US20080236077A1 - Wall paneling material - Google Patents

Wall paneling material Download PDF

Info

Publication number
US20080236077A1
US20080236077A1 US11/728,770 US72877007A US2008236077A1 US 20080236077 A1 US20080236077 A1 US 20080236077A1 US 72877007 A US72877007 A US 72877007A US 2008236077 A1 US2008236077 A1 US 2008236077A1
Authority
US
United States
Prior art keywords
wall paneling
sheet metal
foam
corrugated sheet
sinusoidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/728,770
Inventor
Sean O'Reilly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/728,770 priority Critical patent/US20080236077A1/en
Publication of US20080236077A1 publication Critical patent/US20080236077A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/20Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
    • E04C2/205Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics of foamed plastics, or of plastics and foamed plastics, optionally reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • E04C2/3405Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/34Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts
    • E04C2/3405Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure composed of two or more spaced sheet-like parts spaced apart by profiled spacer sheets
    • E04C2002/3444Corrugated sheets
    • E04C2002/3466Corrugated sheets with sinusoidal corrugations

Definitions

  • This invention relates to a non-deformable but shapeable, lightweight, wall paneling material that is easily subdivided into uniform sections or pieces and has superior strength with insulating and sound proofing properties.
  • the stiffening material (stiffening sheet 82 ) to have pieces of equivalent weight to volume ratio.
  • Equivalent weight to volume ratio is achieved when the amount of stiffening material and bulk producing layers are approximately the same with each piece of equivalent volume or area. Having equivalent weight to volume ratio on the pieces put together to achieve a certain shape or size is desirable. For example, this is important in the construction of a barbecue island or counter tops that will hold an object of a sizeable weight such as a grill or a sink.
  • the top surfaces of the paneling material framing or holding the heavy object should have a good balance which is achieved when there is an equivalent weight to volume ratio resulting into an equivalent axial load supporting strength. Otherwise, with time, one panel may sag or buckle outward more than the other panel causing the object being held to tilt towards the direction of the panel with the less axial load supporting capacity.
  • the stiffening material of English, as constructed and designed restricts the cutting of the pieces to straight lines because cutting with curvature will produce pieces with non-equivalent weight to volume ratios. A curved cut will not produce equivalent or uniform pieces of stiffening material due to the crisscross design. Consequently, square or rectangular pieces can be obtained but not panels with curved edges.
  • the crisscross design of the stiffening material also prevents the panel from being bent or shaped to produce curved outside surfaces since the lateral or vertical sides of the stiffening material braces its horizontal sides and vice-versa. Further, also because of the square crisscross design, the outside flat surfaces of the wall paneling material not directly supported but in between the directed convolutions of the stiffening material, would be deformable or even crack when accidentally bumped into or subjected to a blow because these flat surfaces are made of low or intermediate density bulk producing layers supported only by a flat sheet metal.
  • the foam layers should allow the plurality of hollow cell-containing fire extinguishing agents embedded into the foam layers to be readily accessible so these can readily disintegrate and emit fire-extinguishing gases when subjected to the heat of combustion. Because the foam is of a low or intermediate density, its soundproofing capability is reduced, as well.
  • U.S. Pat. No. 6,412,243 issued to Sutelan claims an ultra-lite modular composite building assembly.
  • the material is lightweight, despite the number of hollow tubular sections formed by bonding together two panels with matching semi-circular shaped end sections, because these are made of plastic.
  • These hollow tubular sections is identified as structural member in Sutelan which is equivalent to the stiffening material of English. If these hollow tubular sections were constructed with metal, it is doubtful if these can maintain its ultra-lite property. As in English above, it would also be difficult to cut the panel into pieces of equivalent weight to volume ratio unless cut at the notches ( 34 ) as proposed by Sutelan for modular panel subdivision (col. 6, lines 40-44).
  • a wall paneling material having a high strength to weight ratio and a lateral load bearing strength comprising a centrally disposed sinusoidal corrugated sheet metal having two surfaces, each surface laminated to a foam material by a bonding sealant or instead of bonding, the sinusoidal corrugated sheet metal is molded between two foam materials.
  • the sheet metal is usually galvanized to protect it from rusting.
  • An isocyanate based bonding sealant has performed well for the wall paneling material described.
  • Foam material as used herein refers to the foam materials usually used for construction and wall panels which are manufactured from a variety of synthetic polymers including polyvinyl chloride (PVC), polystyrene (PS), polyurethane (PU), polymethacrylamide, polyetherimide (PEI), and styreneacryolonitrile (SAN). Other foam materials that have similar performance and properties, although not specifically listed above can also be used.
  • An expanded polystyrene material with a density of 1-2 lbs/ft 3 is suitable for use for these wall paneling materials.
  • the foam materials sandwiching the sinusoidal corrugated sheet metal can have an inner flat surface and an outer flat surface or an inner surface of matching sinusoidal corrugation extending in a direction opposite the sinusoidal corrugation of the sheet metal to allow direct surface to surface contact between the foam material and the corrugated sheet metal and an outer flat surface.
  • the foam material can be bonded to the sinusoidal corrugated sheet metal at the tips and bases of the corrugation of the sheet metal thereby forming a multi-point interface.
  • the wall paneling bonded in this manner are more pliable than those wall paneling where the foam materials are bonded to an entire surface of the sinusoidal corrugated sheet metal.
  • the pieces cut from the wall paneling material have equivalent weight to volume ratios, equivalent lateral load bearing strength and uniform amount of sheet metal to foam ratio.
  • the sinusoidal corrugation has a height of 0.5 to 1.5 and a tip to tip or base to base distance of 2-3 inches.
  • the sinusoidal corrugated sheet metal has a thickness of 18-29 gauge.
  • Commercially available channels can be attached on a side of the wall paneling material for connecting one wall paneling with another.
  • a process for assembling the wall paneling material described above comprises: applying a bonding sealant at an inner surface of a first layer of foam material; laying a first surface of a two surface sinusoidal corrugated sheet metal on top of the inner surface of the first layer of foam material; applying a bonding sealant on an exposed second surface of the sinusoidal corrugated sheet metal; laying a second layer of foam material on top of the exposed second surface of the sinusoidal corrugated sheet metal; and, compressing the first and second layer of foam material with the sinusoidal corrugated sheet metal in between with a pressure that bonds together the layers of foam material with the sinusoidal corrugated sheet metal without deforming or over compressing the foam materials.
  • Another process is by molding the corrugated sheet metal in between two foam material, a process that would not require an external bonding sealant.
  • FIG. 1 is a perspective view of a wall paneling material with the foam material bonded to the tips and bases of the corrugation of a centrally disposed sheet metal.
  • FIG. 1A is a perspective view of a wall paneling material with the inside surfaces of the foam material fully bonded to the corrugation of a centrally disposed sheet metal showing a channel connecting on one lateral side.
  • FIG. 2 is an exploded view of the non-bonded wall paneling of FIGS. 1 .
  • FIG. 2A is an exploded view of the non-bonded wall paneling of FIGS. 1A .
  • FIG. 3 is a perspective view of a curved wall paneling material.
  • FIG. 4 is a front side of the sinusoidal corrugation of the sheet metal showing how the height and the distance between the tips or the lowest points of the waves are measured.
  • the wall paneling 100 shown in FIGS. 1 and 1A is simple in construction but provides numerous desirable properties including but not limited to high strength to weight ratio.
  • the outside surfaces of this wall paneling material are pre-finished surfaces, providing an inside wall surface, where a cover layer or layers of final finishing can be attached.
  • the type of final finishing is dependent upon the desire of the user or the property desired. Examples of finishing are stucco, tiles, veneer stone, wood veneer, plaster, brick and the like.
  • Example of properties desired are decorative, fireproof, waterproof, etc.
  • the wall paneling material is made up of a centrally disposed corrugated sheet metal 11 laminated on each side with an expanded foam material 12 . If rusting is a concern, the sheet metal is galvanized.
  • the foam materials usually used for construction and wall panels are manufactured from a variety of synthetic polymers including polyvinyl chloride (PVC), polystyrene (PS), polyurethane (PU), polymethacrylamide, polyetherimide (PEI), and styreneacryolonitrile (SAN). Other foam materials that have similar performance and properties, although not specifically listed above can also be used.
  • FIG. 1 shows one type of wall paneling where the centrally disposed sheet metal 11 is bonded on each opposite side with a foam material that has a flat inner surface 13 and a flat outer surface 14 .
  • FIG. 1A is the same wall paneling except that the corrugated sheet metal is sandwiched between two foam materials having an inner surface 16 of multiple matching corrugation extending in a direction opposite the corrugation of the sheet metal to allow direct surface to surface contact between the foam material and the corrugated sheet metal.
  • the tips 15 of the sinusoidal corrugation of the foam contacts the base
  • the outer surface 17 is flat. In this design, the entire inner surfaces 16 of the foam materials are bonded on each side of the corrugated sheet metal 11 .
  • the corrugated sheet metal can be molded between a first layer and a second layer of foam materials.
  • corrugation Central to this invention is the shape of the corrugation.
  • This invention is specific to the corrugation shown in FIGS. 1 , 1 A, 2 , 2 A and 3 , a corrugation having a wavelike structure of alternating concaves and convexes similar to a sine wave, hereinafter sinusoidal corrugation, as clearly shown in isolated form by FIG. 4 .
  • the sheet metal having this corrugation is referred to herein as sinusoidal corrugated sheet metal.
  • Other types of corrugation will not provide the properties that can be derived from a sinusoidal corrugation.
  • the resulting wall paneling material can be cut into a desired size and shape, at any location, and still form panels or pieces with uniform amount of sheet metal to foam ratio resulting in equivalent weight to volume ratio.
  • This corrugation also does not have flat surfaces unlike those presently used. This which makes it more resistant to deformation caused by a blow or pressure applied on the outside flat surfaces 14 and 17 of the foam material.
  • this wall paneling material is also pliable as shown in FIG. 3 . It can be bent or shaped as desired.
  • the height 19 of the sinusoidal corrugation from tip 15 to the base 15 a can range from 0.5 to 1.5 inches and the distance 20 from tip to tip or base to base of the sinusoidal corrugation can range from 2-3 inches as shown in FIG. 4 .
  • a sinusoidal corrugated sheet metal of 29 gauge can be used and still produce a wall paneling material with superior lateral load bearing strength, withstanding stresses applied to them without buckling outward. Because of this property, these wall paneling materials also provide proper framing for the reception of windows, doors or appliances that are built-in or inserted into the walls.
  • a sinusoidal corrugated sheet metal of 29 gauge with a height 19 of 0.5 inches and a tip to tip distance 20 of 23 ⁇ 4 inches is recommended for its high strength to weight ratio.
  • the thickness of the sinusoidal corrugated sheet metal can go as high as 18 gauge but the weight of the wall paneling per unit volume increases as the gauge rating decreases. Lower gauge sheet metal are also less pliable than those of a higher gauge. Use of two layers instead of one layer of corrugated sheet metal will increase the strength but will also increase the weight of the wall paneling material. The thickness of the sheet metal is generally dictated by the physical requirement of use and the over-all strength required. Gauge 29 would produce a more lightweight wall panel with sufficient load bearing strength.
  • the foam materials 12 are bonded on each side of the corrugated sheet metal with an isocyanate based sealant such as a sealant containing methylene bisphenyl isocyanate (MDI) sold by Dow Chemical.
  • the sealant should be in a diluent or solvent that does not dissolve or affect the physical and chemical characteristics of the foam material.
  • the sealant is sprayed or applied at the inner surface, 13 or 16 of a first layer 21 of foam material 12 .
  • a first surface 22 of a two surface sinusoidal corrugated sheet metal 11 one facing the inner surface 13 or 16 , is laid on top of the first layer 21 of the foam material 12 after application of the sealant on the inner surface 13 or 16 on the first layer of foam material.
  • the exposed second surface 23 of the sinusoidal corrugated sheet metal is then sprayed or applied with the sealant prior to laying the second layer 24 of foam material 12 on top of the exposed second surface 23 of the sinusoidal corrugated sheet metal 11 .
  • the resulting layers are compressed with a pressure that will bond the layers together without cracking the foam materials.
  • the above process of assembly can be automated. For wall paneling materials where only the tips or bases of the sinusoidal corrugation are bonded as shown in FIG.
  • the sealant can be applied on the surfaces of the tips 15 or the bases 15 a of the corrugation of the sheet metal facing the foam material instead of applying the sealant to the entire inner surface of the foam material before sandwiching the sinusoidal corrugated sheet metal between the foam materials.
  • the sealants can be used to fill the voids after the layers are bonded, if desired.
  • the wall paneling are generally connected to each other with the use of channels 25 as shown in FIG. 2A . All four sides of the paneling material can be framed by the channel. After the application of the channels, the outer surfaces 26 of the channels of the wall paneling to be connected are attached to each other by means known in the art. The width 27 of the channels is dictated by the thickness 28 of the wall paneling material. The thickness of the wall paneling usually used ranges from 1.5 to 2.5 inches but dimensions outside these ranges can also be used according to the desire of the user.

Abstract

A wall paneling material having a high strength to weight ratio and a lateral load bearing strength, comprising a centrally disposed sinusoidal corrugated sheet metal sandwiched between a first layer and a second layer of foam material.

Description

  • This invention relates to a non-deformable but shapeable, lightweight, wall paneling material that is easily subdivided into uniform sections or pieces and has superior strength with insulating and sound proofing properties.
  • BACKGROUND
  • Current wall paneling material with a high strength to weight ratio are heavy or can not be curved readily into a desired shape. Most of this sandwiches a foam material between two metal sheets. Because of the metal sheets, these panels are not only heavy but the finishing cover layers are also not easily applied on their outer surfaces. A lightweight paneling material of a high strength to weight ratio is disclosed in U.S. Pat. No. 4,351,870 issued to Edgar English, Jr., hereinafter English. English achieves this property by sandwiching a strength increasing stiffening material between at least two layers of lightweight bulk producing layers such as foamed plastic or foam rubber material. While it achieves a high strength to weight ratio, the panel material is not shapeable. Further, to be able to divide the panel into equivalent or uniform sections or parts, one needs to do the cut at the middle of the crisscross or square design of the stiffening material (stiffening sheet 82) to have pieces of equivalent weight to volume ratio. Equivalent weight to volume ratio is achieved when the amount of stiffening material and bulk producing layers are approximately the same with each piece of equivalent volume or area. Having equivalent weight to volume ratio on the pieces put together to achieve a certain shape or size is desirable. For example, this is important in the construction of a barbecue island or counter tops that will hold an object of a sizeable weight such as a grill or a sink. The top surfaces of the paneling material framing or holding the heavy object should have a good balance which is achieved when there is an equivalent weight to volume ratio resulting into an equivalent axial load supporting strength. Otherwise, with time, one panel may sag or buckle outward more than the other panel causing the object being held to tilt towards the direction of the panel with the less axial load supporting capacity. The stiffening material of English, as constructed and designed, restricts the cutting of the pieces to straight lines because cutting with curvature will produce pieces with non-equivalent weight to volume ratios. A curved cut will not produce equivalent or uniform pieces of stiffening material due to the crisscross design. Consequently, square or rectangular pieces can be obtained but not panels with curved edges. The crisscross design of the stiffening material also prevents the panel from being bent or shaped to produce curved outside surfaces since the lateral or vertical sides of the stiffening material braces its horizontal sides and vice-versa. Further, also because of the square crisscross design, the outside flat surfaces of the wall paneling material not directly supported but in between the directed convolutions of the stiffening material, would be deformable or even crack when accidentally bumped into or subjected to a blow because these flat surfaces are made of low or intermediate density bulk producing layers supported only by a flat sheet metal. The above properties of the bulk producing layers serve the purpose of English's invention because the foam layers should allow the plurality of hollow cell-containing fire extinguishing agents embedded into the foam layers to be readily accessible so these can readily disintegrate and emit fire-extinguishing gases when subjected to the heat of combustion. Because the foam is of a low or intermediate density, its soundproofing capability is reduced, as well.
  • U.S. Pat. No. 6,412,243 issued to Sutelan claims an ultra-lite modular composite building assembly. The material is lightweight, despite the number of hollow tubular sections formed by bonding together two panels with matching semi-circular shaped end sections, because these are made of plastic. These hollow tubular sections is identified as structural member in Sutelan which is equivalent to the stiffening material of English. If these hollow tubular sections were constructed with metal, it is doubtful if these can maintain its ultra-lite property. As in English above, it would also be difficult to cut the panel into pieces of equivalent weight to volume ratio unless cut at the notches (34) as proposed by Sutelan for modular panel subdivision (col. 6, lines 40-44). This aspect also precludes subdividing the panel with curved edges as stated above because it would be difficult to produce equivalent pieces. Bending or shaping the wall paneling is also difficult as evidenced by the necessity of devising corner connectors for these panels and even with the corner connectors, these can not form smoothly curved surfaces. Wall paneling material and wall paneling are used herein interchangeably to mean the same thing.
  • It is therefore an object of this invention to provide a lightweight wall paneling material that posses a superior strength to weight ratio.
  • It is also an object of this invention to provide a lightweight paneling material that has a high strength to weight ratio that can be subdivided into separate smaller panels of equivalent weight to volume ratio.
  • It is still an object of this invention to provide a lightweight paneling material that has a high strength to weight ratio that is pliable, that is, it can be curved or shaped without the need of pre-manufactured interlocking side connectors.
  • It is a further object of this invention to provide a lightweight wall paneling material that posses superior strength to weight ratio and high axial load supporting capacity.
  • It is still a further object of this invention to provide a non-deformable but shapeable, lightweight, wall paneling material having a superior strength with insulating and sound proofing properties that can be easily subdivided or cut into equivalent sections or pieces.
  • It is also still a further object of this invention to provide a wall paneling material that is inexpensive and can be assembled from commercially available parts.
  • SUMMARY OF THE INVENTION
  • A wall paneling material having a high strength to weight ratio and a lateral load bearing strength, comprising a centrally disposed sinusoidal corrugated sheet metal having two surfaces, each surface laminated to a foam material by a bonding sealant or instead of bonding, the sinusoidal corrugated sheet metal is molded between two foam materials. The sheet metal is usually galvanized to protect it from rusting. An isocyanate based bonding sealant has performed well for the wall paneling material described. Foam material as used herein refers to the foam materials usually used for construction and wall panels which are manufactured from a variety of synthetic polymers including polyvinyl chloride (PVC), polystyrene (PS), polyurethane (PU), polymethacrylamide, polyetherimide (PEI), and styreneacryolonitrile (SAN). Other foam materials that have similar performance and properties, although not specifically listed above can also be used. An expanded polystyrene material with a density of 1-2 lbs/ft3 is suitable for use for these wall paneling materials. The foam materials sandwiching the sinusoidal corrugated sheet metal can have an inner flat surface and an outer flat surface or an inner surface of matching sinusoidal corrugation extending in a direction opposite the sinusoidal corrugation of the sheet metal to allow direct surface to surface contact between the foam material and the corrugated sheet metal and an outer flat surface. The foam material can be bonded to the sinusoidal corrugated sheet metal at the tips and bases of the corrugation of the sheet metal thereby forming a multi-point interface. The wall paneling bonded in this manner are more pliable than those wall paneling where the foam materials are bonded to an entire surface of the sinusoidal corrugated sheet metal. The pieces cut from the wall paneling material have equivalent weight to volume ratios, equivalent lateral load bearing strength and uniform amount of sheet metal to foam ratio. It is also resistant to deformation caused by pressure applied at an outside flat surface of the foam material. The sinusoidal corrugation has a height of 0.5 to 1.5 and a tip to tip or base to base distance of 2-3 inches. The sinusoidal corrugated sheet metal has a thickness of 18-29 gauge. Commercially available channels can be attached on a side of the wall paneling material for connecting one wall paneling with another.
  • A process for assembling the wall paneling material described above comprises: applying a bonding sealant at an inner surface of a first layer of foam material; laying a first surface of a two surface sinusoidal corrugated sheet metal on top of the inner surface of the first layer of foam material; applying a bonding sealant on an exposed second surface of the sinusoidal corrugated sheet metal; laying a second layer of foam material on top of the exposed second surface of the sinusoidal corrugated sheet metal; and, compressing the first and second layer of foam material with the sinusoidal corrugated sheet metal in between with a pressure that bonds together the layers of foam material with the sinusoidal corrugated sheet metal without deforming or over compressing the foam materials. Another process is by molding the corrugated sheet metal in between two foam material, a process that would not require an external bonding sealant.
  • Other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description, wherein it shows and describes only certain embodiments of the invention by way of illustration. As will be realized, the invention is capable of other and different embodiments and its several details are capable of modification in various other respects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Aspects of the present invention are illustrated by way of example, and not by way of limitation, in the accompanying drawings, wherein:
  • FIG. 1 is a perspective view of a wall paneling material with the foam material bonded to the tips and bases of the corrugation of a centrally disposed sheet metal.
  • FIG. 1A is a perspective view of a wall paneling material with the inside surfaces of the foam material fully bonded to the corrugation of a centrally disposed sheet metal showing a channel connecting on one lateral side.
  • FIG. 2 is an exploded view of the non-bonded wall paneling of FIGS. 1.
  • FIG. 2A is an exploded view of the non-bonded wall paneling of FIGS. 1A.
  • FIG. 3 is a perspective view of a curved wall paneling material.
  • FIG. 4 is a front side of the sinusoidal corrugation of the sheet metal showing how the height and the distance between the tips or the lowest points of the waves are measured.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The wall paneling 100 shown in FIGS. 1 and 1A is simple in construction but provides numerous desirable properties including but not limited to high strength to weight ratio. The outside surfaces of this wall paneling material are pre-finished surfaces, providing an inside wall surface, where a cover layer or layers of final finishing can be attached. The type of final finishing is dependent upon the desire of the user or the property desired. Examples of finishing are stucco, tiles, veneer stone, wood veneer, plaster, brick and the like. Example of properties desired are decorative, fireproof, waterproof, etc.
  • As shown in FIGS. 1 and 1A, the wall paneling material is made up of a centrally disposed corrugated sheet metal 11 laminated on each side with an expanded foam material 12. If rusting is a concern, the sheet metal is galvanized. The foam materials usually used for construction and wall panels are manufactured from a variety of synthetic polymers including polyvinyl chloride (PVC), polystyrene (PS), polyurethane (PU), polymethacrylamide, polyetherimide (PEI), and styreneacryolonitrile (SAN). Other foam materials that have similar performance and properties, although not specifically listed above can also be used. One example, an expanded polystyrene material with a density of 1-2 lbs/ft3 is suitable for use for these wall paneling materials. The densities may vary from that of the polystyrene material for other types of synthetic polymer. A density of 1.35 lbs/ft3 is recommended for the expanded polystyrene foam material. In addition to the properties described here for the foam materials, these should also be environmentally safe and inert. FIG. 1 shows one type of wall paneling where the centrally disposed sheet metal 11 is bonded on each opposite side with a foam material that has a flat inner surface 13 and a flat outer surface 14. As shown, only the or tips 15 and bases 15 a of the corrugation of the sheet metal 11 are bonded forming a multi-point interface attachment between the corrugated sheet metal 11 and the foam materials 12. FIG. 1A on the other hand is the same wall paneling except that the corrugated sheet metal is sandwiched between two foam materials having an inner surface 16 of multiple matching corrugation extending in a direction opposite the corrugation of the sheet metal to allow direct surface to surface contact between the foam material and the corrugated sheet metal. The tips 15 of the sinusoidal corrugation of the foam contacts the base The outer surface 17 is flat. In this design, the entire inner surfaces 16 of the foam materials are bonded on each side of the corrugated sheet metal 11. The wall paneling shown in FIG. 1 is more pliable than the wall paneling shown in FIG. 1A. It can be bent or shaped as desired. The voids 18 created between the non-bonded inner surfaces 13 of the foam material 12 and the corrugated sheet metal 11 can be used to accommodate other building materials such as conduits, electrical wiring and the like. These voids 18 can also be filled up with the bonding material. The bonding of the foam material on opposite sides of the corrugated sheet metal contribute to the longitudinal or lateral load bearing strength of the wall paneling material. The wall paneling shown in FIG. 1A and the wall paneling resulting after filling up the voids 18 are more suited for straight flat surfaces. Instead of using a bonding sealant for laminating the layers, the corrugated sheet metal can be molded between a first layer and a second layer of foam materials.
  • Central to this invention is the shape of the corrugation. There are so many types of corrugation. This invention is specific to the corrugation shown in FIGS. 1, 1A, 2, 2A and 3, a corrugation having a wavelike structure of alternating concaves and convexes similar to a sine wave, hereinafter sinusoidal corrugation, as clearly shown in isolated form by FIG. 4. The sheet metal having this corrugation is referred to herein as sinusoidal corrugated sheet metal. Other types of corrugation will not provide the properties that can be derived from a sinusoidal corrugation. With this type of corrugation, the resulting wall paneling material can be cut into a desired size and shape, at any location, and still form panels or pieces with uniform amount of sheet metal to foam ratio resulting in equivalent weight to volume ratio. This corrugation also does not have flat surfaces unlike those presently used. This which makes it more resistant to deformation caused by a blow or pressure applied on the outside flat surfaces 14 and 17 of the foam material. As stated above, this wall paneling material is also pliable as shown in FIG. 3. It can be bent or shaped as desired. The height 19 of the sinusoidal corrugation from tip 15 to the base 15 a (lowest point of the wave) can range from 0.5 to 1.5 inches and the distance 20 from tip to tip or base to base of the sinusoidal corrugation can range from 2-3 inches as shown in FIG. 4.
  • A sinusoidal corrugated sheet metal of 29 gauge can be used and still produce a wall paneling material with superior lateral load bearing strength, withstanding stresses applied to them without buckling outward. Because of this property, these wall paneling materials also provide proper framing for the reception of windows, doors or appliances that are built-in or inserted into the walls. A sinusoidal corrugated sheet metal of 29 gauge with a height 19 of 0.5 inches and a tip to tip distance 20 of 2¾ inches is recommended for its high strength to weight ratio.
  • The thickness of the sinusoidal corrugated sheet metal can go as high as 18 gauge but the weight of the wall paneling per unit volume increases as the gauge rating decreases. Lower gauge sheet metal are also less pliable than those of a higher gauge. Use of two layers instead of one layer of corrugated sheet metal will increase the strength but will also increase the weight of the wall paneling material. The thickness of the sheet metal is generally dictated by the physical requirement of use and the over-all strength required. Gauge 29 would produce a more lightweight wall panel with sufficient load bearing strength.
  • The foam materials 12 are bonded on each side of the corrugated sheet metal with an isocyanate based sealant such as a sealant containing methylene bisphenyl isocyanate (MDI) sold by Dow Chemical. The sealant should be in a diluent or solvent that does not dissolve or affect the physical and chemical characteristics of the foam material. The sealant is sprayed or applied at the inner surface, 13 or 16 of a first layer 21 of foam material 12. A first surface 22 of a two surface sinusoidal corrugated sheet metal 11, one facing the inner surface 13 or 16, is laid on top of the first layer 21 of the foam material 12 after application of the sealant on the inner surface 13 or 16 on the first layer of foam material. The exposed second surface 23 of the sinusoidal corrugated sheet metal is then sprayed or applied with the sealant prior to laying the second layer 24 of foam material 12 on top of the exposed second surface 23 of the sinusoidal corrugated sheet metal 11. After laying the second layer 24 of foam material 12, the resulting layers are compressed with a pressure that will bond the layers together without cracking the foam materials. The above process of assembly can be automated. For wall paneling materials where only the tips or bases of the sinusoidal corrugation are bonded as shown in FIG. 1, the sealant can be applied on the surfaces of the tips 15 or the bases 15 a of the corrugation of the sheet metal facing the foam material instead of applying the sealant to the entire inner surface of the foam material before sandwiching the sinusoidal corrugated sheet metal between the foam materials. Here, the sealants can be used to fill the voids after the layers are bonded, if desired.
  • The wall paneling are generally connected to each other with the use of channels 25 as shown in FIG. 2A. All four sides of the paneling material can be framed by the channel. After the application of the channels, the outer surfaces 26 of the channels of the wall paneling to be connected are attached to each other by means known in the art. The width 27 of the channels is dictated by the thickness 28 of the wall paneling material. The thickness of the wall paneling usually used ranges from 1.5 to 2.5 inches but dimensions outside these ranges can also be used according to the desire of the user.
  • While the embodiments of the present invention have been described, it should be understood that various changes, adaptations, and modifications may be made therein without departing from the spirit of the invention and the scope of the claims.

Claims (26)

1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. A lightweight, wall paneling material having a high strength to weight ratio and a lateral load bearing strength, the wall paneling material divisible into pieces having equivalent weight to volume ratio, equivalent lateral load bearing strength, uniform amount of sheet metal to foam ratio, comprising:
a centrally disposed sinusoidal corrugated sheet metal having two surfaces, each surface laminated to a foam material.
6. The wall paneling material of claim 5 wherein the sheet metal is laminated to the foam materials by a bonding sealant.
7. The wall paneling material of claim 5 wherein the foam material is selected from the group of synthetic polymers consisting of polyvinyl chloride (PVC), polystyrene (PS), polyurethane (PU), polymethacrylamide, polyetherimide (PEI), and styreneacryolonitrile (SAN).
8. The wall paneling material of claim 5 wherein the foam material is an expanded polystyrene material with a density of 1-2 lbs/ft3.
9. The wall paneling material of claim 5 wherein the foam material has an inner flat surface and an outer flat surface bonded to the sinusoidal corrugated sheet metal at a tip and base of the corrugation of the sheet metal thereby forming a multipoint interface.
10. (canceled)
11. The wall paneling material of claim 9 wherein the wall paneling is pliable.
12. The wall paneling material of claim 5 wherein the foam material has an outer flat surface and an inner surface of a matching sinusoidal corrugation extending in a direction opposite the sinusoidal corrugation of the sheet metal thereby allowing direct surface to surface contact between the foam material and the corrugated sheet metal.
13. The wall paneling material of claim 12 wherein the foam material is bonded to an entire surface of the sinusoidal corrugated sheet metal.
14. (canceled)
15. The wall paneling material of claim 5 wherein the wall paneling is resistant to deformation caused by pressure applied at an outside flat surface of the foam material.
16. The wall paneling material of claim 5 wherein the sinusoidal corrugation has a height of 0.5 to 1.5 and a tip to tip or base to base distance of 2-3 inches.
17. The wall paneling material of claim 5 wherein the sinusoidal corrugated sheet metal has a thickness of 18-29 gauge.
18. The wall paneling material of claim 5 further comprising a channel attached on a side of the wall paneling.
19. A wall paneling material having a high strength to weight ratio and a lateral load bearing strength, comprising:
a centrally disposed 18-29 gauge galvanized sinusoidal corrugated sheet metal having two surfaces, each surface laminated to an expanded foam material by a bonding sealant.
20. The wall paneling material of claim 19 wherein the expanded foam material is selected from the group of synthetic polymers consisting of polyvinyl chloride (PVC), polystyrene (PS), polyurethane (PU), polymethacrylamide, polyetherimide (PET), and styreneacryolonitrile (SAN) and the bonding sealant is an isocyanate based bonding sealant.
21. The wall paneling material of claim 5 wherein the corrugated sheet metal is laminated to the foam materials by molding.
22. The wall paneling material of claim 6 wherein the corrugated sheet metal is bonded to the foam materials by an isocyanate based bonding sealant containing methylene bisphenyl isocyanate (MDI).
23. A lightweight wall paneling material resistant to deformation having a high strength to weight ratio and a lateral load bearing strength, the wall paneling material divisible into pieces having equivalent weight to volume ratio, equivalent lateral load bearing strength, uniform amount of sheet metal to foam ratio, comprising:
a centrally disposed galvanized sinusoidal corrugated sheet metal of approximately 29 gauge having two surfaces, each surface laminated to an expanded foam material.
24. The wall paneling material of claim 23 wherein the corrugated sheet metal is laminated to the foam materials by molding or by a bonding sealant.
25. The wall paneling material of claim 23 wherein the sinusoidal corrugation has a height of 0.5 to 1.5 and a tip to tip or base to base distance of 2-3 inches.
26. The wall paneling material of claim 23 wherein the sinusoidal corrugation has a height of approximately 0.5 and a tip to tip or base to base distance of approximately 2 ¾ inches.
US11/728,770 2007-03-27 2007-03-27 Wall paneling material Abandoned US20080236077A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/728,770 US20080236077A1 (en) 2007-03-27 2007-03-27 Wall paneling material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/728,770 US20080236077A1 (en) 2007-03-27 2007-03-27 Wall paneling material

Publications (1)

Publication Number Publication Date
US20080236077A1 true US20080236077A1 (en) 2008-10-02

Family

ID=39791941

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/728,770 Abandoned US20080236077A1 (en) 2007-03-27 2007-03-27 Wall paneling material

Country Status (1)

Country Link
US (1) US20080236077A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090294235A1 (en) * 2007-01-05 2009-12-03 Samsonite Corporation Laptop Computer Case and Spring Protection System
US20100300024A1 (en) * 2007-12-05 2010-12-02 Svein Julton Studded Plate With Felt
ITPD20090267A1 (en) * 2009-09-16 2011-03-17 Calce Del Brenta S R L PANEL FOR THE CREATION OF VENTILATED FACADES
US20110086582A1 (en) * 2009-10-09 2011-04-14 Sokichi Takemura Mounting device for disk-shaped rotating tool
US20130295378A1 (en) * 2010-11-26 2013-11-07 Wacker Chemie Ag Panel-shaped construction elements
US20150121791A1 (en) * 2012-05-11 2015-05-07 Owen Derek Barr Web Frame
CN105569254A (en) * 2015-10-08 2016-05-11 尹胜次 Retardant insulation block and a method of manufacturing the one-piece
AU2012238289B2 (en) * 2012-08-01 2016-05-12 Cycleworld Corporation Sdn. Bhd. Sandwiched panel construction and a method of manufacturing thereof
ES2617059A1 (en) * 2015-12-14 2017-06-15 Enerblock, S.L. Procedure for construction of vertical closures, block employed in construction and vertical closure obtained (Machine-translation by Google Translate, not legally binding)
US10173760B2 (en) * 2014-03-17 2019-01-08 Thyssenkrupp Marine Systems Gmbh Device for reducing effective radar cross section
US10508456B1 (en) * 2018-07-30 2019-12-17 Interplast Group Corporation PVC seam plate
CN114523549A (en) * 2022-02-24 2022-05-24 中冶建筑研究总院有限公司 Manufacturing method of light composite heat-insulating concrete external wall panel for assembly type steel structure building
US11879255B2 (en) 2020-07-01 2024-01-23 Gebrüder Jaeger GmbH Decoupling mat and floor structure, in particular in a building with a decoupling mat

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542636A (en) * 1965-07-28 1970-11-24 Kurt Wandel Corrugated board
US3950910A (en) * 1974-09-24 1976-04-20 American Air Filter Company, Inc. Shelter panel
US4327142A (en) * 1978-12-06 1982-04-27 Vittorio Norzi Method of manufacturing goods of laminates and goods so manufactured
US4351870A (en) * 1979-10-22 1982-09-28 English Jr Edgar Maximized strength-to-weight ratio panel material
US4617072A (en) * 1983-07-30 1986-10-14 Mtu Motoren-Und Turbinen-Union Muenchen Gmbh Method for producing a composite ceramic body
US4687691A (en) * 1986-04-28 1987-08-18 United Technologies Corporation Honeycomb spliced multilayer foam core aircraft composite parts and method for making same
US4708757A (en) * 1986-07-21 1987-11-24 Guthrie Walker L Method of forming corrugated panel
US5288538A (en) * 1992-12-16 1994-02-22 Reynolds Metals Company Expandable honeycomb core structural member
US6205728B1 (en) * 1997-04-30 2001-03-27 Frank Sutelan Laminated composite building component
US6412243B1 (en) * 1997-04-30 2002-07-02 Franklin S. Sutelan Ultra-lite modular composite building system
US6568144B2 (en) * 2000-10-17 2003-05-27 Harold F. Meredith Metal construction panel

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542636A (en) * 1965-07-28 1970-11-24 Kurt Wandel Corrugated board
US3950910A (en) * 1974-09-24 1976-04-20 American Air Filter Company, Inc. Shelter panel
US4327142A (en) * 1978-12-06 1982-04-27 Vittorio Norzi Method of manufacturing goods of laminates and goods so manufactured
US4351870A (en) * 1979-10-22 1982-09-28 English Jr Edgar Maximized strength-to-weight ratio panel material
US4617072A (en) * 1983-07-30 1986-10-14 Mtu Motoren-Und Turbinen-Union Muenchen Gmbh Method for producing a composite ceramic body
US4687691A (en) * 1986-04-28 1987-08-18 United Technologies Corporation Honeycomb spliced multilayer foam core aircraft composite parts and method for making same
US4708757A (en) * 1986-07-21 1987-11-24 Guthrie Walker L Method of forming corrugated panel
US5288538A (en) * 1992-12-16 1994-02-22 Reynolds Metals Company Expandable honeycomb core structural member
US6205728B1 (en) * 1997-04-30 2001-03-27 Frank Sutelan Laminated composite building component
US6412243B1 (en) * 1997-04-30 2002-07-02 Franklin S. Sutelan Ultra-lite modular composite building system
US6568144B2 (en) * 2000-10-17 2003-05-27 Harold F. Meredith Metal construction panel

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090294235A1 (en) * 2007-01-05 2009-12-03 Samsonite Corporation Laptop Computer Case and Spring Protection System
US8353400B2 (en) * 2007-01-05 2013-01-15 Samsonite Ip Holdings S.A.R.L. Laptop computer case and spring protection system
US20100300024A1 (en) * 2007-12-05 2010-12-02 Svein Julton Studded Plate With Felt
US8516760B2 (en) * 2007-12-05 2013-08-27 Isola As Studded plate with felt
ITPD20090267A1 (en) * 2009-09-16 2011-03-17 Calce Del Brenta S R L PANEL FOR THE CREATION OF VENTILATED FACADES
EP2305910A1 (en) * 2009-09-16 2011-04-06 La Calce del Brenta S.R.L. Panel for providing curtain walls
US20110086582A1 (en) * 2009-10-09 2011-04-14 Sokichi Takemura Mounting device for disk-shaped rotating tool
US20130295378A1 (en) * 2010-11-26 2013-11-07 Wacker Chemie Ag Panel-shaped construction elements
US20150121791A1 (en) * 2012-05-11 2015-05-07 Owen Derek Barr Web Frame
US9315988B2 (en) * 2012-05-11 2016-04-19 Owen Derek Barr Web frame
US9663952B2 (en) 2012-05-11 2017-05-30 Owen Derek Barr Web frame
US10233637B2 (en) 2012-05-11 2019-03-19 Owen Derek Barr Web frame
AU2012238289B2 (en) * 2012-08-01 2016-05-12 Cycleworld Corporation Sdn. Bhd. Sandwiched panel construction and a method of manufacturing thereof
US10173760B2 (en) * 2014-03-17 2019-01-08 Thyssenkrupp Marine Systems Gmbh Device for reducing effective radar cross section
CN105569254A (en) * 2015-10-08 2016-05-11 尹胜次 Retardant insulation block and a method of manufacturing the one-piece
ES2617059A1 (en) * 2015-12-14 2017-06-15 Enerblock, S.L. Procedure for construction of vertical closures, block employed in construction and vertical closure obtained (Machine-translation by Google Translate, not legally binding)
US10508456B1 (en) * 2018-07-30 2019-12-17 Interplast Group Corporation PVC seam plate
US11879255B2 (en) 2020-07-01 2024-01-23 Gebrüder Jaeger GmbH Decoupling mat and floor structure, in particular in a building with a decoupling mat
CN114523549A (en) * 2022-02-24 2022-05-24 中冶建筑研究总院有限公司 Manufacturing method of light composite heat-insulating concrete external wall panel for assembly type steel structure building

Similar Documents

Publication Publication Date Title
US20080236077A1 (en) Wall paneling material
US4791773A (en) Panel construction
US9689165B2 (en) Self supportive panel system
US4351870A (en) Maximized strength-to-weight ratio panel material
US8387325B2 (en) Insulated siding apparatus
US4078348A (en) Construction panels for structural support systems
CA2897558C (en) Composite building panel
JP2001521085A (en) Design of seat structure to reduce weight and increase rigidity
US11447950B2 (en) System, method and apparatus for compressed insulation
US11208807B1 (en) Constructive arrangement introduced in module for panels intended for the construction of prefabricated buildings
KR200357517Y1 (en) House access floor system for noise reduction comprising high rigidity sandwich board
KR102075104B1 (en) Insulator integrated Light Stone Pannel Structure
CA2695884A1 (en) Insulated siding apparatus
CN105774175A (en) Novel plate
JP2013067973A (en) Building material panel
CN212478341U (en) Novel plate structure
CN211714435U (en) Aluminum alloy sandwich panel for indoor decoration
KR100980143B1 (en) Watertight structure of shock-absorbing layer for building bottom
US20090151279A1 (en) Log house construction element
JP3178630U (en) Floor material and floor structure using the floor material
KR20160104581A (en) Insulation Material for Construction and Manufacturing Method Thereof
US20140272311A1 (en) Composite sandwich panels and method of forming round corners in composite sandwich panels
KR102556344B1 (en) Siding panel with enhanced semi-non-combustible performance and method for manufacturing the same
CN220219985U (en) Composite board
CN216552620U (en) Large-span dysmorphism roof structure

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION