EP0114567B1 - 1-Carbonyl-1-phenyl-2-azolyl-ethanol Derivate als Mikrobizide und Wuchsregulatoren, sowie ihre Zwischenprodukte - Google Patents

1-Carbonyl-1-phenyl-2-azolyl-ethanol Derivate als Mikrobizide und Wuchsregulatoren, sowie ihre Zwischenprodukte Download PDF

Info

Publication number
EP0114567B1
EP0114567B1 EP83810531A EP83810531A EP0114567B1 EP 0114567 B1 EP0114567 B1 EP 0114567B1 EP 83810531 A EP83810531 A EP 83810531A EP 83810531 A EP83810531 A EP 83810531A EP 0114567 B1 EP0114567 B1 EP 0114567B1
Authority
EP
European Patent Office
Prior art keywords
alkyl
formula
phenyl
hydrogen
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83810531A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0114567A3 (en
EP0114567A2 (de
Inventor
Walter Dr. Kunz
Elmar Dr. Sturm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Priority to AT83810531T priority Critical patent/ATE37180T1/de
Publication of EP0114567A2 publication Critical patent/EP0114567A2/de
Publication of EP0114567A3 publication Critical patent/EP0114567A3/de
Application granted granted Critical
Publication of EP0114567B1 publication Critical patent/EP0114567B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/501,3-Diazoles; Hydrogenated 1,3-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/70Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction with functional groups containing oxygen only in singly bound form
    • C07C45/71Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction with functional groups containing oxygen only in singly bound form being hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/32Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by aldehydo- or ketonic radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/06Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • the present invention relates to new 1-carbonyl-1-phenyl-2-azolyl-ethanol derivatives of the formula I below, their acid addition salts, quaternary azolium salts and metal complexes.
  • the invention further relates to the production of these substances and to microbicidal and growth-regulating agents which contain at least one of these compounds as active ingredient.
  • the invention also relates to the production of the agents mentioned and the use of the active compounds or agents for regulating plant growth and for combating harmful microorganisms.
  • alkyl itself or as part of another substituent means, depending on the number of carbon atoms specified, for example the following groups: methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl etc. and their isomers, such as e.g. Isopropyl, isobutyl, tert-butyl, isopentyl.
  • Halogen here and below is to be understood as fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine.
  • Alkenyl means e.g. B. propenyl (1), allyl, butenyl (1), butenyl (2) or butenyl (3), alkynyl is, for example, propionyl (1) or propargyl.
  • cycloalkyl means, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl etc.
  • substituents for a substituted phenyl, phenoxy or benzyl regardless of the position of the phenyl, phenoxy or benzyl in the molecule, the following substituents are suitable : C 1 -C 4 alkyl, C i -C 4 alkoxy, C l -C 3 haloalkyl, halogen and / or cyano in question, where haloalkyl represents a single to perhalogenated alkyl substituent, such as. B. CHCI 2 , CHF 2 , CH 2 CI, CCI 3 , CH 2 F, CH 2 CH 2 CI, CHBr 2 , preferably CF 3 .
  • the present invention thus relates to the free organic compounds of the formula I in the form of aldehydes and ketones and to their acid addition salts, quaternary azolium salts and metal complexes.
  • the free compounds are preferred, in particular the 1H, 1,2,4-triazoles.
  • salt-forming acids are inorganic acids: hydrohalic acid such as hydrofluoric acid, hydrochloric acid, hydrobromic acid or hydroiodic acid as well as sulfuric acid, phosphoric acid, phosphorous acid, nitric acid and organic acids such as acetic acid, trifluoroacetic acid, trichloroacetic acid, propionic acid, cyclic acid, thiocyanic acid, benzene acid, lactic acid, lactic acid, lactic acid, lactic acid , Oxalic acid, formic acid, benzenesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, salicylic acid, p-aminosalicylic acid, 2-phenoxybenzoic acid or 2-acetoxybenzoic acid.
  • hydrohalic acid such as hydrofluoric acid, hydrochloric acid, hydrobromic acid or hydroiodic acid as well as sulfuric acid, phosphoric acid, phosphorous acid, nitric acid and
  • Metal complexes of the formula consist of the underlying organic molecule and an inorganic or organic metal salt, for example the halides, nitrates, sulfates, phosphates, acetates, trifluoroacetates, trichloroacetates, propionates, tartrates, sulfonates, salicylates, benzoates etc. of the elements of the third and fourth main group such as aluminum, tin or lead and the first to eighth subgroups such as chromium, manganese, iron, cobalt, nickel, copper, zinc, silver, mercury etc. The subgroup elements of the 4th period are preferred.
  • the metals can be present in the various valences that come with them.
  • the metal complexes of the formula I can be mononuclear or polynuclear, i.e. they can contain one or more organic moieties as ligands. Complexes with the metals copper, zinc, manganese and tin are preferred.
  • the compounds of the formula are prepared by either using an oxirane of the formula II with an azole of formula III first to a compound of formula la or by reacting an a-haloketone or a - haloaldehyde of the formula IV with paraformaldehyde and a strong non-nucleophilic base, such as.
  • an alkali hydride or alkali alcoholate LiH, NaH, KH, K-tert-butylate, NaOC 2 H 5 , etc.
  • an alkali hydride or alkali alcoholate LiH, NaH, KH, K-tert-butylate, NaOC 2 H 5 , etc.
  • Halogens [such as fluorine, chlorine, bromine or iodine, preferably chlorine or bromine]; Sulfonyloxy groups, preferably -OSOz-R a ; Acyloxy groups, preferably -OCO-R a and isourea residues, vorzuat are understood, where R a , R b and R c independently of one another are C 1 -C 3 alkyl, C 1 -C 3 haloalkyl or phenyl optionally substituted by halogen, methyl, nitro, trifluoromethyl and / or methoxy.
  • Organic and inorganic bases are suitable as such, for example tertiary amines such as trialkylamines (trimethylamine, triethylamine, tripropylamine, etc.), pyridine and pyridine bases (4-dimethylaminopyridine, 4-pyrrolidylaminopyridine, etc.), oxides, hydrides and hydroxides, carbonates and hydrogen carbonates of Alkali and alkaline earth metals (CaO, BaO, NaOH, KOH, NaH, Ca (OH) 2 , KHC0 3 , NaHC0 3 , Ca (HC0 3 ) 2 , K 2 C0 3 , Na 2 C0 3 ), as well as alkali acetates such as CH 3 COONa or CH 3 COOK.
  • tertiary amines such as trialkylamines (trimethylamine, triethylamine, tripropylamine, etc.)
  • pyridine and pyridine bases (4-dimethylaminopyridine, 4-
  • alkali metal alcoholates such as C 2 H 5 ONa, C 3 H 7 -nONa etc. are also suitable.
  • 1,2,4-triazolyl derivatives 1,3,4-triazolyl isomers are generally also produced in parallel and can be separated from one another in the customary manner, for example using different solvents.
  • the reaction (II with III to la) is preferably carried out in a relatively polar but inert organic solvent, e.g. N, N-dimethylformamide ,. N, N-dimethylacetamide, dimethyl sulfoxide, acetonitrile, benzonitrile and others.
  • a relatively polar but inert organic solvent e.g. N, N-dimethylformamide ,. N, N-dimethylacetamide, dimethyl sulfoxide, acetonitrile, benzonitrile and others.
  • solvents can be used in combination with other inert solvents, e.g. B. benzene, toluene, xylene, hexane, petroleum ether, chlorobenzene, nitrobenzene and others. be performed.
  • the reaction temperatures are in a temperature range from 0 ° to 150 ° C., preferably 20 ° to 100 ° C.
  • this reaction (II with III to la) can be carried out analogously to the already known reactions of other oxiranes with azoles [cf. DE-OS 2 912 288] can be carried out.
  • reaction of compounds of formula IV to products of formula la takes place by reaction with paraformaldehyde in the presence of a strong, non-nucleophilic base, such as alkali metal hydride (NaH), and subsequent addition of triazole or, preferably, its alkali metal salt or a mixture of the two.
  • a strong, non-nucleophilic base such as alkali metal hydride (NaH)
  • triazole or, preferably, its alkali metal salt or a mixture of the two generally takes place at temperatures from 0 ° to + 140 ° C, preferably + 10 °, to + 80 ° C and is usually carried out in anhydrous solvents such as e.g.
  • N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoric triamide, N-methylpyrrolidone, nitriles such as acetonitrile, ether and ethereal compounds such as dialkyl ether, tetrahydrofuran or dioxane, etc. are carried out. It is preferably carried out in dimethyl sulfoxide.
  • the intermediates from the reaction product can be isolated from the reaction medium and, if desired, can be purified by one of the generally customary methods before the further reaction, for. B. by washing, digestion, extraction, crystallization, chromatography, distillation, etc.
  • the further reaction from la to I takes place in the cases in which W in formula V represents a customary leaving group in the absence or preferably in the presence of an inert solvent.
  • the following solvents are suitable, for example: N, N-dimethylformamide, N, N-dimethylacetamide, hexamethylphosphoric triamide, dimethyl sulfoxide, 2-methyl-2-pentanone, etc.
  • mixtures of these solvents with one another or with other customary inert organic solvents for example with aromatic hydrocarbon Materials such as benzene, toluene, xylenes, etc. can be used.
  • Suitable strong bases are e.g. As alkali and alkaline earth metal hydrides (NaH, KH, CaH 2 etc.) and alkali organic compounds such as butyllithium or alkali tert-butoxide, moreover, alkali metal hydroxides such as NaOH or KOH can also be used if one is in an aqueous two-phase system and in Presence of a phase transfer catalyst works.
  • alkali and alkaline earth metal hydrides NaH, KH, CaH 2 etc.
  • alkali organic compounds such as butyllithium or alkali tert-butoxide
  • alkali metal hydroxides such as NaOH or KOH can also be used if one is in an aqueous two-phase system and in Presence of a phase transfer catalyst works.
  • the alcohol of the formula I a can also first be converted into an alkali alcoholate in the customary manner and then reacted with a compound of the formula V (in which W stands for a leaving group), advantageously in the presence of a crown ether.
  • W stands for a leaving group
  • a compound of the formula V in which W stands for a leaving group
  • the reaction is expediently carried out in a reaction-inert medium.
  • Suitable solvents are, for. B. ethers and ethereal compounds, e.g.
  • Diniederalkylether (diethyl ether, diisopropyl ether, tert-butyl methyl ether, etc.), tetrahydrofuran, dioxane and aromatic hydrocarbons such as benzene, toluene or xylenes.
  • aliphatic and aromatic hydrocarbons such as pentane, hexane, cyclohexane, petroleum ether, ligroin, benzene, toluene, xylenes, etc.
  • halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, ethylene dichloride, 1,2-dichloroethane, tetrachlorethylene etc. or aliphatic ethers such as diethyl ether, diisopropyl ether, t-butyl methyl ether etc.
  • phase transfer catalysts examples include: tetraalkylammonium halides, hydrogen sulfates or hydroxides such as tetrabutylammonium chloride, bromide, iodide; Triethylbenzylammonium chloride, bromide; Tetrapropylammonium chloride, bromide, iodide; etc.
  • Phosphonium salts can also be used as phase transfer catalysts.
  • the reaction temperatures are generally between 30 ° and 130 ° C, or at the boiling point of the solvent or solvent mixture.
  • solvents can be used here which are inert towards the reactants and expediently form azeotropes with water.
  • Aromatic hydrocarbons such as benzene, toluene, xylenes or halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, tetrachlorethylene, chlorobenzene, but also ethereal compounds such as tert-butyl methyl ether, dioxane and are suitable for this purpose other.
  • the compound of formula III itself can be used as a solvent.
  • This condensation reaction is conveniently carried out in the presence of a strong acid, e.g. B. paratoluenesulfonic acid and at the boiling point of the azeotropic mixture.
  • the exchange of the free hydroxyl group in the compounds of the formula Ia for a leaving group W is preferably carried out in an inert solvent.
  • solvents are:
  • Aromatic and aliphatic hydrocarbons such as benzene, toluene, xylenes, petroleum ether, ligroin or cyclohexane; halogenated hydrocarbons such as chlorobenzene, methylene chloride, ethylene chloride, chloroform, carbon tetrachloride or tetrachlorethylene; Ethers and ethereal compounds such as diethyl ether, diisopropyl ether, t-butyl methyl ether, dimethoxyethane, dioxane, tetrahydrofuran or anisole; Esters such as ethyl acetate, propyl acetate or butyl acetate; Nitroles such as acetonitrile or compounds such as dimethyl sulfoxide, dimethylformamide and mixtures of such solvents with one another.
  • Leaving group W is introduced using customary methods.
  • A is chlorine
  • the reagent used is, for example, phosphorus oxychloride, phosphorus trichloride, phosphorus pentachloride or, preferably, thionyl chloride. It is generally carried out at temperatures from 0 ° to + 120 ° C.
  • W bromine
  • phosphorus tribromide or phosphorus pentabromide is preferably used and the reaction is carried out at 0 ° to + 50 ° C.
  • W stands for one of the groups -OS0 2 R a , -OCO-R-, or the appropriate acid chloride or amidino chloride is usually used as the reagent. It is advantageous if the reaction is carried out at temperatures from -20 ° to + 50 ° C, preferably -10 ° to + 30 ° C, and in the presence of a weak base such as pyridine or triethylamine.
  • the starting products of the formulas 111 and V are generally known or can be prepared by methods known per se.
  • the oxiranes of formula II are new with the exception of the compounds 2-formyl-2-phenyl-oxirane and 2-benzoyl-2-phenyl-oxirane.
  • the known compounds are in the scientific lite ratur [Chem. Ber. 108, 2391-2396 (1975) and Bull. Soc. France 4, 1439 (1967)] as synthesis products, but without specifying biological properties or indications of biological activities of substances which can be produced therefrom.
  • the new compounds of the formula II represent specially developed intermediates for the preparation of the valuable active compounds of the formula 1.
  • the oxiranes of the formula II can be prepared in a manner known per se by epoxidation from the underlying styrene derivatives of the formula VI, wherein R 1 to R 4 have the meanings given under formula I, for example by oxidation with peracids such as peracetic acid, tert-butyl hydroperoxide, m-chloroperbenzoic acid, H 2 0 2 etc., and optionally in the presence of bases such as NaOH, KOH , NaHC0 3 in common reaction inert solvents.
  • Mo (CO) 6 can be used as a catalyst.
  • Styrene derivatives of the formula VI are derived from the corresponding starting ketones VII known per se, wherein R 1 to R 4 are as defined under formula, analogous to Angew. Chem. 1976, 261, accessible by reaction with dimethylmethyleneimmonium halides.
  • the compounds of formula IV are known or can be prepared by methods known per se, e.g. B. from the underlying, known a-hydroxy ketones or a-hydroxy aldehydes by conventional exchange of the hydroxy groups for halogen.
  • one or more inert solvents or diluents may be present in the preparation of all starting, intermediate and end products mentioned herein.
  • aliphatic and aromatic hydrocarbons such as benzene, toluene, xylenes, petroleum ether; halogenated hydrocarbons such as chlorobenzene, methylene chloride, ethylene chloride, chloroform, carbon tetrachloride, tetrachlorethylene; Ethers and ethereal compounds such as dialkyl ether (diethyl ether, diisopropyl ether, tert-butyl methyl ether, etc.), anisole, dioxane, tetrahydrofuran; Nitriles such as acetonitrile, propionitrile; N, N-dialkylated amides such as dimethylformamide; Dimethyl sulfoxide; Ketones such as acetone, diethyl ketone, methyl
  • reaction or partial steps of a reaction are carried out under a protective gas atmosphere and / or absolute solvents.
  • Inert gases such as nitrogen, helium, argon or, in certain cases, carbon dioxide are suitable as protective gases.
  • the compounds of formula I always have an asymmetric carbon atom C * in the vicinity of the substituents A and OR 5 and can therefore exist in two enantiomeric forms.
  • a mixture of both enantiomers is formed in the preparation of these substances, and this can be broken down into the pure optical antipodes in a conventional manner, for example by fractional crystallization of salts with optically active, strong acids.
  • the enantiomers can have different biological effects.
  • the present invention relates to all pure stereoisomers, enantiomers and mixtures thereof.
  • the new active compounds of the formula I or agents which contain these active compounds are distinguished, inter alia, by the fact that they specifically intervene in the metabolism of the plants.
  • This targeted intervention in the physiological processes of plant development makes the active ingredients of formula I usable for various purposes, especially for those related to the increase in crop yields, easier harvesting and labor savings in plant cultivation measures.
  • the compounds of the formula I can thus be used to regulate plant growth.
  • Plant growth regulating substances can be used, for example, to inhibit vegetative plant growth.
  • Another mechanism of increasing yield with growth inhibitors is based on the fact that the nutrients benefit the bloom and fruit formation to a greater extent, while vegetative growth is restricted.
  • the active substances of the formula or corresponding agents in addition to advantageous growth-regulating properties, in particular have a microbicide spectrum which is very favorable for practical needs. Therefore, a further area of application of compounds of the formula I is in the control of harmful microorganisms, especially phytopathogenic fungi.
  • the compounds of the formula I have a curative, preventive and systemic action which is very favorable for practical needs in order to protect plants, in particular crop plants, without adversely affecting them.
  • microorganisms occurring on plants or on parts of plants (fruits, flowers, foliage, stems, tubers, roots) of different crops can be contained or destroyed, with the result that parts of plants which grow later are also spared by such microorganisms.
  • the active substances are active against the phytopathogenic fungi belonging to the following classes: Ascomycetes (e.g. Venturia, Podosphaera, Erysiphe, Monilinia, Uncinula); Basidiomycetes (e.g. the genera Hemileia, Rhizoctonia, Puccinia); Fungi imperfecti (e.g. Botrytis, Helminthosporium, Fusarium, Septoria, Cercospora and Alternaria).
  • the compounds of the formula I have a systemic action. They can also be used as dressings for the treatment of seeds (fruits, tubers, grains) and plant cuttings to protect against fungal infections and against phytopathogenic fungi occurring in the soil.
  • the active compounds according to the invention are notable for particularly good plant tolerance.
  • the invention thus also relates to microbicidal agents and to the use of the compounds of the formula I for combating phytopathogenic microorganisms, in particular fungi which damage plants, and the preventive prevention of an attack on plants.
  • the present invention also includes the production of agrochemicals, which is characterized by the intimate mixing of the active substance with one or more substances or groups of substances described herein. Also included is a method for the treatment of plants which is characterized by the application of the compounds of the formula I or the new agents.
  • cereals (wheat, barley, rye, oats, rice, sorhum and relatives); Beets: (sugar and fodder beets); Pome, stone and berry fruits: (apples, pears, plums, peaches, almonds, cherries, strawberries, strawberries and blackberries); Legumes: (beans, lentils, peas, soy); Oil crops: (rapeseed, mustard, poppy seeds, olives, sunflowers, coconut, castor bean, cocoa, peanuts); Cucumber Family: (Pumpkin, Cucumber, Melon); Fiber plants: (cotton, flax, hemp, jute); Citrus fruits: (oranges, lemons, grapefruit, mandarins); Vegetables: (spinach, lettuce, asparagus, cabbage, carrots, onions, tomatoes, potatoes, peppers); Laurel family: (avocado, cinnamonum, camphor):
  • plants are also all types of other green vegetation, be it ornamental plants (composites), grass areas, embankments or generally low soil coverings (cover crops) which counteract erosion or drying out of the soil or soil coverings such as those found in tree and perennial crops (Orchards, hop crops, maize fields, vineyards, etc.) are desired.
  • Active ingredients of formula 1 are usually used in the agricultural sector in the form of compositions and can be applied simultaneously or in succession with other active ingredients to the area or plant to be treated. These other active ingredients can be both fertilizers, trace element mediators or other preparations which influence plant growth. However, it can also be selective herbicides, insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, together with any other carriers, surfactants or other application-promoting additives which are customary in formulation technology.
  • Suitable carriers and additives can be solid or liquid and correspond to the substances useful in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, adhesives, thickeners, binders or fertilizers.
  • Advantageous formulation auxiliaries are also phospholipids.
  • a preferred method for applying an active ingredient of the formula I or an agrochemical composition which contains at least one of these active ingredients is application to the foliage (leaf application).
  • the number of applications depends on the infestation pressure for the relevant pathogen (type of fungus) or the type of growth influencing.
  • the active ingredients of Formula I can also get into the plants via the soil through the root system (systemic effect) by changing the location which impregnates the plants with a liquid preparation or introduces the substances into the soil in solid form, for example in the form of granules (soil application).
  • the compounds of the formula I can also be applied to seeds (coating) by either impregnating the grains with a liquid preparation of the active ingredient or coating them with a solid preparation.
  • other types of application are possible in special cases, such.
  • B. the targeted treatment of plant stems or buds.
  • the compounds of the formula are used in unchanged form or preferably together with the auxiliaries customary in formulation technology and are therefore used, for example, to emulsion concentrates, spreadable pastes, directly sprayable or dilutable solutions, diluted emulsions, wettable powders, soluble powders, dusts, granules, by encapsulation in e.g. polymeric materials processed in a known manner.
  • the application methods such as spraying, atomizing, dusting, scattering, brushing or pouring, are selected in the same way as the type of agent, in accordance with the intended objectives and the prevailing conditions.
  • Favorable application rates are generally 10 g to 5 kg of active ingredient (AS) per ha; preferably 100 g to 2 kg ai / ha, in particular at 200 g to 600 g ai / ha.
  • formulations i.e. the agents, preparations or compositions containing the active ingredient of formula I and optionally a solid or liquid additive are prepared in a known manner, for. B. by intimately mixing and / or grinding the active ingredients with extenders, such as. B. with solvents, solid carriers, and optionally surface-active compounds (surfactants).
  • extenders such as. B. with solvents, solid carriers, and optionally surface-active compounds (surfactants).
  • Aromatic hydrocarbons preferably fractions C 8 to C 12 , such as.
  • solid carriers e.g. B. for dusts and dispersible powders
  • natural rock flours such as calcite, talc, kaolin, montmorillonite or attapulgite.
  • highly disperse silica or highly disperse absorbent polymers can also be added.
  • adsorptive granulate carriers come porous types such.
  • pumice broken brick, sepiolite or bentonite, as non-sorptive support materials such.
  • B. calcite or sand in question.
  • a large number of pregranulated materials of inorganic or organic nature such as, in particular, dolomite or comminuted plant residues can be used.
  • Phospholipids can also be used particularly advantageously.
  • nonionic, cationic and / or anionic surfactants with good emulsifying, dispersing and wetting properties are suitable as surface-active compounds.
  • surfactants are also to be understood as mixtures of surfactants.
  • Suitable anionic surfactants can be both so-called water-soluble soaps and water-soluble synthetic surface-active compounds.
  • the soaps are the alkali metal, alkaline earth metal or optionally substituted ammonium salts of higher fatty acids (C 10 -C 22 ), such as, for example, the Na or K salts of oleic or stearic acid, or of natural fatty acid mixtures which, for example, consist of coconut or Tallow oil can be extracted.
  • the fatty acid methyl laurine salts should also be mentioned.
  • the fatty sulfonates or sulfates are usually present as alkali, alkaline earth or optionally substituted ammonium salts and have an alkali radical having 8 to 22 carbon atoms, alkyl also including the alkyl part of acyl radicals, for.
  • This subheading also includes the salts of sulfuric acid esters and sulfonic acids from fatty alcohol-ethylene oxide adducts.
  • the sulfonated benzimidazole derivatives contain, preferably 2-sulfonic acid groups and a fatty acid residue with 8-22 carbon atoms.
  • Alkylarylsulfonates are e.g. the Na, Ca or triethanolamine salts of dodecylbenzenesulfonic acid, dibutylnaphthalenesulfonic acid, or a naphthalenesulfonic acid-formaldehyde condensation product.
  • Corresponding phosphates such as e.g. Salts of the phosphoric acid ester of a p-nonylphenol (4-14) ethylene oxide adduct in question.
  • Suitable nonionic surfactants are primarily polyglycol ether derivatives of aliphatic or cycloaliphatic alcohols, saturated or unsaturated fatty acids and alkylphenols, which can contain 3 to 30 glycol ether groups of 8 to 20 carbon atoms in the (aliphatic) hydrocarbon radical and 6 to 18 carbon atoms in the alkyl radical of the alkylphenols.
  • nonionic surfactants are the water-soluble polyethylene oxide adducts containing 20 to 250 ethylene glycol ether groups and 10 to 100 propylene glycol ether groups on polypropylene glycol, ethylene diaminopolypropylene glycol and alkyl polypropylene glycol with 1 to 10 carbon atoms in the alkyl chain.
  • the compounds mentioned usually contain pro Propylene glycol unit 1 to 5 ethylene glycol units.
  • nonionic surfactants are nonylphenol polyethoxyethanols, castor oil polyglycol ethers, polypropylene-polyethylene oxide adducts, tributylphenoxypolyethoxyethanol, polyethylene glycol and octylphenoxypolyethoxyethanol.
  • Fatty acid esters of polyoxyethylene sorbitan such as polyoxyethylene sorbitan trioleate, are also suitable.
  • the cationic surfactants are primarily quaternary ammonium salts which contain at least one alkyl radical having 8 to 22 carbon atoms as N substituents and, as further substituents, have lower, optionally halogenated alkyl, benzyl or lower hydroxyalkyl radicals.
  • the salts are preferably in the form of halides, methyl sulfates or ethyl sulfates, e.g. the stearyltrimethylammonium chloride or the benzyldi (2-chloroethyl) ethylammonium bromide.
  • the agrochemical preparations generally contain 0.1 to 99%, in particular 0.1 to 95%, of active ingredient of the formula 1, 99.9 to 1%, in particular 99.8 to 5% of a solid or liquid additive, of which 0 to 25% , in particular 0.1 to 25% of a surfactant.
  • the agents can also contain other additives such as stabilizers, defoamers, viscosity regulators, binders, adhesives and fertilizers or other active ingredients to achieve special effects.
  • Such agrochemicals are part of the present invention.
  • RT room temperature
  • h stands for hour
  • min for minute
  • DMSO dimethyl sulfoxide
  • THF tetrahydrofuran
  • DMF dimethylformamide
  • the active ingredient is mixed well with the additives and ground well in a suitable mill.
  • Spray powder is obtained which can be diluted with water to form suspensions of any desired concentration.
  • Emulsions of any desired concentration can be prepared from this concentrate by dilution with water.
  • Ready-to-use dusts are obtained by mixing the active ingredient with the carrier and grinding it in a suitable mill.
  • the active ingredient is mixed with the additives, ground and moistened with water. This mixture is extruded and then dried in an air stream.
  • the finely ground active ingredient is applied evenly in a mixer to the kaolin moistened with polyethylene glycol. In this way, dust-free coating granules are obtained.
  • a suspension concentrate is thus obtained, from which suspensions of any desired concentration can be prepared by dilution with water.
  • Example B1 Action against Puccinia graminis on wheat
  • Wheat plants were sprayed 6 days after sowing with a spray mixture (0.002% active ingredient) prepared from wettable powder of the active ingredient. After 24 hours, the treated plants were infected with an uredospore suspension of the fungus. After incubation for 48 hours at 95-100% relative humidity and approx. 20 ° C, the infected plants were placed in a greenhouse at approx. 22 ° C. Red pustule development was assessed 12 days after infection.
  • a spray mixture 0.002% active ingredient
  • a spray liquor prepared from wettable powder of the active ingredient was poured into wheat plants 5 days after sowing (0.006% of active ingredient based on the volume of the soil). After 48 hours, the treated plants were infected with an ureidospore suspension of the fungus. After incubation for 48 hours at 95-100% relative humidity and approx. 20 ° C, the infected plants were placed in a greenhouse at approx. 22 ° C. The appraisal The development of rust pustules took place 12 days after the infection.
  • Example B2 Action against Cercospora arachidicola on peanut plants
  • Peanut plants 10-15 cm high were sprayed with a spray mixture (0.006% active substance) made from wettable powder of the active substance and infected with a conidia suspension of the fungus 48 hours later.
  • the infected plants were incubated for 72 hours at about 21 ° C. and high atmospheric humidity and then placed in a greenhouse until the typical leaf spots appeared.
  • the fungicidal activity was assessed 12 days after infection based on the number and size of the spots that appeared.
  • Example B3 Action against Erysiphae graminis on barley
  • a spray mixture prepared from wettable powder of the active ingredient was poured into barley plants about 8 cm high (0.002% of active substance based on the volume of the earth). Care was taken to ensure that the spray mixture did not come into contact with the parts of the plants above ground. After 48 hours, the treated plants were dusted with conidia of the fungus. The infected barley plants were placed in a greenhouse at approx. 22 ° C. and the fungal attack was assessed after 10 days.
  • Example B4 Residual protective action against Venturia inaequalis on apple shoots
  • Apple cuttings with 10-20 cm long fresh shoots were sprayed with a spray mixture (0.006% active ingredient) made from wettable powder of the active ingredient. After 24 hours, the treated plants were infected with a conidia suspension of the fungus. The plants were then incubated for 5 days at 90-100% relative atmospheric humidity and placed in a greenhouse at 20-24 ° C. for a further 10 days. Scab infestation was assessed 15 days after infection. Compounds 1.1, 1.2, 1.6, 1.47, 1.60 to 1.64 and 2.2 and others inhibited disease infestation to less than 20%. Untreated but infected shoots showed 100% Venturia infestation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Epoxy Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Polymerization Catalysts (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
EP83810531A 1982-11-23 1983-11-17 1-Carbonyl-1-phenyl-2-azolyl-ethanol Derivate als Mikrobizide und Wuchsregulatoren, sowie ihre Zwischenprodukte Expired EP0114567B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83810531T ATE37180T1 (de) 1982-11-23 1983-11-17 1-carbonyl-1-phenyl-2-azolyl-ethanol derivate als mikrobizide und wuchsregulatoren, sowie ihre zwischenprodukte.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH6822/82 1982-11-23
CH682282 1982-11-23

Publications (3)

Publication Number Publication Date
EP0114567A2 EP0114567A2 (de) 1984-08-01
EP0114567A3 EP0114567A3 (en) 1984-09-12
EP0114567B1 true EP0114567B1 (de) 1988-09-14

Family

ID=4315565

Family Applications (2)

Application Number Title Priority Date Filing Date
EP83810532A Withdrawn EP0117378A1 (de) 1982-11-23 1983-11-17 1-Carbonyl-1-phenoxyphenyl-2-azolyl-ethanol-Derivate als Mikrobizide, sowie ihre Zwischenprodukte
EP83810531A Expired EP0114567B1 (de) 1982-11-23 1983-11-17 1-Carbonyl-1-phenyl-2-azolyl-ethanol Derivate als Mikrobizide und Wuchsregulatoren, sowie ihre Zwischenprodukte

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP83810532A Withdrawn EP0117378A1 (de) 1982-11-23 1983-11-17 1-Carbonyl-1-phenoxyphenyl-2-azolyl-ethanol-Derivate als Mikrobizide, sowie ihre Zwischenprodukte

Country Status (19)

Country Link
EP (2) EP0117378A1 (da)
JP (2) JPS59106468A (da)
KR (1) KR840006648A (da)
AT (1) ATE37180T1 (da)
AU (3) AU570653B2 (da)
BR (1) BR8306422A (da)
CA (2) CA1215374A (da)
DE (1) DE3377986D1 (da)
DK (1) DK534083A (da)
ES (2) ES8504133A1 (da)
GB (2) GB2130584B (da)
GR (1) GR79723B (da)
IL (2) IL70284A (da)
PH (1) PH19709A (da)
PL (1) PL141026B1 (da)
PT (1) PT77700B (da)
SU (1) SU1331427A3 (da)
TR (1) TR21666A (da)
ZA (2) ZA838695B (da)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10519122B2 (en) 2013-01-09 2019-12-31 BASF Agro B.V. Process for the preparation of substituted oxiranes and triazoles
US10779536B2 (en) 2014-11-07 2020-09-22 Basf Se Pesticidal mixtures
US10905122B2 (en) 2016-03-16 2021-02-02 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on cereals
US11241012B2 (en) 2016-03-16 2022-02-08 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on soybean
US11425909B2 (en) 2016-03-16 2022-08-30 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on fruits

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517194A (en) * 1982-06-25 1985-05-14 Ciba-Geigy Corporation Azolylmandelic acid derivatives and use thereof for controlling microorganisms
EP0116262B1 (de) * 1983-01-10 1989-12-27 Ciba-Geigy Ag Fluorazolyl-propanol-Derivate als Mikrobizide und wuchsregulierende Mittel
GB8301678D0 (en) * 1983-01-21 1983-02-23 Ici Plc Heterocyclic compounds
EP0117578A3 (en) * 1983-02-23 1985-01-30 Shionogi & Co., Ltd. Azole-substituted alcohol derivatives
JPS59155365A (ja) * 1983-02-23 1984-09-04 Shionogi & Co Ltd 2−ヒドロキシプロピオフエノン誘導体
US4584307A (en) * 1983-08-10 1986-04-22 Pfizer Inc. Antifungal 2-aryl-2-hydroxy perfluoro-1-(1H-1,2,4-triazol-1-yl) alkanones and alkanols
DE3407005A1 (de) * 1983-09-26 1985-04-04 Bayer Ag, 5090 Leverkusen Hydroxyethylazolyl-oxim-derivate
US4849007A (en) * 1985-12-02 1989-07-18 Ciba-Geigy Corporation Herbicidal epoxides
DE3921163A1 (de) * 1989-06-28 1991-01-10 Bayer Ag Hydroxy-keto-azole
US6297239B1 (en) 1997-10-08 2001-10-02 Merck & Co., Inc. Inhibitors of prenyl-protein transferase
KR100811402B1 (ko) * 2005-06-03 2008-03-07 박명호 신발끈 고정고리 와 신발끈 결속방법
WO2014082881A1 (en) 2012-11-27 2014-06-05 Basf Se Substituted 2-[phenoxy-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds and their use as fungicides
EP2735563A1 (en) * 2012-11-27 2014-05-28 Basf Se Meta substituted 2-[phenoxy-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds and their use as fungicides
WO2014082879A1 (en) 2012-11-27 2014-06-05 Basf Se Substituted [1,2,4]triazole compounds
CN104955814A (zh) * 2012-11-27 2015-09-30 巴斯夫欧洲公司 取代的[1,2,4]三唑化合物
EP2925730A1 (en) 2012-11-27 2015-10-07 Basf Se Substituted 2-[phenoxy-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds and their use as fungicides
US20150313229A1 (en) 2012-11-27 2015-11-05 Basf Se Substituted [1,2,4] Triazole Compounds
EA030875B1 (ru) 2012-12-20 2018-10-31 Басф Агро Б.В. Композиции, содержащие триазольное соединение
CN105008332A (zh) * 2013-01-08 2015-10-28 巴斯夫欧洲公司 作为杀真菌剂的取代的咪唑和(1,2,4)三唑类化合物
BR112016000299B8 (pt) 2013-07-08 2021-04-20 Basf Agro Bv composições, uso de uma composição, método para o combate dos fungos fitopatogênicos e uso dos componentes
UA119672C2 (uk) 2014-06-25 2019-07-25 Басф Агро Б.В. Пестицидні композиції

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2348663A1 (de) * 1973-09-27 1975-04-03 Bayer Ag Verfahren zur herstellung von neuen 1-aethyl-azolylderivaten
CH647513A5 (de) * 1979-11-13 1985-01-31 Sandoz Ag Triazol-derivate, deren herstellung und verwendung.
GB2104065B (en) * 1981-06-04 1985-11-06 Ciba Geigy Ag Heterocyclyl-substituted mandelic acid compounds and mandelonitriles and their use for combating microorganisms
DE3275088D1 (en) * 1981-08-19 1987-02-19 Ici Plc Triazole derivatives, processes for preparing them, compositions containing them and processes for combating fungi and regulating plant growth

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10519122B2 (en) 2013-01-09 2019-12-31 BASF Agro B.V. Process for the preparation of substituted oxiranes and triazoles
US10779536B2 (en) 2014-11-07 2020-09-22 Basf Se Pesticidal mixtures
US10905122B2 (en) 2016-03-16 2021-02-02 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on cereals
US11241012B2 (en) 2016-03-16 2022-02-08 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on soybean
US11425909B2 (en) 2016-03-16 2022-08-30 Basf Se Use of tetrazolinones for combating resistant phytopathogenic fungi on fruits

Also Published As

Publication number Publication date
DK534083A (da) 1984-05-24
ES527438A0 (es) 1985-04-16
GB2130584A (en) 1984-06-06
ZA838696B (en) 1984-07-25
BR8306422A (pt) 1984-06-26
EP0117378A1 (de) 1984-09-05
AU570653B2 (en) 1988-03-24
IL70288A (en) 1989-03-31
IL70284A (en) 1987-02-27
EP0114567A3 (en) 1984-09-12
GR79723B (da) 1984-10-31
ES8506566A1 (es) 1985-08-01
GB2168053B (en) 1986-11-26
AU1069288A (en) 1988-05-05
PL141026B1 (en) 1987-06-30
KR840006648A (ko) 1984-12-01
ATE37180T1 (de) 1988-09-15
JPS59106467A (ja) 1984-06-20
ES8504133A1 (es) 1985-04-16
IL70288A0 (en) 1984-02-29
ZA838695B (en) 1984-07-25
CA1215374A (en) 1986-12-16
AU2158283A (en) 1984-05-31
AU584000B2 (en) 1989-05-11
EP0114567A2 (de) 1984-08-01
GB8330970D0 (en) 1983-12-29
IL70284A0 (en) 1984-02-29
PH19709A (en) 1986-06-16
TR21666A (tr) 1985-01-21
PT77700B (en) 1986-05-12
AU2158183A (en) 1984-05-31
PL244693A1 (en) 1985-10-08
JPS59106468A (ja) 1984-06-20
SU1331427A3 (ru) 1987-08-15
GB2130584B (en) 1986-11-26
ES527439A0 (es) 1985-08-01
CA1210404A (en) 1986-08-26
GB2168053A (en) 1986-06-11
DK534083D0 (da) 1983-11-22
PT77700A (en) 1983-12-01
DE3377986D1 (en) 1988-10-20
GB8530463D0 (en) 1986-01-22

Similar Documents

Publication Publication Date Title
EP0114567B1 (de) 1-Carbonyl-1-phenyl-2-azolyl-ethanol Derivate als Mikrobizide und Wuchsregulatoren, sowie ihre Zwischenprodukte
EP0126430B1 (de) Verfahren zur Herstellung von 1-Triazolylethylether-Derivaten, sowie mikrobizide Mittel enthaltende neue 1-triazolyl-phenoxyphenylethylether-derivate als Wirkstoffe und deren Verwendung
EP0113640B1 (de) 1-Azolyl-2-aryl-3-fluoralkan-2-ole als Mikrobizide
EP0065485B1 (de) Arylphenylether-derivate als Mikrobizide, Verfahren zu deren Herstellung und deren Verwendung
EP0275955B1 (de) Mikrobizides Mittel
EP0276432A2 (de) Schädlingsbekämpfungsmittel
EP0060223A2 (de) Mikrobizide Mittel
EP0086173B1 (de) Fungizid wirkende und den Pflanzenwuchs regulierende Triazolcarbinolderivate
EP0149426B1 (de) Mikrobizide
EP0112292B1 (de) Neue Wuchsregulatoren und Mikrobizide
EP0082340B1 (de) Mikrobizide Triazolyl-ethyl-äther
EP0091398B1 (de) Mikrobizide und wuchsregulierende Azolylpropan-Derivate
EP0070798A2 (de) Mikrobizide und wuchsregulierende Mittel
DE2943631A1 (de) Azolylketale, verfahren zu ihrer herstellung und ihre verwendung als mikrobizide
EP0079856A1 (de) Mikrobizide Triazolyl-vinyläther
EP0116262B1 (de) Fluorazolyl-propanol-Derivate als Mikrobizide und wuchsregulierende Mittel
EP0241429A2 (de) Mikrobizide Silane
DE3505869A1 (de) 2-((arylthio)phenyl)-2-(1h-azolylmethyl)-diox(ol)ane als mikrobizide
EP0228343A2 (de) Mikrobizide 2-(1-Triazolyl)1-phenyl-ethanon-(1)-Ketalderivate
EP0098243B1 (de) Neue Säure-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung zur Bekämpfung von Mikroorganismen
EP0089920B1 (de) Mikrobizide und wuchsregulierende Mittel
EP0462931B1 (de) Benzotriazol-1-sulfonylderivate mit mikrobiziden Eigenschaften
EP0441747B1 (de) Mikrobizide
EP0228995A1 (de) Mikrobizide
EP0113644A2 (de) Halogenazolyl-propan-Derivate als mikrobizide und wuchsregulierende Mittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed

Effective date: 19831119

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19860423

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 37180

Country of ref document: AT

Date of ref document: 19880915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3377986

Country of ref document: DE

Date of ref document: 19881020

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881130

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLR4 Nl: receipt of corrected translation in the netherlands language at the initiative of the proprietor of the patent
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900903

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900917

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900926

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19901017

Year of fee payment: 8

Ref country code: AT

Payment date: 19901017

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19901030

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19901116

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19901126

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901130

Year of fee payment: 8

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19911117

Ref country code: AT

Effective date: 19911117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19911130

Ref country code: CH

Effective date: 19911130

Ref country code: BE

Effective date: 19911130

BERE Be: lapsed

Owner name: CIBA-GEIGY A.G.

Effective date: 19911130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920601

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 83810531.0

Effective date: 19920604