EP0143954B1 - Verfahren zum Herstellen von Formteilen nach dem Coldbox-Verfahren sowie Formwerkzeug - Google Patents

Verfahren zum Herstellen von Formteilen nach dem Coldbox-Verfahren sowie Formwerkzeug Download PDF

Info

Publication number
EP0143954B1
EP0143954B1 EP84112344A EP84112344A EP0143954B1 EP 0143954 B1 EP0143954 B1 EP 0143954B1 EP 84112344 A EP84112344 A EP 84112344A EP 84112344 A EP84112344 A EP 84112344A EP 0143954 B1 EP0143954 B1 EP 0143954B1
Authority
EP
European Patent Office
Prior art keywords
moulding
tool
moulding tool
process according
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP84112344A
Other languages
English (en)
French (fr)
Other versions
EP0143954A3 (en
EP0143954A2 (de
Inventor
Dietmar Prof. Dr.-Ing. Boenisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinische Maschinenfabrik & Eisengiesserei Anton
Original Assignee
Rheinische Maschinenfabrik & Eisengiesserei Anton Roper & Co GmbH KG
Rheinische Maschinenfabrik & Eisengiesserei Anton Roper & Co GmbH KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinische Maschinenfabrik & Eisengiesserei Anton Roper & Co GmbH KG, Rheinische Maschinenfabrik & Eisengiesserei Anton Roper & Co GmbH KG filed Critical Rheinische Maschinenfabrik & Eisengiesserei Anton Roper & Co GmbH KG
Publication of EP0143954A2 publication Critical patent/EP0143954A2/de
Publication of EP0143954A3 publication Critical patent/EP0143954A3/de
Application granted granted Critical
Publication of EP0143954B1 publication Critical patent/EP0143954B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • B22C9/123Gas-hardening

Definitions

  • Molded parts made of synthetic resin-bonded quartz sands including the casting molds, including those with cores inserted in them, are an important part of the mass production of high-quality castings.
  • the different manufacturing processes differ according to the type of synthetic resin used and its catalytic hardening.
  • the catalysis is carried out either by heating or at room temperature by adding a catalyst.
  • the thermosetting manufacturing processes are known under the names hot box, warm box and thermal shock processes. However, they are increasingly being replaced by cold-curing processes, because saving energy and facilitating workplace conditions are important advantages. Molded parts can also be produced in plastic molds.
  • Coldbox binders contain about 30 to 40% of different solvents, which are necessary for the thin liquid, a high reactivity of the binder, good moldability of the molding material mixture and sufficient strength. These high amounts of solvent lead to considerable environmental pollution during processing and casting. However, less than the amounts mentioned impair the strength, in particular of the surfaces of the molded parts. The edge strength is impaired and the molded parts become huge and crumbly overall. As a result, the coldbox process loses its usefulness. With a sufficient solvent and binder content, polyurethane-bonded molded parts have good strength immediately after their manufacture. However, they are extremely sensitive to moisture and lose strength in a short time at higher air humidity. However, high humidity levels are unavoidable in foundries.
  • Coldbox cores are also often treated with water sizing and also placed in wet casting molds and are therefore subject to severe moisture damage. It is particularly detrimental to the quality of the molded part that this damage progresses from the outside inwards and thus affects the particularly important molded surface first and foremost. The result is a highly undesirable strength gradient with low external but high internal strength.
  • the present ground bond is based on the task of improving the strength properties and core disintegration in molded parts according to the cold box process with a reduced binder content.
  • the surface of the molded part is finished to a thickness of a few millimeters, and the sensitivity to moisture inside the core is maintained or even increased, so that the strength is lower at these points during the course of the core storage.
  • This ensures that strength and resistance to moisture in the surface layer are strengthened, but also reduced in the core interior, in order to improve the core disintegration at the same time.
  • it is possible to lower the binder content. This measure lowers costs, reduces environmental pollution and improves core decay.
  • the process according to the invention is based on the idea that the disadvantages of the coldbox process described are due to a weakness in the crosslinking of the polyurethane molecules due to the weft and the immediately subsequent very rapid cold curing. Then the weak bonds between the molecular chains can easily be destroyed by water and the strength of the molded parts can be irreparably weakened.
  • the method according to the invention therefore aims to convert the polyurethane in the molded part surface into a highly crosslinked state and thereby to increase the strength and in particular the moisture resistance in the surface layer, but to leave the underlying sand layers in a weakly crosslinked state.
  • the process according to the invention can be carried out with the greatest effectiveness after the shot and shortly before the gas hardening because the molded part has already been designed at this point in time, but the molecular mobility in the still soft molding material is still great.
  • the method according to the invention thus intervenes in a manufacturing step of the Coidbox method that has so far been ignored without care and as quickly as possible. Finishing measures only after hardening on the finished molded part are far less effective because of the largely fixed fixing of the binder structures and in particular cannot be achieved with the low temperatures which characterize the process according to the invention.
  • the method according to the invention works with heated molds. Relatively low temperatures below 100 ° C can be used. The uniformity of the heating is also of minor importance. So the same mold, e.g. be 50 ° warm in places and 80 ° elsewhere without serious quality differences becoming apparent.
  • Metallic molds can be heated in a known manner electrically or by gas heating. Further possibilities are given by the application of hot air or by the necessary firing, gassing and also rinsing air being led through preheaters beforehand.
  • the method according to the invention is not to be confused with the conventional hotbox and warmbox methods and differs fundamentally from these.
  • These conventional processes use the heat for curing and therefore require the entire cross-section of the molded part to be warmed through. They work at temperatures between approximately 150 ° and 250 ° C and require high temperature uniformity with thermostatic control.
  • the heat of the method according to the invention does not lead to hardening even in the heated surface layer.
  • the molding material remains soft and would not allow handling.
  • the process according to the invention remains a cold process because the molding hardening is achieved by a gaseous catalyst. The new process therefore only serves to improve the effectiveness of gas hardening.
  • a waiting time of preferably 20 to 90 seconds can be provided between the introduction of the molding material mixture and the introduction of the gaseous catalyst.
  • This waiting time can, if necessary, be reduced to preferably 15 to 30 seconds if the solvent content in the molded part surface is increased.
  • the mold is provided with a thin film of solvent just before the shot. The enclosed molding material takes over the solvent and the desired surface finishing can be achieved in a shorter time.
  • the resistant and moisture-resistant molded part surfaces that can be achieved by the methods and devices according to the invention enable the use of low-solvent binders. They are particularly recommended for light metal casting. Low-solvent coldbox binders tend to solidify during molded part storage and are particularly sensitive to moisture. For these reasons, they could not previously be used. According to the method according to the invention, these previous disadvantages are now limited to the interior of the molded part and have an advantageous effect there because the core disintegration and also the reusability of the used sand are thereby facilitated. These advantages and the considerable advantages already offered by the possibility of lowering the binder content are offset by a slightly longer cold box process and the need to heat the molding tools.
  • the comparatively low temperatures in the method according to the invention allow the use of plastic tools. Hot water is suitable for temperature control of the tool, whereby the gas process can be extremely simplified.
  • corresponding water supply pipes in a shape adapted to the model contours in the synthetic resin during tool manufacture, which are continuously flowed through by hot water during later production. Furthermore, it is proposed to improve the thermal conductivity between the hot water pipe and the tool surface by the fact that fillers made of metal powder or metal granules with good heat conductivity are present.
  • 1 denotes the upper, 2 the lower tool half. 3 indicates the division. 4 denotes the bullet, 5 the mold cavity. 6 with the contours f e flocking synthetic resin layer is designated. With 7 pipes for hot water are designated. 8 indicates the water inlet and 9 the water outlet.
  • the flexible hose connection between the two tool halves is indicated by 10.
  • 11 means the aluminum grit, which is compacted in the sand bound by synthetic resin.
  • a heat-insulating outer jacket, for example made of quartz sand bonded with synthetic resin, is designated by 12. 13 means the tool frame.
  • the core 14 is created, which, according to the illustration in FIG. With 19 the gate is designated. There can also be a riser through which the casting melt exits after the mold cavity 21 has been filled.
  • FIG. 2 shows that not only the surface 23 of the core 14 is finished with the molding tool according to FIG. 1. This refinement in a certain layer thickness is shown by hatching 24.
  • Figure 2 shows that the molded parts 17 and 18 of the lower box and upper box are each provided with a thinning, which are shown by hatching 25 and 26. The finishing achieved according to the invention need only be present on the surfaces of the molded parts which delimit the mold cavity 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

  • Formteile aus kunstharzgebundenen Quarzsanden, darunter werden die Gießformen, auch solche mit darin eingelegten Kernen verstanden, sind eine wichtige Grundlange der Massenproduktion hochwertiger Gußstücke. Die verschiedenen Herstellungsverfahren unterscheiden sich nach der Art des verwendeten Kunstharzes und seiner katalytischen Härtung. Die Katalyse erfolgt entweder durch Wärme oder auch bei Raumtemperatur durch Zuführen eines Katalysators. Die warmhärtenden Fertigungsverfahren sind unter den Namen Hotbox-, Warmbox- und Thermoschockverfahren bekannt. Sie werden jedoch zunehmend durch kalthärtende Verfahren verdrängt, weil dabei Energieeingsparnung und erleichterte Arbeitsplatzbedingungen wichtige Vorteile sind. Die Formteilfertigung kann zudem in Formwerkzeugen aus Kunststoff erfolgen.
  • Es ist bekannt, die nach verschiedenartigen Verfahren, so auch nach dem Coldbox-Verfahren hergestellten Formteile nach der Formgebung an ihren den Formraum bildenden Seiten mit einer Schlicht zu versehen. Das Aufbringen und Trocknen einer Schlichte erfordert zusätzlich Arbeitsgänge und auch eine Warteszeit bis zum Abguß der Giebform, damit ausreichend Zeit zur Trocknung der Schlichte vorhanden ist.
  • Auf dem Gebiet der Kalthärtung hat das aus der DE-PS 15 83 521 bekannte sogenannte Coldbox-Verfahren größe Bedeutung erreicht. Auf automatischen Fertigungsanlagen werden sehr hohe Produktionsleistungen erzielt. Dieses Verfahren verwendet Polyurethan als Bindemittel, Die heute gebräuchlichsten Ausgangskomponenten sind Isoyanat und ein Phenolharz, jedoch sind auch andere Binderkombinationen möglich. Sie werden mit Quarzsand zusammen in Gehalten von etwa 1 bis 2 Gewichtsteilen vermischt. Der so entstandene Formstoff wird bei maschineller Herstellung der Gießform mit Preßluft in das Formwerkzeug geschossen und sofort anschließend durch Hindurchleiten eines Katalysatorgases, zumeist Dimethylethylamin, im kalten Werkzeug schlagartig ausgehärtet.
  • Aus technischen und wirtschaftlichen und insbesondere auch aus Gründen einer verminderten Umweltbelastung werden in der Gießereipraxis möglichst geringe Bindergehalte angestrebt, wodurch jedoch empfindliche Schwächen des Coldbox-Verfahrens hervortreten.
  • Coldbox-Binder enthalten etwa 30 bis 40% verschiedener Lösungsmittel, die für die Dünnflüssigkeit, eine hohe Reaktivität des Binders, eine gute Verschießbarkeit der Formstoffmischung und ausreichende Festigkeit notwendig sind. Diese hohen Lösungsmittelmengen führen wärhrend der Verarbeitung und beim Abguß zu erheblichen Umweltbelastungen. Geringere als die genannten Mengen verschlechtern jedoch die Festigkeit insbesondere der Formteiloberflächen. Die Kantenfestigkeit wird beeinträchtigt und die Formteile werden insgesamt rieselig und mürbe. Damit verliert das Coldbox-Verfahren seine Brauchbarkeit. Polyurethangebundene Formteile haben bei ausreichendem Lösungsmittel- und Bindergehalt sofort nach ihrer Herstellung gute Festigkeit. Sie sind jedoch starch feuchtigkeitsempfindlich und verlieren bei höherer Luftfeuchtigkeit in Kurzer Zeit an Festigkeit. Hohe Luftfeuchten aber sind in Gießereien unvermeidlich. Coldbox-Kerne werden zudem häufig mit Wasserschlichten behandelt und auch in naßgußformen eingelegt und unterliegen dadurch einer starken Feuchtigkeitsschädigung. Dabei ist es der Formteilqualität besonders abträglich, daß diese Schädigung von außen nach innen fortschreitet und damit die besonders wichtige Formteiloberfläche zuallererst beeinträchtigt. Es ergibt sich somit ein höchst unerwünschter Festigkeitsgradient mit geringer Außen-, jedoch hoher Innenfestigkeit.
  • Dieser Festigkeitsgradient ist aus einem weiteren Grund von Nachteil, weil er den Kernzerfall nach dem Abguß erschwert. Der schlechte Kernzerfall von Coldbox-Formteilen ist insbesondere beim Leichtmetallguß gefürchtet. Kernreste sind aus dem erkalteten Gußstück häufig nur sehr schwierig zu entfernen und erfordern einen hohen Putzaufwand und extreme Abreitsplatzbelastungen in der Putzerei.
  • Die Gießereipraxis versucht, den durch zu geringe Oberflächenfestigkeit bedingten Schwierigkeiten durch erhöhte Bindergehalte und den Einsatz von Überzugsstoffen zu begegnen. Höhere Bindergehalte aber verschlechtern den Kernzerfall zusätzlich, weil die Festigkeit im Kerninnern hierdurch besonders stark erhöhrt wird. Eine Feuchtigkeitsschädigung erfolgt im Kerninnern zudem weniger durchgreifend als in den Oberflächenschichten. Coldbox-Formteile haben damit den schwerwiegenden Nachteil einer unerwünschten Festigkeitsverteilung. Auch nimmt ihre Festigkeit innerhalb von 24 Std. nach der Formgebung zu.
  • Die vorliergende Erdindung geht von der Aufgabe aus, in Formteilen nach dem Coldbox-Verfahren bei verminderten Bindergehalt die Festigkeitseigenschaften und den Kernzerfall zu verbessern.
  • Zur Lösung dieser Aufgabe wird bei einem Verfahren zum Herstellen von polyurethangebundenen Formteilen für die Giebereiindustrie nach dem Coldbox-Verfahren, bei welchem nach Einbringen einer Formstoffmischung in das Formwerkzeug die Formteilehärtung schlagartig durch Hindurchleiten eines gasförmigen Katalysators erfolgt, vorgeschlagen, daß das Formwerkzeug auf eine Temperatur von 30 bis 150°C, vorzugsweise 60 bis 80°C, erwarmt und die Formstoffmischung in das erwärmte Formwerkzeug eingebracht wird, bevor der gasförmige Katalysator eingeleitet wird.
  • Durch die erfindungsgemäße Maßnahme wird die Formteiloberfläche in einer Stärke von wenigen Millimetern veredelt, und die Feuchtigkeitsempfindlichkeit im Kerninnern erhalten oder sogar verstärkt, so daß die Festigkeit im Verlaufe der Kernlagerung an diesen Stellen geringer ist. Damit wird erreicht, daß Festigkeit und Widerstandsfähigkeit gegenüber Feuchtigkeit in der Oberflächenschicht verstärkt, im Kerninnern jecoch vermindert werden, um auf diese Weise zugleich den Kernzerfall zu verbessern. Als Folge der Oberflächenveredelung ist ein Absenken des Bindergehaltes möglkich. Diese Maßnahme senkt die Kosten, vermindert die Umweltbelastung und verbessert den Kernzerfall.
  • Dem erfindungsgemäßen Verfahren liegt der Gedanke zugrunde, daß die beschriebenen Nachteile des Coldbox-Verfahrens durch eine Vernetzungsschwäche der Polyurethanmoleküle durch den Schuß und die sofort anschließende sehr schnelle Kalthärtung begründet ist. Dann können die nur schwachen Bindungen zwischen den Molekülketten durch Wasser leicht zerstört und die Formteilfestigkeiten irreparabel geschwächt werden. Das erfindungsgemäße Verfahren zielt deshalb darauf ab, das Polyurethan in der Formteiloberfläche in einen hochvernetzten Zustand zu überführen und dadurch die Festigkeit und insbesondere die Feuchtigkeitsresistenz in der Oberflächenschicht zu verstärken, die tieferliegenden Sandschichten jedoch in einem schwachvernetzten Zustand zu belassen.
  • Es hat sich erweisen, daß das erfindungsgemäße Verfahren mit höchster Wirksamkeit nach dem Schuß und kurz vor der Gashärtung durchgeführt werden kann, weil das Formteil zu diesem Zeitpunkt bereits gestaltet, die Molekülbeweglichkeit im noch weichen Formstoff aber immer noch groß ist. Das erfindungsgemäße Verfahren greift also in einen Fertigungsschritt des Coidbox-Verfahrens ein, der bisher achtlos und möglichst schnell übergangen worden ist. Veredelungsmaßnahmen erst nach der Härtung am fertigen Formteil sind wegen der weitgehend erfolgten Fixierung der Binderstrukturen weite weniger wirksam und insbesondere nicht mit den niedrigen Temperaturen zu erreichen, die das erfindungsgemäße Verfahrten kennzeichnen.
  • Das erfindungsgemäße Verfahren arbeitet mit erwärmten Formwerkzeugen. Dabei können verhältnismäßig niedrige Temperaturen unterhalb 100°C angewendet werden. Auch ist die Gleichmäßigkeit der Erwärmung von untergeordneter Bedeutung. So kann das gleiche Formwerkzeug, z.B. stellenweise 50° und an anderer Stelle 80° warm sein, ohne daß gravierende Qualitätsunterschiede deutlich werden.
  • Die Erwärmung metallischer Formwerkzeuge kann auf bekannte Art elektrisch oder durch Gasbeheizung erfolgen. Weitere Möglichkeiten sind durch Beufschlagung mit Heißluft gegeben oder dadurch, daß die notwendige Schieß-, Begasungs- und auch Spülluft zuvor durch Vorerhitzer geführt werden.
  • Das erfindungsgemäße Verfahren ist mit den konventionellen Hotbox- und Warmboxverfahren nicht zu verwechseln und unterscheidet sich von diesen grundlegend. Diese konventionellen Verfahren benutzen die Wärme zur Aushärtung und erfordern deshalb auch die Durchwärmung des gesamten Formteilquerschnitts. Sie arbeiten mit Temperaturen zwischen etwa 150° und 250°C und benötigen hohe Temperaturgleichmaßigkeit mit thermostatischer Steuerung.
  • Die Wärme des erfindungsgemäßen Verfahrens hingegen führt selbst in der erwärmten Oberflächenschicht zu keiner Härtung. Der Formstoff bleibt weich und würde keine Handhabung erlauben. Das erfindungsgemäße Verfahren bleibt ein kaltverfahren, weil die Formteilhärtung durch einen gasförmigen Katalysator erreicht wird. Das neue Verfahren dient also allein dazu, die Wirkstamkeit der Gashärtung zu verbessern.
  • Zwischen dem Einbringen der Formstoffmischung und dem Einleiten des gasförmigen Katalysators kann eine Wartezeit vorzugsweise von 20 bis 90 Sekunden vorgesehen sein. Diese Wartezeit kann, im Bedarfsfall auf vorzugsweise 15 bis 30 Sekunden verkürzt werden, wenn, der Lösungsmittelgehalt in der Formteiloberfläche erhölt wird. Un dies zu erreichen, wird das Formwerkzeug kurz vor dem Schuß mit einem dünnen Film aus Lösungsmittel versehen. Der eingeschlossene Formstoff übernimmt das Lösungsmittel und die angestrebte Oberflächenveredelung ist in kürzerer Zeit zu erreichen.
  • Die durch die erfindungsgemäßen Verfahren und Vorrichtungen erreichbaren widerstandsfähigen und feuchtigkeitsresistenten Formteiloberflächen ermöglichen die Anwendung lösungsmittelarmer Binder. Sie sind insbesondere für den Leichtmetallguß zu empfehlen. Lösungsmittelarme Coldbox-Binder neigen während der Formteillagerung zur Eintfestigung und sind besonders feuchtigkeitsempfindlich. Sie konnten aus diesen Gründen bisher nicht eingesetzt werden. Diese bisherigen Nachteile bleiben nach dem erfindungsgemäßen Verfahren nunmehr auf das Formteilinnere beschränkt und wirken sich dort aber vorteilhaft aus, weil der Kernzerfall und auch die Wiederverwendbarkeit des Altsandes hierdurch erleichtert werden. Diesen Vorteilen und den erheblichen Vorteilen, die bereits durch die Möglichkeit zum Absenken des Bindergehaltes geboten sind, steht ein geringfügig verlängerter Coldbox-Prozess und die Notwendigkeit zum Erwärmen der Formwerkzeuge gegenüber.
  • Die bei dem erfindungsgemäßen Verfahren vergleichsweise niedrigen Temperaturen erlauben den Einsatz von Kunststoffwerkzeugen. Zur Werkzeugtempererierung ist Heißwasser geeignet, wodurch gas Verfahren außerordentlich vereinfacht werden kann.
  • In weiterer Ausgestaltung der Erfindung wird vorgeschlagen, bereits bei der Werkzeugherstellung entsprechende Wasserleitungsrohre in einer den Modellkonturen angepaßten Form in dem Kunstharz anzuordnen, die während der späteren Produktion fortwährend von Heißwasser durchflossen sind. Desweiteren wird vorgeschlagen, die Wärmeleitfähigkeit zwischen der Heißwasserleitung und der Werkzeugoberfläche dadurch zu verbessern, daß gut wärmeleitende Füllmittel aus Metallpulver oder Metallgranulat vorhanden sind.
  • Die nachfolgende Tabelle zeigt den Vorteil des Verfahrens nach der Erfindung.
    Figure imgb0001
    Ein Formwerkzeug und Formteile sind in den Zeichnungen beispielhaft dargestellt.
  • Es zeigen:
    • Figur 1 ein Formwerkzeug in vertikalem Schnitt,
    • Figur 2 eine Gießform in Vertikalem Schnitt.
  • Nach Figur 1 ist mit 1 die obere, mit 2 die untere Werkzeughälfte bezeichnet. 3 gibt die Teilung an. 4 bezeichnet den Einschuß, 5 den Formehohlraum. Mit 6 ist die konturenscharfe Kunstharzschicht bezeichnet. Mit 7 sind Rohre für Heißwasser bezeichnet. 8 gibt den Wassereintritt und 9 den Wasseraustritt an. Mit 10 ist die flexible Schlauchverbindung zwischen den beiden Werkzeughälften angegeben. 11 bedeutet den Aluminiumgries, der verdichtet in dem durch Kunstharz gebundenen Sand vorhanden ist. Mit 12 ist ein wärmeisolierender Außenmantel, z.B. aus mit Kunstharz gebundenem Quartsand bezeichnet. 13 bedeutet den Wekzeugrahmen. Mit dem Formwerkzeug nach Figur 1 wird der Kern 14 geschaffen, der nach der Darstellung in Figure 2 im Oberkasten 15 und Unterkasten 16 in dem dort vorhandenen Formsand 17 und 18 gelagert ist. Mit 19 ist der Anschnitt bezeichnet. Es kann auch ein Steiger vorhanden sein, durch den die Gießschmelze nach der Befüllung des Formhohlraumes 21 nach oben austritt.
  • Figur 2 zeigt, daß nicht lediglich die Oberfläche 23 des Kerns 14 mit dem Formwerkzeug nach Figur 1 veredelt ist. Diese Veredelung in einer gewissen Schichtdicke ist durch eine Schraffur 24 dargestellt. Figure 2 zeigt, daß auch die Formteile 17 und 18 des Unterkastens und Oberkastens mit jeweils einer Verdelung versehen sind, die durch Schraffuren 25 und 26 dargestellt sind. Die nach der Erfindung erreichte Veredelung braucht nur an den Oberflächen der Formteile vorhanden zu sein, die den Formhohlraum 21 begrenzen.

Claims (6)

1. Verfahren zum Herstellen von polyurethangebundenen Formteilen für die Gießerei-Industrie nach dem Coldbox-Verfahren, bei welchem nach Einbringen einer Formstoffmischung in das Formwerkzeug die Formteilehärtung schlagartig durch Hindurchleiten eines gasförmigen Katalysators erfolgt, dadurch gekennzeichnet, daß das Formwerkzeug auf eine Temperatur von 30 bis 150°C, vorzugsweise 60 bis 80°C, erwärmt und die Formstoffmischung in das erwärmte Formwerkzeug eingebracht wird, bevor der gasförmige Katalysator eingeleitet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Formstoffmischung einige Zeit, vorzugsweise 20 bis 90 Sekunden im erwärmten Formwerkzeug belasen wird, bevor der gasförmige Katalysator eingeleitet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß vor Einbringung der Formstoffmischung das Formwerkzeug mit Lösungsmitteln eingesprüht wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Schieß-, Begasungs-und auch Spülluft vor ihrer Anwendung durch einen Vorerhitzer geführt wird.
5. Formwerkzeug zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß es mit wasserführenden Kanälen (7) versehen ist.
6. Formwerkzeug nach Anspruch 5, dadurch gekennzeichnet, daß et aus Kunststoff besteht, der in seinen zwischen den Kanälen (7) und der dem Formteil zugewandten Werkzeugoberfläche (6) befindlichen Teil zur Verbesserung der Wärmeleitfähigkeit mit einem Metallpulver oder Metallgranulat (11) durchsetzt ist.
EP84112344A 1983-11-23 1984-10-13 Verfahren zum Herstellen von Formteilen nach dem Coldbox-Verfahren sowie Formwerkzeug Expired - Lifetime EP0143954B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19833342225 DE3342225A1 (de) 1983-11-23 1983-11-23 Verfahren zum herstellen von formteilen nach dem coldboxverfahren sowie formteil und formwerkzeug
DE3342225 1983-11-23

Publications (3)

Publication Number Publication Date
EP0143954A2 EP0143954A2 (de) 1985-06-12
EP0143954A3 EP0143954A3 (en) 1988-01-20
EP0143954B1 true EP0143954B1 (de) 1990-08-01

Family

ID=6214974

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84112344A Expired - Lifetime EP0143954B1 (de) 1983-11-23 1984-10-13 Verfahren zum Herstellen von Formteilen nach dem Coldbox-Verfahren sowie Formwerkzeug

Country Status (5)

Country Link
US (1) US4664171A (de)
EP (1) EP0143954B1 (de)
JP (1) JPS60133948A (de)
DE (2) DE3342225A1 (de)
ES (1) ES8603305A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107404B2 (ja) * 1991-04-22 1995-11-15 上西鉄工株式会社 シリンダ装置
US7001546B2 (en) * 2001-08-09 2006-02-21 G H. Tool & Mold, Inc. Method for thermostatically controlling mold temperatures
CN100453205C (zh) * 2005-07-04 2009-01-21 上海市机械制造工艺研究所有限公司 一种co2吹气硬化砂型的方法
CA2690579C (en) * 2009-01-21 2015-06-02 Alchemy Group Of Companies Inc. Cold casting method and apparatus
DE102018114700B3 (de) 2018-06-19 2019-10-24 Römheld & Moelle Eisengießerei GmbH Verwendung eines Verfahrens zur Herstellung eines Werkzeugs für die Aluminiumblech-Umformung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2619702A (en) * 1948-11-12 1952-12-02 Ram Inc Mold
US2887741A (en) * 1954-10-11 1959-05-26 Flexonics Corp Shell molding apparatus
US2882569A (en) * 1957-03-29 1959-04-21 Ram Inc Method and apparatus for molding and hardening articles
US3550673A (en) * 1968-06-10 1970-12-29 Foundry Allied Ind Inc Polyurethane mold articles
US4051886A (en) * 1973-08-27 1977-10-04 Liquid Carbonic Canada Ltd. Saturated liquid/vapor generating and dispensing
US4068703A (en) * 1975-09-10 1978-01-17 The Quaker Oats Company Apparatus for catalytic gassing in the manufacture of foundry cores and molds

Also Published As

Publication number Publication date
ES537860A0 (es) 1985-12-16
ES8603305A1 (es) 1985-12-16
EP0143954A3 (en) 1988-01-20
EP0143954A2 (de) 1985-06-12
US4664171A (en) 1987-05-12
DE3482868D1 (de) 1990-09-06
JPS60133948A (ja) 1985-07-17
DE3342225A1 (de) 1985-05-30

Similar Documents

Publication Publication Date Title
DE69725315T2 (de) Verfahren zur herstellung von speisern und anderen beschickungs- und zuführungs-elementen für giessformen und zusammensetzung zur herstellung der speiser und elemente
DE832934C (de) Verfahren zur Herstellung von Giessereiformen und Giessereikernen
EP2163328A1 (de) Mit Wasserglas beschichteter und/oder vermischter Kern- oder Formsand mit einem Wassergehalt im Bereich von >= etwa 0,25 Gew.-% bis etwa 0,9 Gew.-%
DE69817989T2 (de) Schnelle Herstellung von komplex geformten Gegenständen unter Verwendung von verlorenen Wachsmodellen
EP0143954B1 (de) Verfahren zum Herstellen von Formteilen nach dem Coldbox-Verfahren sowie Formwerkzeug
DE3832370A1 (de) Neue, zur herstellung von mit wasser auswaschbaren kernen und formen geeignete keramische mischungen
DE3831400A1 (de) Verfahren zum giessen eines metallgegenstandes
DE3214858A1 (de) Blasformmaschine
DE102018109620A1 (de) Sandkern zur eliminierung von oberflächenzerfall
DE1558139B1 (de) Verfahren zum Halten von Kernen in Praezisionsgiessformen
DE1089126B (de) Verfahren und Vorrichtung zum Herstellen von Formen fuer Gussstuecke
EP0017902A1 (de) Verfahren zur Herstellung einer feuerfesten Giessereiform
DE102013019638A1 (de) Schießeinrichtung für eine Kernschießmaschine sowie Verfahren zum Herstellen eines Gießkerns
DE969774C (de) Verfahren zur Herstellung von Giessformen
DE102004034802B4 (de) Metallische Dauerform zur Herstellung von Großgussteilen aus Metalllegierungen
DE810174C (de) Verfahren zum Herstellen von Formstoffschichten fuer Giessereiformen und Kerne
DE1800517A1 (de) Vorrichtung zur Herstellung von Formen zum Vergiessen von Metallen
DE3629079A1 (de) Verfahren zum vergiessen von gussstuecken nach dem feingussverfahren in eine keramische formschale
DE2128428A1 (de) Steigeraufsatz
DE4026824A1 (de) Werkzeug zur herstellung von formteilen
DE2450013A1 (de) Gussformmischung mit hoher waermeleitfaehigkeit
DE3600956A1 (de) Verfahren zur herstellung von giessereikernen
DE1558139C (de) Verfahren zum Halten von Kernen in Präzisionsgießformen
DE1433014B1 (de) Verwendung von Harnstoff-Formaldehydharzen als Bindemittel zur Herstellung von Giessereiformen und -kernen in heissen Formwerkzeugen
AT267092B (de) Verfahren zur Herstellung von Gußformen und -kernen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT SE

RTI1 Title (correction)
17P Request for examination filed

Effective date: 19851116

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOENISCH, DIETMAR, PROF. DR.-ING.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT SE

17Q First examination report despatched

Effective date: 19881003

RTI1 Title (correction)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RHEINISCHE MASCHINENFABRIK & EISENGIESSEREI, ANTON

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOENISCH, DIETMAR, PROF. DR.-ING.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3482868

Country of ref document: DE

Date of ref document: 19900906

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910912

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910926

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911028

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19911228

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921014

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 84112344.1

Effective date: 19930510