EP0108741A1 - Verfahren zur Herstellung eines Splitterkörpers - Google Patents

Verfahren zur Herstellung eines Splitterkörpers Download PDF

Info

Publication number
EP0108741A1
EP0108741A1 EP19830890176 EP83890176A EP0108741A1 EP 0108741 A1 EP0108741 A1 EP 0108741A1 EP 19830890176 EP19830890176 EP 19830890176 EP 83890176 A EP83890176 A EP 83890176A EP 0108741 A1 EP0108741 A1 EP 0108741A1
Authority
EP
European Patent Office
Prior art keywords
inner body
splinters
hollow body
splinter
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19830890176
Other languages
English (en)
French (fr)
Other versions
EP0108741B1 (de
Inventor
Gerd Dr. Tomazic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Edelstahlwerke AG
Original Assignee
Vereinigte Edelstahlwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Edelstahlwerke AG filed Critical Vereinigte Edelstahlwerke AG
Publication of EP0108741A1 publication Critical patent/EP0108741A1/de
Application granted granted Critical
Publication of EP0108741B1 publication Critical patent/EP0108741B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/20Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type
    • F42B12/22Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction
    • F42B12/32Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of high-explosive type with fragmentation-hull construction the hull or case comprising a plurality of discrete bodies, e.g. steel balls, embedded therein or disposed around the explosive charge

Definitions

  • the present invention relates to a splinter body and to a method for producing a splinter body.
  • a splinter body for splinter projectiles and warheads which has a projectile jacket, which serves as an outer shell, and an inner tube body.
  • the cylindrical cavity formed between these two bodies is covered with splinters e.g. made of hard metal or ceramic.
  • splinters can have a spherical shape, but also have different shapes, each being a uniform mixture, e.g. Spheres with pyramids.
  • the fragments are removed by pressurizing the inner body, the inner sleeve, e.g. by explosion forming, electromagnetically or by driving a conical calibration bolt or the like, pressed outwards, the splinters being enclosed on both sides in both tubular bodies.
  • This method also has the advantage that a plurality of layers of fragments are provided, in which case a further inner shell is then provided for each splinter layer and the fragments are fully embedded in the material of the shells after the inner body (s) have been pressurized.
  • a further method for producing a splinter body is known, a base being screwed into a cylindrical shell body, after which a cylinder sleeve is inserted into the interior. The cavity between the shell and the inner sleeve is then filled with the fragments. The distance between the inner wall of the shell and the outer wall of the inner sleeve corresponds approximately to that of the spherical splinters.
  • the splinters are now fixed in such a way that, for example, the interior is pressurized with a hydraulic fluid, so that they are made of a soft material, e.g. Aluminum, existing inner sleeve is deformed so that the splinters are partially enveloped.
  • splinter bodies and the associated processes all have in common that they are only suitable for producing splinter bodies which provide an essentially cylindrical arrangement of the splinters, i.e. there is no possibility of arranging the splinters in a tapering area and the methods are relatively complex, in particular if the splinters are to be covered on all sides by the jacket material of the inner sleeve, the splinters can break and then these sections no longer have the desired kinetic energy when the splinter body explodes.
  • the object of the present invention is to provide an easy-to-carry out process for the production of such splinter bodies with one or more layers To create a series of splinters, whereby all-round covering of the splinters is not required for the safe positioning of the same on the floor. This safe positioning of the fragments in the floor is of particular importance for the ballistic properties.
  • Another object of the invention is that simply shaped bodies, in particular pipe sections, can be used as starting products for carrying out the method.
  • the method according to the invention for producing a splinter body wherein a preformed inner body is introduced into a hollow body, in particular the shell, and at least partially the space thus formed is filled with the desired amount of splinters and the inner body is expanded in the radial direction and the adjacent body
  • Surrounding splinters at least partially consists essentially in that the inner body, which is tapered at least at one end, in particular at both ends, is introduced into the hollow body, whereupon the latter is deformed in accordance with the desired space and the space is filled with the fragments, after which the inner body is radial Direction, especially with a pressure medium, possibly with simultaneous axial compression, is expanded.
  • the center of gravity of the projectile can be determined in a particularly simple manner by choosing the splinters. If balls are used as splinters, the diameter of which is equal to the distance between the hollow body and the inner body, these balls will have a lower bulk density than if smaller balls were used. There is also the possibility that, for example, other shapes can be used instead of the balls, in which case other densest bulk densities are also given.
  • the intermediate space can be filled with splinters in multiple layers in relation to the radial direction, the splinters not being destroyed even when there is no intermediate sleeve.
  • a particularly preferred embodiment of the present invention consists in that the inner body is formed from a cylindrical tube by drawing in the ends.
  • the inner body has the surprising property that, despite different deformations, in particular cold deformation when pressurized and bursting, it has homogeneous properties.
  • the inner body tapered at least at one end is introduced into a tube forming the hollow body and into the Sem positioned, whereupon the tube is at least at one, preferably at both ends, is a particularly easy to perform method, it can be assumed at the same time from pipe sections and it was quite surprising that pipe sections that are subject to different cold deformation, with explosive Pressurization has no adverse behavior, such as the size of the splinters, etc.
  • the splinter body according to the invention with an inner body and a hollow body, in particular forming the projectile jacket, the space formed between them being at least partially filled with splinters consists essentially in that the inner body tapers at least at one end, and with the hollow body by soldering, welding or the like. is connected.
  • Such a splinter body can not only have a cylindrical layer of splinters, but can also have such splinters in the tapered part.
  • those parts which are usually provided for screw connections or the like can be replaced by weight by further splitters. It has been shown completely surprisingly that neither the weld seam nor the heat exposure caused by it affects the behavior after the detonation of the explosive charge and thus the desired comminution of the projectile.
  • the inner body has an internal thread at one end, it is particularly easy to mount stabilizing fins or the igniter. Furthermore, the different material thickness of the inner and outer body is taken into account particularly favorably, since, as is known per se, the inner body should have a greater material thickness than the outer body, since the inner body is only allowed to burst in the event of an explosion after the greatest possible pressure has been built up, so that the under pressure gases cause the splinters to act at high speed.
  • the outer body should have the smallest possible wall thickness so that the energy of the splinters is not used to destroy the outer shell, but rather that the splinters can leave their position with the highest possible energy.
  • Fig. 1 shows a schematic representation of the individual steps, whereas in Fig. 2 the section through a splinter body is shown.
  • a cylindrical tube is formed into a desired inner body by necking with a shape at both ends, and then an internal thread is cut at both ends.
  • This inner body is then introduced into a tube with a larger diameter, which is to form the outer hollow body, and is positioned therein, for example by a mold.
  • the outer tube is then also held in a mold, with this being deformed at one end until it lies against the inner body, whereas the deformation at the other end is only carried out until an annular gap is released.
  • the fragments are now introduced through this annular gap.
  • the inner body is then closed pressure-tight at both ends with movable stamps.
  • a pressure medium for example with a pressure of 700 bar, is now introduced into the interior of the inner body, the two ends of the inner body being pressed against one another at the same time, so that in addition to the radial expansion, the inner body is shortened.
  • the outer body is also arranged in a shape so that it acts against deformation of the outer body and can absorb the forces. Then the annular filling opening closed by necking the outer hollow body, whereupon the inner body is connected to the hollow body by circular welds.
  • the splinter body shown in FIG. 2 has an inner body 1 which projects at both ends 2 and 3 beyond the outer hollow body 4.
  • the outer hollow body 4 is also necked in at its two ends 5, 6 and lies against the ends 2, 3 of the inner body and is connected to them by welds 7, 8.
  • the intermediate space 9, which is formed by the spaced-apart inner body and outer hollow body formed from tubes, is filled with splinters 10, 11, 12. If, for example, the cylindrical area of the intermediate space is only filled with large balls 11 as fragments, then by filling the tapering areas at one or the other end with smaller size splinters, the center of gravity of the entire projectile can be shifted in one of these two directions.
  • a different bulk density of the splinters can, however, not only be achieved by the different sizes, but also by different shapes and also by using different materials. However, it is essential that the filling of the different fragments takes place in such a way that a rotationally symmetrical structure of the splinter body can be achieved in each case.
  • the inner body 1 has threads 13, 14 at its two ends which can be used for fastening, for example an igniter and stabilizing fins.
  • the inner body can have a wall thickness of 5 mm, the thickness of the outer jacket being 2 mm.
  • steels with a tensile strength of at least 7 00 N / mm 2 are suitable as the material for the inner and outer sheath.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Es wird ein Verfahren zur Herstellung eines Splitterkörpers vorgeschlagen, wobei ein vorgeformter Innenkörper (1) in einen, insbesondere den Geschoßmantel bildenden Hohlkörper (4) eingebracht und zumindest teilweise der so gebildete Zwischenraum (9) mit der erwünschten Menge an Splitter (10, 11, 12) gefüllt wird und der Innenkörper (1) in radialer Richtung expandiert wird und die am Innenkörper (1) anliegenden Splitter (10, 11, 12) zumindest teilweise umgibt und der zumindest an einem Ende, insbesondere an beiden Enden verjüngte Innenkörper (1) in den Hohlkörper (4) eingebracht wird, worauf dieser entsprechend dem erwünschten Zwischenraum verformt und der Zwischenraum (9) mit den Splittern (10, 11, 12) ausgefüllt wird, wonach der Innenkörper (1) in radialer Richtung, insbesondere mit einem Druckmedium, gegebenenfalls unter gleichzeitiger axialer Stauchung expandiert wird.

Description

  • Die vorliegende Erfindung bezieht sich auf einen Splitterkörper sowie auf ein Verfahren zur Herstellung eines Splitterkörpers.
  • Aus der DE-AS 21 29 196 wird ein Splitterkörper für Splittergeschosse und Gefechtsköpfe bekannt, welcher einen Geschoßmantel, der als Außenhülle dient, sowie einen Innenrohrkörper aufweist. Der zwischen diesen beiden Körpern gebildete zylindrische Hohlraum ist mit Splitternz.B. aus Hartmetall oder auch aus Keramik,gefüllt. Diese Splitter können kugelige Form aber auch verschiedene Gestalt aufweisen, wobei sie jeweils als einheitliches Gemenge,z.B. Kugeln mit Pyramiden, vorliegen. Die Splitter werden durch Druckbeaufschlagung des Innenkörpers, der inneren Hülse, z.B. durch Explosionsumformung, elektromagnetisch oder durch Treiben eines konischen Kalibrierbolzens od. dgl., nach außen gedrückt, wobei die Splitter allseitig in beide Rohrkörper eingeschlossen werden. Auf diese Art und Weise soll ein Vorkerben erreicht werden, damit bei Detonation der Ladung des Splitterkörpers bereits gleich große Teile entstehen, welche über die erforderliche kinetische Energie verfügen. Dieses Verfahren weist weiters den Vorteil auf, daß mehrere Schichten aus Splittern vorgesehen sind, wobei dann jeweils für eine Splitterschicht eine weitere Innenhülle vorgesehen wird und nach Druckbeaufschlagung des oder der Innenkörper(s) die Splitter voll in das Material der Hüllen eingebettet werden.
  • Aus der EU-PS 12 322 wird ein weiteres Verfahren zur Herstellung von Splitterkörpern bekannt, wobei in einem zylindrischen oder hohlzylindrischen Innenkörper eine ringförmige Ausnehmung vorgesehen wird, in welcher die Splitter angeordnet werden, worüber sodann ein weiterer den Geschoßmantel bildender Hohlzylinder geschoben wird. Die Einbettung der Splitter in die Zylinder erfolgt hiebei durch Schmieden. Die Schmiedung muß derart durchgeführt werden, daß eine gleichzeitige, womöglich allseitig eintretende Verformung eines Ringabschnittes durchgeführt werden soll.
  • Aus der GB-PS 1 371 690 wird ein weiteres Verfahren zur Herstellung eines Splitterkörpers bekannt, wobei in einen zylindrischen Geschoßmantelkörper ein Boden eingeschraubt wird, wonach eine Zylinderhülse in den Innenraum eingebracht wird. Danach wird der zwischen dem Geschoßmantel und der Innenhülse bestehende Hohlraum mit den Splittern gefüllt. Der Abstand zwischen Innenwandung des Geschoßmantels und Außenwandung der Innenhülse entspricht in etwa dem der kugelförmigen Splitter. Die Fixierung der Splitter erfolgt nun derart, daß beispielsweise mit einer hydraulischen Flüssigkeit der Innenraum druckbeaufschlagt wird, sodaß die aus einem weichen Material,z.B. Aluminium,bestehende Innenhülse derart deformiert wird, daß die Splitter teilweise umhüllt werden.
  • Den oben angeführten Splitterkörpern sowie den dazugehörigen Verfahren ist allen gemeinsam, daß sie nur zur Herstellung von Splitterkörpern geeignet sind, die eine im wesentlichen zylindrische Anordnung der Splitter vorsieht, d.h. es besteht nicht die Möglichkeit, die Splitter in einem sich verjüngenden Bereich anzuordnen und es sind die Verfahren relativ aufwendig, wobei insbesondere dann, wenn eine allseitige Umhüllung der Splitter durch das Mantelmaterial der Innenhülse gewünscht wird, ein Bruch der Splitter eintreten kann und dann diese Teilstücke nicht mehr die erwünschte kinetische Energie bei der Explosion des Splitterkörpers aufweisen.
  • Die vorliegende Erfindung hat sich die Aufgabe gestellt, ein einfach durchzuführendes Verfahren zur Herstellung derartiger Splitterkörper mit ein- oder mehrschichtiger Reihe von Splittern zu schaffen, wobei keine allseitige Umhüllung der Splitter zur sicheren..Positionierung derselben im Geschoß erforderlich ist. Diese sichere Positionierung der Splitter im Geschoß ist für die ballistischen Eigenschaften von besonderer Bedeutung. Eine weitere Aufgabe der Erfindung besteht darin, daß als Ausgangsprodukte zur Durchführung des Verfahrens einfach geformte Körper, insbesondere Rohrstücke, verwendet werden können.
  • Das erfindungsgemäße Verfahren zur Herstellung eines Splitterkörpers, wobei ein vorgeformter Innenkörper in einen, insbesondere den Geschoßmantel bildenden Hohlkörper eingebracht, und zumindest teilweise der so gebildete Zwischenraum mit der erwünschten Menge von Splittern gefüllt wird und der Innenkörper in radialer Richtung expandiert wird und die am Innenkörper anliegenden Splitter zumindest teilweise umgibt, besteht im wesentlichen darin, daß der zumindest an einem Ende, insbesondere an beiden Enden verjüngte Innenkörper in den Hohlkörper eingebracht wird, worauf dieser entsprechend dem erwünschten Zwischenraum verformt und der Zwischenraum mit den Splittern gefüllt wird, wonach der Innenkörper in radialer Richtung, insbesondere mit einem Druckmedium, gegebenenfalls unter gleichzeitiger axialer Stauchung, expandiert wird. Mit diesem Verfahren kann somit ein Splitterkörper erzeugt werden, der nicht nur in seinem zylindrischen Bereich, sondern auch in seinem sich verjüngenden Bereich Splitter aufweist, wobei eine ausreichende Fixierung der Splitter auch in mehrfacher Schicht erreicht werden kann.
  • Wird der Hohlkörper an einem Ende bis zum Anliegen an den Innenkörper verformt, worauf die Splitter eingebracht werden, so kann ohne zusätzlichen Einlagekörper gearbeitet werden, sodaß bei gleichem Gewicht des Projektils die Anzahl der Splitter erhöht werden kann.
  • Wird nach dem Füllen des Zwischenraumes mit Splittern der Hohlkörper an einem Ende bis zum Anliegen an den Innenkörper verformt, so kann auf einen komplizierten Verschlußkörper, der beispielsweise über ein Gewinde od. dgl. festgehalten werden muß, verzichtet werden, wobei erneut der Vorteil gegeben ist, daß bei gleichem Gewicht mehr Splitter im Geschoß vorgesehen werden können.
  • Wird der Zwischenraum nacheinander mit Splittern unterschiedlicher(m) Größe und/oder Gestalt und/oder spezifischen Gewicht gefüllt, so kann auf besonders einfache Art und Weise der Schwerpunkt des Geschosses durch Wahl der Splitter festgelegt werden. Werden als Splitter Kugeln verwendet, deren Durchmesser gleich dem Abstand zwischen Hohlkörper und Innenkörper ist, so werden diese Kugeln ein geringeres Schüttgewicht aufweisen, als wenn kleinere Kugeln verwendet werden. Weiters besteht die Möglichkeit, daß beispielsweise an Stelle der Kugeln andere Formen zum Einsatz gelangen, wobei dann ebenfalls andere dichteste Schüttgewichte gegeben sind.
  • Der Zwischenraum kann bezogen auf die Radialrichtung mehrlagig mit Splittern gefüllt sein, wobei auch bei Nichtvorliegen einer Zwischenhülse keine Zerstörung der Splitter erfolgt.
  • Eine besonders bevorzugte Ausführungsform der vorliegenden Erfindung besteht darin, daß der Innenkörper aus einem zylindrischen Rohr durch Einziehen der Enden gebildet wird. Ein derartiger Körper weist neben der hervorragenden Zentrierung die durchaus überraschende Eigenschaft auf, daß er trotz unterschiedlicher Verformung, insbesondere Kaltverformung bei Druckbeaufschlagung und Zerbersten desselben, homogene Eigenschaften hat.
  • Wird der zumindest an einem Ende verjüngte Innenkörper in ein, den Hohlkörper bildendes Rohr eingebracht und in diesem positioniert, worauf das Rohr zumindest an einem, vorzugsweise an beiden Enden eingehalst wird, so ist ein besonders einfach durchzuführendes Verfahren gegeben, wobei gleichzeitig von Rohrstücken ausgegangen werden kann und es durchaus überraschend war, daß Rohrstücke, die einer unterschiedlichen Kaltverformung unterliegen, bei explosionsartiger Druckbeaufschlagung kein nachteiliges Verhalten, z.B. Größe der entstehenden Splitter usw., aufweist.
  • Der erfindungsgemäße Splitterkörper mit einem Innenkörper und einem, insbesondere den Geschoßmantel bildenden Hohlkörper, wobei der zwischen diesen gebildete Zwischenraum zumindest teilweise mit Splitter gefüllt ist, besteht im wesentlichen darin, daß der Innenkörper zumindest an einem Ende verjüngt, und mit dem Hohlkörper durch Löten, Schweißen od. dgl. verbunden ist. Ein derartiger Splitterkörper kann nicht nur eine zylindrische Schicht aus Splittern aufweisen, sondern kann auch derartige Splitter im, sich verjüngenden Teil besitzen. Weiters können jene Teile, die üblicherweise für Schraubverbindungen od. dgl. vorgesehen sind, gewichtsmäßig durch weitere Splitter ersetzt werden. Es hat sich völlig überraschend gezeigt, daß weder die Schweißnaht noch die dadurch bedingte Wärmebeaufschlagung sich auf das Verhalten nach der Zündung der Sprengladung und damit auf die erwünschte Zerkleinerung des Geschosses auswirkt.
  • Weist der Innenkörper an einem Ende ein Innengewinde auf, so kann besonders einfach die Montage von Stabilisierungsflossen oder auch des Zünders vorgenommen werden. Weiters wird der unterschiedlichen Materialstärke von Innen- und Außenkörper besonders günstig Rechnung getragen, da, wie an sich bekannt, der Innenkörper eine größere Materialstärke aufweisen soll als der Außenkörper, da der Innenkörper erst nach Aufbau eines möglichst hohen Druckes im Explosionsfall zerbersten darf, damit die unter Druck stehenden Gase eine hohe Geschwindigkeitsbeaufschlagung der Splitter bewirken. Der Außenkörper- hingegen, soll eine möglichst geringe Wandstärke aufweisen, damit nicht die Energie der Splitter zum Zerstören der Außenhülle aufgewandt wird, sondern daß die Splitter mit einer möglichst hohen Energie ihre Lage verlassen können.
  • Im folgenden wird die Erfindung anhand der Zeichnungen näher erläutert.
  • Fig. 1 zeigt in schematischer Darstellung die einzelnen Arbeitsschritte, wohingegen in Fig. 2 der Schnitt durch einen Splitterkörper dargestellt ist.
  • Wie aus Fig. 1 ersichtlich, wird ein zylindrisches Rohr durch Einhalsen mit einer Form an beiden Enden zu einem erwünschten Innenkörper geformt, worauf an beiden Enden ein Innengewinde geschnitten wird. Dieser Innenkörper wird sodann in ein Rohr mit größerem Durchmesser, das den äußeren Hohlkörper bilden soll, eingebracht, und in diesem, z.B. durch eine Form, positioniert. Sodann wird das Außenrohr in einer Form ebenfalls eingehalst, wobei dieses an einem Ende bis zum Anliegen an den Innenkörper verformt wird, wohingegen die Verformung am anderen Ende nur bis zur Freilassung eines ringförmigen Spaltes durchgeführt wird. Durch diesen ringförmigen Spalt werden nun die Splitter eingebracht. Sodann wird der Innenkörper an seinen beiden Enden mit beweglichen Stempeln druckdicht verschlossen. In dem Innenraum des Innenkörpers wird nunmehr ein Druckmedium, z.B. mit einem Druck von 700 bar, eingebracht, wobei gleichzeitig die beiden Enden des Innenkörpers gegeneinander gedrückt werden, sodaß neben der radialen Expansion auch eine Verkürzung des Innenkörpers eintritt. Der Außenkörper ist hiebei ebenfalls in einer Form angeordnet, sodaß diese gegen eine Deformation des Außenkörpers wirkt und die Kräfte aufnehmen kann. Sodann wird die ringförmige Einfüllöffnung durch Einhalsen des äußeren Hohlkörpers verschlossen, worauf der Innenkörper mit dem Hohlkörper durch kreisförmige Schweißnähte verbunden wird.
  • Der in Fig. 2 dargestellte Splitterkörper weist einen Innenkörper 1 auf, der an seinen beiden Enden 2 und 3 über den äußeren Hohlkörper 4 hinausragt. Der äußere Hohlkörper 4 ist an seinen beiden Enden 5, 6 ebenfalls eingehalst und liegt an den Enden 2, 3 des Innenkörpers an und ist mit diesen durch Schweißnähte 7, 8 verbunden. Der Zwischenraum 9, der durch die in Abstand voneinander befindlichen, aus Rohren gebildeten Innenkörper und äußeren Hohlkörper entsteht, ist mit Splitter 10, 11, 12 gefüllt. Ist beispielsweise der zylindrische Bereich des Zwischenraumes nur mit großen Kugeln 11 als Splitter gefüllt, so kann man durch Füllen der sich verjüngenden Bereiche am einen oder am anderen Ende mit Splittern kleinerer Größe den Schwerpunkt des gesamten Geschosses in eine dieser beiden Richtungen verschieben. Ein unterschiedliches Schüttgewicht der Splitter kann jedoch nicht nur durch die unterschiedliche Größe, sondern auch unterschiedliche Gestalt und auch durch Verwendung von unterschiedlichem Material erreicht werden. Wesentlich ist allerdings, daß die Füllung der unterschiedlichen Splitter derart erfolgt, daß jeweils ein rotationssymmetrischer Aufbau des Splitterkörpers erreichbar ist. Der Innenkörper 1 weist an seinen beiden Enden Gewinde 13, 14 auf, die zur Befestigung, beispielsweise eines Zünders und Stabilisierungsflossen dienen können.
  • Der Innenkörper kann bei einer Gesamtlänge des Splitterkörpers von 360 mm eine Wandstärke von 5 mm aufweisen, wobei die Dicke des Außenmantels 2 mm beträgt. Als Werkstoff für den Innen- und Außenmantel eignen sich beispielsweise Stähle mit einer Zugfestigkeit von mindestens 700 N/mm2.

Claims (10)

1. Verfahren zur Herstellung eines Splitterkörpers, wobei ein vorgeformter Innenkörper (1) in einen, insbesondere den Geschoßmantel bildenden Hohlkörper (4) eingebracht und zumindest teilweise der so gebildete Zwischenraum (9) mit der erwünschten Menge an Splitter (10, 11, 12) ge- .füllt wird und der Innenkörper (1) in radialer Richtung expandiert wird und die am Innenkörper (1) anliegenden Splitter (10, 11, 12) zumindest teilweise umgibt, dadurch gekennzeichnet, daß der zumindest an einem Ende, insbesondere an beiden Enden verjüngte Innenkörper (1) in den Hohlkörper (4) eingebracht wird, worauf dieser entsprechend dem erwünschten Zwischenraum verformt und der Zwischenraum (9) mit den Splittern (10, 11, 12) ausgefüllt wird, wonach der Innenkörper (1) in radialer Richtung, insbesondere mit einem Druckmedium, gegebenenfalls unter gleichzeitiger axialer Stauchung expandiert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Hohlkörper (4) an einem Ende bis zum Anliegen an den Innenkörper (1) verformt wird, worauf die Splitter (10, 11, 12) eingebracht werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß nach dem Füllen des Zwischenraumes (9) mit Splittern (10, 11, 12) der Hohlkörper (4) an einem Ende bis zum Anliegen an den Innenkörper (1) verformt wird.
4. Verfahren nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, daß der Zwischenraum (9) nacheinander mit Splittern (10, 11, 12) unterschiedlicher Größe und/ oder Gestalt gefüllt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Zwischenraum (9) mehrlagig bezogen auf die Radialrichtung mit Splittern (10, 11, 12) gefüllt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Innenkörper (1) aus einem zylindrischen Rohr durch Einziehen der Enden gebildet wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der zumindest an einem Ende verjüngte Innenkörper (1) in ein, den Hohlkörper (4) bildendes Rohr eingebracht und in diesem positioniert wird, worauf das Rohr zumindest an einem, vorzugsweise an beiden Enden eingehalst wird.
8. Splitterkörper mit einem Innenkörper (1) und einem, insbesondere den Geschoßmantel bildenden Hohlkörper (4), wobei der zwischen diesen gebildete Zwischenraum (9) zumindest teilweise mit Splittern (10, 11, 12) gefüllt ist, dadurch gekennzeichnet, daß der Innenkörper (1) zumindest an einem Ende verjüngt ist und mit dem Hohlkörper (4) durch Löten, Schweißen (7, 8) od. dgl. verbunden ist.
9. Splitterkörper nach Anspruch 8, dadurch gekennzeichnet, daß der Innenkörper (1) zumindest an einem Ende ein Innengewinde (13, 14) aufweist.
10. Splitterkörper nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß der Innenkörper (1) an einem Ende, gegebenenfalls an beiden Enden über den Hohlkörper (4) hinausragt.
EP19830890176 1982-10-11 1983-10-10 Verfahren zur Herstellung eines Splitterkörpers Expired EP0108741B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT375582A AT382236B (de) 1982-10-11 1982-10-11 Verfahren zur herstellung eines splitterkoerpers und danach hergestellter splitterkoerper
AT3755/82 1982-10-11

Publications (2)

Publication Number Publication Date
EP0108741A1 true EP0108741A1 (de) 1984-05-16
EP0108741B1 EP0108741B1 (de) 1987-04-08

Family

ID=3554970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830890176 Expired EP0108741B1 (de) 1982-10-11 1983-10-10 Verfahren zur Herstellung eines Splitterkörpers

Country Status (4)

Country Link
EP (1) EP0108741B1 (de)
AT (1) AT382236B (de)
DE (1) DE3370859D1 (de)
GR (1) GR78674B (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2179125A (en) * 1985-07-13 1987-02-25 Diehl Gmbh & Co Warhead
DE3822375A1 (de) * 1987-09-28 1989-04-20 Affarsverket Ffv Detonationskoerper
EP0253058B1 (de) * 1986-07-15 1990-06-27 Rheinmetall GmbH Unterkalibriges Geschoss
US5979332A (en) * 1997-04-23 1999-11-09 Diehl Stiftung & Co. Fragmentation body for a fragmentation projectile
WO2002003015A1 (en) * 2000-07-03 2002-01-10 Bofors Defence Ab A device for adapting a unit of ammunition for different types of targets and situations
WO2002003017A1 (en) * 2000-07-03 2002-01-10 Bofors Defence Ab A modular warhead for units of ammunition such as missiles
SE2100078A1 (sv) * 2021-05-19 2022-11-20 Bae Systems Bofors Ab Stridsdel
RU2794586C1 (ru) * 2022-11-11 2023-04-21 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления корпуса осколочно-фугасного заряда

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH543064A (de) * 1971-07-08 1973-10-15 Oerlikon Buehrle Ag Geschoss mit kugelförmigen, unter sich gleich grossen Projektilen, Verfahren zu dessen Herstellung und Vorrichtung zur Durchführung des Verfahrens
DE2129196B2 (de) * 1971-06-12 1975-04-03 Fa. Diehl, 8500 Nuernberg
EP0012322A1 (de) * 1978-12-06 1980-06-25 DIEHL GMBH & CO. Verfahren zur Herstellung metallischer Formkörper, insbesondere Geschosse, mit in metallischer Bettungsmasse eingelagerten diskreten Teilchen
EP0012323A1 (de) * 1978-12-06 1980-06-25 DIEHL GMBH & CO. Verfahren zur Herstellung metallischer Formkörper, insbesondere Geschosse, mit in metallischer Bettungsmasse eingelagerten diskreten Teilchen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2129196B2 (de) * 1971-06-12 1975-04-03 Fa. Diehl, 8500 Nuernberg
CH543064A (de) * 1971-07-08 1973-10-15 Oerlikon Buehrle Ag Geschoss mit kugelförmigen, unter sich gleich grossen Projektilen, Verfahren zu dessen Herstellung und Vorrichtung zur Durchführung des Verfahrens
EP0012322A1 (de) * 1978-12-06 1980-06-25 DIEHL GMBH & CO. Verfahren zur Herstellung metallischer Formkörper, insbesondere Geschosse, mit in metallischer Bettungsmasse eingelagerten diskreten Teilchen
EP0012323A1 (de) * 1978-12-06 1980-06-25 DIEHL GMBH & CO. Verfahren zur Herstellung metallischer Formkörper, insbesondere Geschosse, mit in metallischer Bettungsmasse eingelagerten diskreten Teilchen

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2179125A (en) * 1985-07-13 1987-02-25 Diehl Gmbh & Co Warhead
GB2179125B (en) * 1985-07-13 1989-07-19 Diehl Gmbh & Co Warhead
EP0253058B1 (de) * 1986-07-15 1990-06-27 Rheinmetall GmbH Unterkalibriges Geschoss
DE3822375A1 (de) * 1987-09-28 1989-04-20 Affarsverket Ffv Detonationskoerper
US5979332A (en) * 1997-04-23 1999-11-09 Diehl Stiftung & Co. Fragmentation body for a fragmentation projectile
SG82583A1 (en) * 1997-04-23 2001-08-21 Diehl Stiftung & Co Fragmentation body for a fragmentation projectile
WO2002003015A1 (en) * 2000-07-03 2002-01-10 Bofors Defence Ab A device for adapting a unit of ammunition for different types of targets and situations
WO2002003017A1 (en) * 2000-07-03 2002-01-10 Bofors Defence Ab A modular warhead for units of ammunition such as missiles
US7066093B2 (en) 2000-07-03 2006-06-27 Bae Systems Bofors Ab Modular warhead for units of ammunition such as missiles
US7127995B2 (en) 2000-07-03 2006-10-31 Bae Systems Bofors Ab Device for adapting a unit of ammunition for different types of targets and situations
SE2100078A1 (sv) * 2021-05-19 2022-11-20 Bae Systems Bofors Ab Stridsdel
WO2022245264A1 (en) * 2021-05-19 2022-11-24 Bae Systems Bofors Ab A method for producing a warhead component
SE545386C2 (sv) * 2021-05-19 2023-07-25 Bae Systems Bofors Ab Metod för framställning av en komponent för en stridsdel
RU2794586C1 (ru) * 2022-11-11 2023-04-21 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ изготовления корпуса осколочно-фугасного заряда

Also Published As

Publication number Publication date
GR78674B (de) 1984-09-27
DE3370859D1 (en) 1987-05-14
AT382236B (de) 1987-01-26
ATA375582A (de) 1986-06-15
EP0108741B1 (de) 1987-04-08

Similar Documents

Publication Publication Date Title
DE2129196C3 (de) Splitterkörper für Splittergeschosse und -gefechtskopfe
DE4001864C2 (de)
DE112010003307B4 (de) Trennvorrichtung mit expandierender Röhre
DE2253440A1 (de) Patronenhuelse aus einem thermoplastischen material
EP0344224B1 (de) Splittermantel für metallische explosivkörper sowie verfahren zu seiner herstellung
CH618260A5 (de)
EP2101935A1 (de) Werkstück und verfahren für das explosionsumformen
DE60021398T2 (de) Zünder
EP1209437A1 (de) Treibspiegel-Geschoss mit Zerschell-Penetrator
EP0108741B1 (de) Verfahren zur Herstellung eines Splitterkörpers
DE2557676A1 (de) Splittergeschoss
AT350516B (de) Verfahren zur herstellung eines schutzmantels fuer die fuellung eines druckgasbehaelters
DE102016015790B4 (de) Metallisches Vollgeschoss, Werkzeug-Anordnung und Verfahren zum Herstellen von metallischen Vollgeschossen
DE2107460A1 (en) Internally expanding pipes - to centrally increase their buckling strength
DE2043251A1 (en) Explosive forming - by shock wave conducted into the workpiece from outside
DE2408801A1 (de) Verfahren zum festen und vorzugsweise dichten verbinden eines, im wesentlichen zylindrischen, inneren teiles mit einem, im wesentlichen zylindrischen, aeusseren teil, das das innere teil umgibt, und vorrichtungen zum ausueben des verfahrens
DE2852657C2 (de) Splitterkörper für Splittergeschosse
DE54696C (de) Verfahren zur Herstellung von Geschützrohren und Gewehrläufen
DE102018123316A1 (de) Rohrelement für Gasdruckbehälter, Gasdruckbehälter und Verfahren zur Herstellung eines Rohrelementes
DE2310667A1 (de) Splitterhuelle fuer geschosse und gefechtskoepfe, sowie verfahren zu deren herstellung
EP0012322A1 (de) Verfahren zur Herstellung metallischer Formkörper, insbesondere Geschosse, mit in metallischer Bettungsmasse eingelagerten diskreten Teilchen
EP1138408A2 (de) Verfahren zur Herstellung von grossvolumigen Hohlkörpern
DE3822375C2 (de)
DE102010048570B4 (de) Umschaltbare Wirkladung
DE3923461C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19841102

17Q First examination report despatched

Effective date: 19860219

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 3370859

Country of ref document: DE

Date of ref document: 19870514

ET Fr: translation filed
ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19871031

Ref country code: CH

Effective date: 19871031

Ref country code: BE

Effective date: 19871031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: VEREINIGTE EDELSTAHLWERKE A.G. VEW

Effective date: 19871031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19880701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881122

EUG Se: european patent has lapsed

Ref document number: 83890176.7

Effective date: 19880712