsprozeß und Abscheidungsprozeß von Siliziumcarbid durchgeführt wird, können das oder die Gebilde 5 noch eventuell nach Bedarf endverformt werden.
- Aus parallel miteinander oder mit sich selbst verklebten, d.h. aufgerollten Wellstreifen gemäß Fig. 5a können vorzugsweise einachsig gekrümmte Bauteile wie z.B. Isolations- rohre oder rekuperative Wärmetauscher 8 oder Katlysator-Trägerkörper oder gemäß Fig. 5b Gasleit- oder Brennerrohre gefertigt werden.
- In Fig. 6 findet das gleiche Halbzeug Verwendung für einen Leitschaufelkörper 6, der gegebenenfalls gekühlt werden kann.
- Auch zylindrische Schalen gemäß Fig. 8 werden aus demselben Halbzeug gefertigt. Diese sind sehr steif in Achsrichtung (alle Wellstege parallel), aber auch steif gegen Schalenbiegung und -torsion. Derartige Schalen können konzentrisch verlaufen oder aber gemäß Fig. 5 gewickelt sein.
- Das Gesamtgebilde nach Fig. 8 bildet zusammen mit dem Dekkel gemäß Fig. 7 eine Isolationshaube 7 für eine HIP- oder Heißpreßanlage. Auch der Deckel umfaßt die gleiche Grundstruktur, gefertigt nach dem erfindungsgemäßen Verfahren.
- Bi- oder mehrachsig gekreuzte Körper eignen sich vorzugsweise für ebene Plattenkörper und unter besonderen Vorsichtsmaßnahmen können auch ein- oder zweiachsig schwach gekrümmte Bauteile hergestellt werden.
- Durch ihren Aufbau aus parallel zueinanderliegenden und über Stegwände gegeneinander abgestützten Platten oder Schalen mit voneinander getrennten Gasvolumina eignen sich Körper dieser Bauart sowohl als Leichtbau-Strukturteile (z.B. Gasturbinenteile im Heißbereich), als auch als starre Isolationskörper, z.B. Isolationshauben 7 cei Hochtemperatur-Warmbehandlungs- und Preßprozessen (Sinteröfen, heißisostazisches Pressen, isothermes Schmieden). Ein zusätzlicher Vorteil ergibt sich aus der Tatsache, daß Siliziumcarbid im Gegensatz zu Kohlenstoffisolationen sehr reaktionsträge ist.
- Dieebenen Folien 1 bilden bei Wärmetauschern die Trennmembranen zwischen Heiß- und Kaltgas. Die profilierten Folien 2 dienen als Stege und stabilisieren mithin die ebenen Folien 1, ermöglichen gleichzeitig jedoch infolge ihrer Schubweichheit den Abbau thermischer Spannungen in den ebe-Den Folien. Außerdem kanalisieren sie die Gasströme innerhalb der Folienplattenebene ohne größere Druckverluste, und ergeben eine große spezifische Oberfläche, wie sie für Wärmetauscher und Katalysator-Träger vorteilhaft ist.
Claims (18)
1. Verfahren zur Herstellung eines Verbundkörpers aus Keramik oder faserverstärkter Keramik, dadurch gekennzeichnet, daß zumindest eine noch verformbare ebene erste Folie (1) aus kohlenstoffhaltigem Werkstoff und eine noch verformbare regelmäßig profilierte zweite Folie (2, 2b) aus kohlenstoffhaltigem Werkstoff flächig so aufeinander angeordnet werden, daß sich Hohlräume bzw. Hohlkanäle ausbilden und die Folien miteinander verbunden werden, daß das entstandene Foliengebilde (5) in eine gewünschte Endform gebracht und dann ausgehärtet wird, daß nach dem Aushärtungsvorgang des Gebildes (5) in der gewünschten Endform ein Ausbrenn-und Verkokungsvorgang unter Luftabschluß bzw. unter Inertgas erfolgt, und daß nach einem Verkokungsvorgang das Gebilde (5) in ein geschmolzenes Siliziumbad getaucht oder mit organischen Siliziumverbindungen getränkt oder mit Dämpfen begast wird, und daß anschließend das Gebilde (5) bis zur Ausbildung von Siliziumcarbid gebrannt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß dem Ausbrenn- und Verkokungsvorgang ein Harzimprägnierungsvorgang mit einem weiteren Ausbrenn-und Verkokungsvorgang angeschlossen wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine der ersten Folie ähnliche dritte noch verformbare Folie auf der anderen Seite der noch verformbaren profilierten zweiten Folie (2a, 2b) flächig angeordnet und verklebt oder verschweißt wird, bevor der Aushärtungsvorgang in der Endform eingeleitet wird.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß mehrere verklebte oder verschweißte Foliengebilde (5) zueinander ausgerichtet oder kreuzweise aufeinandergelegt und anschließend mit einem kohlenstoffhaltigen Kleber verklebt oder verschweißt werden, bevor der Aushärtungsvorgang in der Endform eingeleitet wird.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß als Folienwerkstoff eine kohlenstoffreiche Thermo- oder Duroplastfolie verwendet wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Kohlenstoffgehalt 50 % - 65 % Gew. des Folienwerkstoffes beträgt.
7. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß faserverstärkte Folien (2a, 2b) als Ausgangsmaterial verwendet werden.
8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß als Folienwerkstoff ein organischer Faserwerkstoff verwendet wird, der mit einem geeigneten kohlenstoffreichen Harz getränkt ist.
9. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß als Folienwerkstoff ein anorganisches Gewebe, Gelege, Vlies oder Filz, vorzugsweise aus Kohlenstoff- oder Siliziumcarbid-Fasern, verwendet wird, das mit kohlenstoffreichem Harz imprägniert wird.
10. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß dem thermo- oder duroplastischen Folienwerkstoff Kurzfasern organischer oder anorganischer Natur zugemischt werden.
11. Verfahren nach Anspruch 1 bis 9, dadurch gekennzeichnet, daß dem Thermo- oder Duroplastharz bzw. dem Tränkharz bereits Anteile von Siliziumcarbidpulver beigemengt werden.
12. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß der thermo- oder duroplastische Folienwerkstoff auf ein organisches oder anorganisches Gewebe, Gelege bzw. Vlies oder Papier ein- oder beidseitig aufkaschiert wird, bevor die Formgebung zu den ebenen Folien (1) bzw. profilierten Folien (2a, 2b) erfolgt.
13. Verfahren nach den Patentansprüchen 1 bis 12, dadurch gekennzeichnet, daß die regelmäßige Profilierung der Folie Hut-, Trapez-, Well- oder Noppenform aufweist.
14. Ein nach einem Verfahren gemäß 1 bis 13 hergestelltes Sandwich-Gebilde, dadurch gekennzeichnet, daß das Gebilde (5) in der Endform ein steifigkeits- oder festigkeitsbestimmendes Strukturbauteil im Heißgasstrom, z. B. ein Leitschaufelkörper (5) einer Turbine ist.
15. Ein nach einem Verfahren gemäß 1 bis 13 hergestelltes Sandwich-Gebilde, dadurch gekennzeichnet, daß das Gebilde (5) ein nicht-tragendes Gasleitteil ist, z. B. ein Heißgasleitrohr (5) einer Wärmekraftraschine oder einer Heizungsofenanlage ist.
16. Ein nach einem Verfahren gemäß 1 bis 13 hergestelltes Sandwich-Gebilde, dadurch gekennzeichnet, daß das Gebilde (5) ein Isolierbauteil, z. B. eine Isolationshaube (7) z. B. für heißisostatische Pressen oder Heißpressen oder Schutzgas-Warmbehandlungsanlagen ist.
17. Ein nach einem Verfahren gemäß 1 bis 13 hergestelltes Sandwich-Gebilde, dadurch gekennzeichnet, daß das Gebilde (5) ein Wärmetauscher (9, 10) ist.
18. Ein nach einem Verfahren gemäß 1 bis 13 hergestelltes Sandwich-Gebilde, dadurch gekennzeichnet, daß das Gebilde (5) ein Träger für einen Heißgas-Reaktionskatalysator ist (z. B. zur Abgasentgiftung von Verbrennungsgasen oder zur Reaktion gasförmiger Gemische).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3327659A DE3327659C2 (de) | 1983-07-30 | 1983-07-30 | Verfahren zur Herstellung eines Verbundkörpers |
DE3327659 | 1983-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0151213A1 true EP0151213A1 (de) | 1985-08-14 |
Family
ID=6205419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP84109011A Withdrawn EP0151213A1 (de) | 1983-07-30 | 1984-07-30 | Verfahren zur Herstellung eines reaktionsgesinterten Siliciumcarbidkörpers |
Country Status (4)
Country | Link |
---|---|
US (1) | US4617072A (de) |
EP (1) | EP0151213A1 (de) |
JP (1) | JPS6058847A (de) |
DE (1) | DE3327659C2 (de) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2607069A1 (fr) * | 1986-11-20 | 1988-05-27 | Dunlop Ltd | Panneau de poids leger, en particulier pour avions, et son procede de fabrication |
US5360500A (en) * | 1986-11-20 | 1994-11-01 | Dunlop Limited | Method of producing light-weight high-strength stiff panels |
WO1996032618A1 (en) * | 1995-04-13 | 1996-10-17 | Alliedsignal Inc. | Carbon/carbon composite parallel plate heat exchanger and method of fabrication |
US5845399A (en) * | 1995-06-05 | 1998-12-08 | Alliedsignal Inc. | Composite plate pin or ribbon heat exchanger |
DE19947731A1 (de) * | 1999-10-05 | 2001-04-19 | Deutsch Zentr Luft & Raumfahrt | Bauteil aus SiC-Keramik und Verfahren zur Herstellung eines Bauteils aus SiC-Keramik |
DE102004014092A1 (de) * | 2004-03-20 | 2005-10-06 | Viessmann Werke Gmbh & Co Kg | Vorrichtung zur Umwandlung von Kohlenwasserstoffgas und Wasserdampf in Wasserstoff und weitere Reformerprodukte |
DE102011103106A1 (de) * | 2011-05-25 | 2012-11-29 | Erbicol S.A. | Wärmeübertrager aus keramischem Material, insbesondere für Rekuperatorbrenner, und Verfahren zu dessen Herstellung |
EP2849256A3 (de) * | 2011-05-27 | 2015-04-22 | Bayerische Motoren Werke Aktiengesellschaft | Energiespeichermodul aus mehreren insbesondere prismatischen Speicherzellen und Verfahren zur Herstellung eines Energiespeichermoduls |
DE102014208955A1 (de) * | 2014-05-12 | 2015-11-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Wärmeübertragungsvorrichtung und deren Verwendung |
CN110204319A (zh) * | 2019-04-22 | 2019-09-06 | 湖南远辉复合材料有限公司 | 一种陶瓷基复合材料点阵结构的整体式制备方法 |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5152860A (en) * | 1984-10-09 | 1992-10-06 | Anadite, Inc. | Modular composite structure and method |
DE3603232A1 (de) * | 1986-02-03 | 1987-08-06 | Buchtal Gmbh | Doppelbodenkonstruktion |
JPS6389802A (ja) * | 1986-10-03 | 1988-04-20 | Mitsubishi Electric Corp | 繊維強化プラスチツク製反射鏡 |
DE3717670A1 (de) * | 1986-11-21 | 1988-06-01 | Hoechst Ceram Tec Ag | Verfahren zum abdichten keramischer waermetauscher |
US4894270A (en) * | 1986-12-04 | 1990-01-16 | Nicholls Robert L | Fold and bond for constructing cement laminate structural shapes |
JP3215407B2 (ja) * | 1989-07-18 | 2001-10-09 | ヘムロツク・セミコンダクター・コーポレーシヨン | 高温反応器 |
FR2658265B1 (fr) * | 1990-02-09 | 1992-06-12 | Aerospatiale | Dispositif de protection thermique rigide et permeable a la pression. |
JPH05509132A (ja) * | 1990-05-18 | 1993-12-16 | ヒトコ カーボン コンポジッツ インコーポレイテッド | 化学蒸着法のための素材 |
FR2667059B1 (fr) * | 1990-09-24 | 1993-10-08 | Aerospatiale Ste Nationale Indle | Composite a matrice carbure de silicium utilisable comme couche pare-flamme. |
DE4202804A1 (de) * | 1992-01-31 | 1993-08-05 | Man Technologie Gmbh | Verfahren zur herstellung von faserverbund-keramikgegenstaenden |
US5469686A (en) * | 1993-09-27 | 1995-11-28 | Rockwell International Corp. | Composite structural truss element |
US5851403A (en) * | 1995-01-04 | 1998-12-22 | Northrop Grumman Corporation | Ceramic honeycomb and method |
DE19504063A1 (de) * | 1995-02-08 | 1996-08-14 | Gerhard Pirchl | Flächengebilde aus Folie oder Blech für die Verwendung als Hitzeschild |
US5989504A (en) * | 1995-02-27 | 1999-11-23 | Sgl Carbon Composites | Chemical process employing corrosion resistant composites |
US6068925A (en) * | 1995-02-27 | 2000-05-30 | Sgl Carbon Composites | Corrosion resistant composites useful in chemical reactors |
US5858486A (en) * | 1995-02-27 | 1999-01-12 | Sgl Carbon Composites, Inc. | High purity carbon/carbon composite useful as a crucible susceptor |
US5683281A (en) * | 1995-02-27 | 1997-11-04 | Hitco Technologies, Inc | High purity composite useful as furnace components |
US5660778A (en) * | 1995-06-26 | 1997-08-26 | Corning Incorporated | Method of making a cross-flow honeycomb structure |
US5851326A (en) * | 1995-10-25 | 1998-12-22 | Hexcel Corpation | Method for making ceramic honeycomb |
FR2746388B1 (fr) * | 1996-03-19 | 1998-06-05 | Aerospatiale | Procede de fabrication d'un panneau du type nid d'abeille en composite carbone/carbone ou carbone/ceramique et structures constituees a partir d'un tel panneau |
DE69709716T2 (de) * | 1996-04-12 | 2002-08-14 | Honeywell International Inc., Morristown | Verfahren zur herstellung eines kohlenstoff/kohlenstoff wärmetauschers |
DE19623996C2 (de) * | 1996-06-15 | 1999-05-12 | Daimler Benz Ag | Abschirmblech für eine Abgasleitung und Abgasleitung mit einem derartigen Abschirmblech |
DE19636223C2 (de) * | 1996-09-06 | 1999-07-08 | Deutsch Zentr Luft & Raumfahrt | Verfahren zum dauerhaften Verbinden von wenigstens zwei Bauteilkomponenten zu einem Formkörper |
US6146484A (en) * | 1998-05-21 | 2000-11-14 | Northrop Grumman Corporation | Continuous honeycomb lay-up process |
US5974784A (en) * | 1998-10-12 | 1999-11-02 | Nu-Chem, Inc. | Insulative shield, particularly for automotive exhaust components |
US6132546A (en) * | 1999-01-07 | 2000-10-17 | Northrop Grumman Corporation | Method for manufacturing honeycomb material |
US6296962B1 (en) | 1999-02-23 | 2001-10-02 | Alliedsignal Inc. | Design for solid oxide fuel cell stacks |
US6769866B1 (en) | 1999-03-09 | 2004-08-03 | Siemens Aktiengesellschaft | Turbine blade and method for producing a turbine blade |
DE19956444B4 (de) * | 1999-11-24 | 2004-08-26 | Mtu Aero Engines Gmbh | Verfahren zur Herstellung eines Leichtbauteils in Verbundbauweise |
US6582490B2 (en) * | 2000-05-18 | 2003-06-24 | Fleetguard, Inc. | Pre-form for exhaust aftertreatment control filter |
DE10020655A1 (de) * | 2000-04-27 | 2001-11-08 | Freundorfer Fensterbau | Keramischer Werkstoff |
US6946012B1 (en) * | 2000-05-18 | 2005-09-20 | Fleetguard, Inc. | Filter and forming system |
EP1284251B1 (de) * | 2001-08-17 | 2011-09-28 | Eiji Tani | Poröses, leichtes und hitzebeständiges Strukturmaterial auf Siliciumkarbidbasis und Herstellungsverfahren dafür |
US6746755B2 (en) * | 2001-09-24 | 2004-06-08 | Siemens Westinghouse Power Corporation | Ceramic matrix composite structure having integral cooling passages and method of manufacture |
DE10225953A1 (de) * | 2002-06-11 | 2003-12-24 | Schunk Kohlenstofftechnik Gmbh | Verfahren zur Herstellung eines eine Wabenstruktur aufweisenden Kohlenstoffkörpers |
DE10335130A1 (de) * | 2003-07-31 | 2005-02-24 | Blue Membranes Gmbh | Immobilisierung von Katalysatoren auf porösen Körpern auf Kohlenstoffbasis |
DE10326951A1 (de) * | 2003-06-12 | 2005-01-13 | Aichelin Entwicklungszentrum Und Aggregatebau Gesellschaft Mbh | Rekuperatorbrenner und Rekuperator hierzu |
EP1528049A1 (de) * | 2003-10-31 | 2005-05-04 | Viessmann Werke GmbH & Co KG | Verfahren zur Herstellung eines Verbundkörpers aus Keramik |
DE10361346A1 (de) | 2003-12-16 | 2005-07-14 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Platten-Wärmeübertrager, Verfahren zur Herstellung eines Platten-Wärmeübertragers und keramischer Faserverbundwerkstoff, insbesondere für einen Platten-Wärmeübertrager |
US20060163773A1 (en) * | 2005-01-24 | 2006-07-27 | General Electric Company | Method for performing silicon melt infiltration of ceramic matrix composites |
GB0510540D0 (en) * | 2005-05-24 | 2005-06-29 | Rolls Royce Plc | Containment casing |
US7785076B2 (en) * | 2005-08-30 | 2010-08-31 | Siemens Energy, Inc. | Refractory component with ceramic matrix composite skeleton |
DE102005063518B4 (de) * | 2005-10-26 | 2012-07-12 | Vincenzo Tilelli | Sandwich Bauelement |
US8544240B2 (en) * | 2006-03-11 | 2013-10-01 | John P. Hughes, Jr. | Ballistic construction panel |
CA2561453A1 (en) * | 2006-09-28 | 2008-03-28 | Hossein Borazghi | Fiber reinforced thermoplastic composite panel |
JP5322382B2 (ja) * | 2006-11-30 | 2013-10-23 | 株式会社東芝 | セラミックス複合部材とその製造方法 |
CN101626820B (zh) | 2007-02-02 | 2012-07-18 | 唐纳森公司 | 空气过滤介质包、过滤元件、空气过滤介质及方法 |
US20080236077A1 (en) * | 2007-03-27 | 2008-10-02 | O'reilly Sean | Wall paneling material |
WO2009003119A1 (en) | 2007-06-26 | 2008-12-31 | Donaldson Company, Inc. | Filtration media pack, filter elements, and methods |
JP5986354B2 (ja) * | 2008-02-04 | 2016-09-06 | ドナルドソン カンパニー,インコーポレイティド | 縦溝流路付きろ過媒体を形成する方法および装置 |
WO2010011910A2 (en) | 2008-07-25 | 2010-01-28 | Donaldson Company, Inc. | Air filtration media pack, filter element, air filtration media, and methods |
WO2010017407A1 (en) * | 2008-08-06 | 2010-02-11 | Donaldson Company, Inc. | Z-media having flute closures, methods and apparatus |
US8834667B2 (en) | 2010-10-19 | 2014-09-16 | The Boeing Company | Method for joining sandwich truss core panels and composite structures produced therefrom |
US8815038B2 (en) | 2008-10-01 | 2014-08-26 | The Boeing Company | Joining curved composite sandwich panels |
US7998299B2 (en) * | 2008-10-01 | 2011-08-16 | The Boeing Company | Method for making composite truss panel having a fluted core |
WO2010099317A2 (en) * | 2009-02-27 | 2010-09-02 | Donaldson Company, Inc. | Filter cartridge; components thereof; and methods |
US9222260B1 (en) * | 2009-04-10 | 2015-12-29 | Su Hao | Lightweight multi-layer arch-structured armor (LMAR) |
WO2011017352A2 (en) | 2009-08-03 | 2011-02-10 | Donaldson Company, Inc. | Method and apparatus for forming fluted filtration media having tapered flutes |
US9528382B2 (en) * | 2009-11-10 | 2016-12-27 | General Electric Company | Airfoil heat shield |
US20110110790A1 (en) * | 2009-11-10 | 2011-05-12 | General Electric Company | Heat shield |
CN101927585B (zh) * | 2009-12-30 | 2012-11-28 | 哈尔滨工业大学 | 用于热防护系统的金属蜂窝结构与陶瓷结合的盖板 |
JP2013517930A (ja) | 2010-01-25 | 2013-05-20 | ドナルドソン カンパニー,インコーポレイティド | テーパ付きフルートを有する、プリーツ加工されたろ材 |
GB201020189D0 (en) * | 2010-11-29 | 2011-01-12 | Airbus Uk Ltd | An aircraft structure |
JP5872179B2 (ja) * | 2011-03-10 | 2016-03-01 | 株式会社エフ・シー・シー | 排気ガス浄化用触媒担体の製造方法 |
US9555871B2 (en) * | 2012-03-05 | 2017-01-31 | The Boeing Company | Two-surface sandwich structure for accommodating in-plane expansion of one of the surfaces relative to the opposing surface |
DE102013106396A1 (de) * | 2013-06-19 | 2014-12-24 | Elringklinger Ag | Verfahren zum Herstellen eines keramischen Abschirmteils sowie keramisches Abschirmteil |
US20150198050A1 (en) * | 2014-01-15 | 2015-07-16 | Siemens Energy, Inc. | Internal cooling system with corrugated insert forming nearwall cooling channels for airfoil usable in a gas turbine engine |
GB2524059B (en) * | 2014-03-13 | 2019-10-16 | Hs Marston Aerospace Ltd | Curved cross-flow heat exchanger |
US10378207B2 (en) * | 2014-04-14 | 2019-08-13 | Les Richard Gonda | Systems, devices, and/or methods for constructing towers |
US10207471B2 (en) * | 2016-05-04 | 2019-02-19 | General Electric Company | Perforated ceramic matrix composite ply, ceramic matrix composite article, and method for forming ceramic matrix composite article |
WO2019244881A1 (ja) * | 2018-06-20 | 2019-12-26 | 信越ポリマー株式会社 | 放熱構造体、放熱構造体の製造方法およびバッテリー |
US11879351B2 (en) * | 2021-12-13 | 2024-01-23 | Rtx Corporation | Composite component with damper for gas turbine engine |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE212357C (de) * | ||||
GB1457757A (en) * | 1973-11-28 | 1976-12-08 | Secr Defence | Carbon fibre/carbon composite materials impregnated with silicon |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3137602A (en) * | 1959-08-21 | 1964-06-16 | Continental Can Co | Ceramic honeycomb |
US3251403A (en) * | 1962-01-05 | 1966-05-17 | Corning Glass Works | Ceramic heat exchanger structures |
US3926702A (en) * | 1972-03-29 | 1975-12-16 | Asamura Patent Office | Ceramic structures and process for producing the same |
US4017347A (en) * | 1974-03-27 | 1977-04-12 | Gte Sylvania Incorporated | Method for producing ceramic cellular structure having high cell density |
DE2929217A1 (de) * | 1979-07-19 | 1983-12-01 | Messerschmitt-Bölkow-Blohm GmbH, 8000 München | Rotationssymmetrischer hohler verbundkoerper |
-
1983
- 1983-07-30 DE DE3327659A patent/DE3327659C2/de not_active Expired
-
1984
- 1984-07-23 US US06/633,870 patent/US4617072A/en not_active Expired - Fee Related
- 1984-07-27 JP JP59155673A patent/JPS6058847A/ja active Pending
- 1984-07-30 EP EP84109011A patent/EP0151213A1/de not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE212357C (de) * | ||||
GB1457757A (en) * | 1973-11-28 | 1976-12-08 | Secr Defence | Carbon fibre/carbon composite materials impregnated with silicon |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2607069A1 (fr) * | 1986-11-20 | 1988-05-27 | Dunlop Ltd | Panneau de poids leger, en particulier pour avions, et son procede de fabrication |
US5360500A (en) * | 1986-11-20 | 1994-11-01 | Dunlop Limited | Method of producing light-weight high-strength stiff panels |
US5547737A (en) * | 1986-11-20 | 1996-08-20 | Dunlop Limited | Light-weight, high-strength, stiff panels |
WO1996032618A1 (en) * | 1995-04-13 | 1996-10-17 | Alliedsignal Inc. | Carbon/carbon composite parallel plate heat exchanger and method of fabrication |
US5845399A (en) * | 1995-06-05 | 1998-12-08 | Alliedsignal Inc. | Composite plate pin or ribbon heat exchanger |
DE19947731A1 (de) * | 1999-10-05 | 2001-04-19 | Deutsch Zentr Luft & Raumfahrt | Bauteil aus SiC-Keramik und Verfahren zur Herstellung eines Bauteils aus SiC-Keramik |
DE19947731B4 (de) * | 1999-10-05 | 2005-06-23 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Verfahren zur Herstellung eines Bauteils aus SiC-Keramik sowie danach hergestelltes Halbzeug |
DE102004014092B4 (de) * | 2004-03-20 | 2012-04-19 | Viessmann Werke Gmbh & Co Kg | Vorrichtung zur Umwandlung von Kohlenwasserstoffgas und Wasserdampf in Wasserstoff und weitere Reformerprodukte |
DE102004014092A1 (de) * | 2004-03-20 | 2005-10-06 | Viessmann Werke Gmbh & Co Kg | Vorrichtung zur Umwandlung von Kohlenwasserstoffgas und Wasserdampf in Wasserstoff und weitere Reformerprodukte |
DE102011103106A1 (de) * | 2011-05-25 | 2012-11-29 | Erbicol S.A. | Wärmeübertrager aus keramischem Material, insbesondere für Rekuperatorbrenner, und Verfahren zu dessen Herstellung |
EP2849256A3 (de) * | 2011-05-27 | 2015-04-22 | Bayerische Motoren Werke Aktiengesellschaft | Energiespeichermodul aus mehreren insbesondere prismatischen Speicherzellen und Verfahren zur Herstellung eines Energiespeichermoduls |
US9882177B2 (en) | 2011-05-27 | 2018-01-30 | Bayerische Motoren Werke Aktiengesellschaft | Energy storage module comprising a plurality of prismatic storage cells and method for production thereof |
DE102014208955A1 (de) * | 2014-05-12 | 2015-11-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Wärmeübertragungsvorrichtung und deren Verwendung |
US10605543B2 (en) | 2014-05-12 | 2020-03-31 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Heat transfer device having channels |
CN110204319A (zh) * | 2019-04-22 | 2019-09-06 | 湖南远辉复合材料有限公司 | 一种陶瓷基复合材料点阵结构的整体式制备方法 |
CN110204319B (zh) * | 2019-04-22 | 2021-11-12 | 湖南远辉复合材料有限公司 | 一种陶瓷基复合材料点阵结构的整体式制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US4617072A (en) | 1986-10-14 |
JPS6058847A (ja) | 1985-04-05 |
DE3327659C2 (de) | 1987-01-02 |
DE3327659A1 (de) | 1985-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0151213A1 (de) | Verfahren zur Herstellung eines reaktionsgesinterten Siliciumcarbidkörpers | |
DE69916240T2 (de) | Wärmetauscher aus verbundwerkstoff und dessen herstellungsverfahren | |
EP1852252B2 (de) | Hochtemperaturbeständiger Verbundwerkstoff | |
US5360500A (en) | Method of producing light-weight high-strength stiff panels | |
DE69406815T2 (de) | Verfahren zur Herstellung eines Verbundmaterialkörpers, insbesondere einer Sandwichplatte, aus mehreren zusammengesetzten Vorformen | |
Byrne et al. | Cellulose derived composites—A new method for materials processing | |
KR100447840B1 (ko) | 탄소 복합재 제조 방법 | |
DE4030529C2 (de) | ||
EP2486179A1 (de) | Verbundwerkstoff aus carbonfaser-weichfilz und carbonfaser-hartfilz | |
EP1693618B1 (de) | Porenkörpereinrichtung für einen Porenbrenner, Verfahren zur Herstellung einer Porenkörpereinrichtung für einen Porenbrenner und Porenbrenner | |
GB2197618A (en) | Panels | |
DE10126926B4 (de) | Brennkammer mit Innenmantel aus einem keramischen Komposit-Material und Verfahren zur Herstellung | |
EP1515835B1 (de) | Kohlenstoffwabenkörper | |
DE69709716T2 (de) | Verfahren zur herstellung eines kohlenstoff/kohlenstoff wärmetauschers | |
EP1544565A2 (de) | Platten-Wärmeübertrager, Verfahren zur Herstellung eines Platten-Wärmeübertragers und keramischer Faserverbundwerkstoff, insbesondere für einen Platten-Wärmeübertrager | |
DE2631092C2 (de) | Keramischer Wechselschicht-Wärmetauscher in Modulbauweise | |
DE19810067C1 (de) | Bewegbare Baukomponente für eine thermomechanisch belastete Bauanordnung sowie Verfahren zur Herstellung der Baukomponente | |
EP2192096A2 (de) | Verfahren zur Herstellung eines Keramikbauteils | |
DE3446649A1 (de) | Auskleidung fuer hochtemperatur-gasturbinen | |
DE102019126740A1 (de) | Turbinendüsengehäuse aus keramischem matrix-verbundstoff und montageverfahren | |
DE19937812A1 (de) | Bauelement mit einem bei erhöhter Temperatur belastbaren Teil aus Verbundwerkstoff mit Fluidumwälzkühlung | |
EP0231787B1 (de) | Verfahren zum Herstellen eines undurchlässigen Kohlenstoff- oder Graphitkörpers | |
DE10246851C1 (de) | Verfahren zur Herstellung von Bauteilen aus faserverstärkter Verbundkeramik sowie deren Verwendungen | |
WO2011015571A1 (de) | Verfahren zum herstellen eines wärmeübertragers sowie wärmeübertrager | |
EP0996848B1 (de) | Wärmetauscher |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB LI SE |
|
17P | Request for examination filed |
Effective date: 19860211 |
|
17Q | First examination report despatched |
Effective date: 19861217 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19870414 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MERZ, HERBERT |