EP0106411B1 - Munition de petit calibre et son procédé de fabrication - Google Patents

Munition de petit calibre et son procédé de fabrication Download PDF

Info

Publication number
EP0106411B1
EP0106411B1 EP19830201455 EP83201455A EP0106411B1 EP 0106411 B1 EP0106411 B1 EP 0106411B1 EP 19830201455 EP19830201455 EP 19830201455 EP 83201455 A EP83201455 A EP 83201455A EP 0106411 B1 EP0106411 B1 EP 0106411B1
Authority
EP
European Patent Office
Prior art keywords
projectile
tip
small arms
axis
cartridge case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19830201455
Other languages
German (de)
English (en)
Other versions
EP0106411A2 (fr
EP0106411A3 (en
Inventor
Beat Kneubühl
Hans Schwendimann
Max Ruf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schweizerische Eidgenossenschaft
Original Assignee
Schweizerische Eidgenossenschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/434,911 external-priority patent/US4517897A/en
Priority claimed from CH450883A external-priority patent/CH666345A5/de
Application filed by Schweizerische Eidgenossenschaft filed Critical Schweizerische Eidgenossenschaft
Priority to AT83201455T priority Critical patent/ATE27999T1/de
Publication of EP0106411A2 publication Critical patent/EP0106411A2/fr
Publication of EP0106411A3 publication Critical patent/EP0106411A3/de
Application granted granted Critical
Publication of EP0106411B1 publication Critical patent/EP0106411B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/76Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the casing
    • F42B12/78Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the casing of jackets for smallarm bullets ; Jacketed bullets or projectiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/02Making machine elements balls, rolls, or rollers, e.g. for bearings
    • B21K1/025Making machine elements balls, rolls, or rollers, e.g. for bearings of bullets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/04Shaping thin-walled hollow articles, e.g. cartridges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B30/00Projectiles or missiles, not otherwise provided for, characterised by the ammunition class or type, e.g. by the launching apparatus or weapon used
    • F42B30/02Bullets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • F42B5/025Cartridges, i.e. cases with charge and missile characterised by the dimension of the case or the missile

Definitions

  • the present invention relates to a small-caliber ammunition consisting of a rotationally symmetrical projectile, a cartridge case with a powder charge and a primer arranged centrally with respect to its longitudinal axis, the cartridge case being fastened in a section between the flattened tip of the projectile and its rear end.
  • the invention further relates to a method for producing small-caliber ammunition and to an application of this method.
  • Small-caliber ammunition is understood to mean ammunition with a caliber of less than 12.7 mm, in particular with a caliber in the range from 4 to 6.35 mm.
  • a rotationally symmetrical mantle bullet is from the publication of the US Department of Commerce, National Technical Information Service, No. AD-A025 131 (Michael Pino, "The Effect of Varying certain Parameters on the Performance of the S.C.A.M.P. produced 5.56 mm Projectile", DARCOM Intern Training Center, May 1976).
  • the known projectile has an ogival-shaped profile part, a cylindrical middle part and a frustoconical rear end part.
  • the profile part described is parabolic, conical or spherical in shape. It is expressly stated that a change in the profile part requires a change in the design of the weapon.
  • DE-A 25 25 230 describes a method for producing jacket bullets and the bullets produced using this method.
  • the object of the invention is to provide a projectile of the type mentioned at the outset which has a better chance of being hit and an increased ballistic final energy.
  • Another object is to provide a method for producing such a jacket bullet, which is economically suitable for large-scale production despite increased penetration. It must also not disassemble at the finish line and must meet the requirements of the CICR (Comite International de la Croix-Rouge).
  • the imaginary point of the projectile is a distance (-s) from the origin of a rectangular coordinate system, the positive X-axis of which represents an axis of symmetry and the Y-axis of which represents the direction of the radius r of the projectile, the actual point of the projectile is arranged in the origin of the coordinate system.
  • the invention is based on the surprising finding that, contrary to what is expected by experts, an aerodynamic design of small-caliber ammunition influences the probability of a hit very favorably despite the small size, the relatively short range and the relatively short flight time, which are typical for such projectiles.
  • the starting point for this optimization is a mathematical formula from Haack for the shape of a bullet with minimal air resistance, which is applicable to large-caliber bullets with muzzle velocity in the supersonic range (Oerlikon paperback, machine tools Oerlikon-Briggle AG factory, Zurich, Switzerland, May 1981, chap. 5.2.3., Pages 168 to 171). From this equation, a parameter equation for the calculation of a shape optimized in relation to the air resistance was derived for the profile part of small-caliber ammunition.
  • the section for fastening the cartridge case is shifted from the location corresponding to an upper limit value of X1 by a distance in the range from 0.1 to 0.5 r o to the range of X2 .
  • a small piece of the cylindrical part protrudes from the cartridge case when it is connected to the shell bullet, whereby favorable guiding properties are obtained.
  • a rear end of the projectile has two essentially frusto-conical sections, the imaginary cone tips of which lie on the axis of symmetry of the projectile, and that the section lying on the inside with respect to the end has a cone angle in the range from 5 to 10 Degrees and a length in the range of 0.5 to 2 r o and the portion lying outside with respect to the end has a cone angle in the range of 60 degrees and ends at a distance from the axis of symmetry of the projectile.
  • Such a design of the rear end also has a favorable influence on the stability and the flight behavior of the projectile.
  • the projectile according to claim 4 is a jacket bullet, the jacket of which consists of a plated alloy steel in which a heavy metal core is inserted.
  • Such projectiles can be efficiently produced by train-pressure forming. Even with large quantities, the required precision in the design can be achieved.
  • the jacket has at both ends a groove-shaped section for its attachment to the cartridge case.
  • the rotationally symmetrical jacket bullets for small-caliber ammunition are manufactured in such a way that a cylindrical bowl rounded at the bottom is deep-drawn, that according to the invention the preformed bowl is then extended in a first step with a constant floor thickness and the angle of the inner cone is reduced in one step second step, the cylinder part of the projectile is drawn and a squeeze collar is formed at the end, the angle of the inner cone being reduced again, that in a third step the tip of the projectile is preformed in a polished and smooth die, and in a fourth step in a further polished one and smooth die, the tip of the projectile is finally shaped, that in a fifth step the projectile is cut to its preliminary length in the region of the crimping collar, that in a sixth step a preformed heavy metal core is pressed into the projectile is that in a seventh step the rear part of the projectile is shaped conically, in an eighth step the rear edge is flanged over the heavy metal core, in a ninth step the rear end of the projectile is
  • the first to tenth process steps are expediently linked together and take place on a single step press. In this way, economical production is achieved.
  • the aforementioned method is advantageously used to produce a small-caliber hard lead core. This application is particularly advantageous and tried and tested.
  • Fig. 1 shows in longitudinal section a small-caliber ammunition with a caliber of 5.56 mm, which is a common type of small-caliber ammunition.
  • This ammunition consists of a conventional cartridge case 1 made of brass, which contains a powder charge 2 of the usual composition (e.g. from a smokeless powder for small-caliber weapons) as well as from a jacket bullet, the jacket 3 of which consists of the material usually used for this (e.g. from plated alloy steel) copper-rich non-ferrous metal and the like).
  • the core 15 contained therein consists of a material usually used for this purpose, such as lead or a lead alloy; the core 15 can also consist of steel or sintered material.
  • the projectile has a front part 4, the shape of which is aerodynamically optimized so that the air resistance is reduced to a minimum, as will be described in detail below.
  • the middle part 5 is provided with a groove-shaped section 7 for fastening the jacket 3 to the cartridge case 1. Instead of the groove, however, the cylindrical middle part 5 can also be knurled for fastening the cartridge case 1.
  • the cylindrical middle part 5 extends outwards from the section 7 by 0.254 mm, corresponding to approximately 0.1 r o , where r o represents the radius of the cylindrical middle part 5.
  • the outward protruding extension can be in the range between 0.1 and 0.5 r o .
  • the remaining portion of the cylindrical middle part 5 and the rear end 6 are enclosed in the cartridge case 1.
  • a primer 11 is arranged in the closed end 10 of the cartridge case 1 and is centered with respect to the longitudinal axis of the cartridge case 1.
  • the projectile described is shown in detail in FIG. 2 and on an enlarged scale in longitudinal section.
  • the front part 4 has a truncated front end 12 made of solid material.
  • the rounded front part 4 of the projectile is designated as x 1 and the cylindrical middle part 5 with its section 5a as x 2 .
  • the distance from the end of the imaginary tip to the beginning of the cylindrical middle part 5 and 5a of the projectile is denoted by h.
  • the profile of the projectile is determined by the parameter equation given below, which was derived from the Haack equation known per se and relates to a form of minimal air resistance for large-caliber projectiles, the air resistance being expressed by the coefficient of drag c w .
  • the actual tip of the mantle storey is, according to FIG. 2, in the origin of a right-angled coordinate system in which the height of the mantle storey runs along the positive X axis, while the radius of the storey extends in the Y direction.
  • the profile of the mantle storey is represented by a continuous function r (x), whose continuous differential quotient d r dx assumes a finite value.
  • This function is a sum function:
  • This sum function comprises a range r 1 (x i ) which is connected to a continuously decreasing differential quotient and a range r 2 ( X2 ) in which the differential quotient is constant and equal to zero.
  • the sum function extends up to an imaginary tip of the mantle storey, which is shifted by a distance -s from the origin of the coordinate system.
  • s is the displacement of the actual front end 12 relative to the imaginary tip
  • a is a parameter that is within the range of arc cos can take on any value.
  • the following parameter equation for r for the first term of the above-mentioned sum function is readily obtained from the further Haack equation: Therein, r is the radius of the cylindrical middle part 5 of the jacket storey, r 1 is the radius of the jacket storey in the area x 1 and arc cos
  • the second term in the above sum function refers to the range X2 > h and is by the equation certainly.
  • s has a value of 0.65 mm or 0.232 units of the radius r o of the mantle storey; However, s can have any value in the range from 0.1 to 0.5 r o .
  • the front end 12 generates a defined turbulence during the flight of the jacket floor, so that instabilities due to an otherwise in the we substantial laminar flow can be avoided.
  • the cylindrical middle part 5, which corresponds to the area X2 in the formula given above, has a groove-shaped section 7 for connection to the cartridge case according to FIG. 1.
  • the section 7 can be replaced by a knurled section.
  • the cylindrical middle part 5 extends beyond the section 7 by a section 5a, the axial length of which is 0.254 mm or approximately 0.1 r o .
  • Section 5a can take any value in the range between 0.1 and 0.5 r o .
  • the middle part 5 is followed by the rear end 6, which consists of two essentially frustoconical sections 13 and 14.
  • the inner section 13 has a cone angle of 8 °, but can have any value in the range from 5 ° to 10 °. Its length is 1.82 mm corresponding to 0.65 r o .
  • the outer section 14 has a cone angle of 60 °, but can also have other values in this range.
  • This section ends at a distance from the axis of symmetry.
  • the aforementioned cone angles each end in an imaginary cone tip, which lies on the imaginary extension of the axis of symmetry outside the shell floor.
  • the special shape of the rear end 6 supports the effect of the profile described above on the flight behavior of the projectile by favorably influencing the stability and the air resistance behavior.
  • the jacket bullet described above includes a core 15 made of lead or a lead alloy, which can also consist of another conventional material such as steel or sintered material.
  • a particularly preferred embodiment of the shell bullet consists in a variation of the rear end 6 in the inner, frustoconical section 13, the cone angle of which is only 7 ° and the length is 3.6 mm or 1.3 r o .
  • the bowl 16 is prefabricated in large quantities and is intended for intermediate storage in the sense of a semi-finished product.
  • the bowl 16 is fed to a step press with ten workstations, which is operated in a frame stand by a mono slide driven by a crankshaft and two connecting rods, with a cycle rate of 120 cycles / min. is operated.
  • the individual work stations are linked together by a linear feed device.
  • the feeding of the bowls 16 takes place with the aid of a vibrator known per se with spiral guideways.
  • a squeeze collar is formed at the end with the superfluous material.
  • the angle of the inner cone is reduced again; the wall thickness of the cylindrical part of the floor already has its calibratable dimension.
  • the tip of the projectile is preformed in a finely polished and smooth die, as shown in FIG. 6.
  • the tip of the projectile is finally shaped in a fourth work station, also in a finely polished and smooth die, cf. Fig. 7.
  • the projectile is cut to its preliminary length in the region of the squeeze collar, corresponding to FIG. 8.
  • a hard lead (98% Pb + 2% Sb), pre-fabricated according to the shape of FIG. 9, is pressed into the interior of the floor; the sectional view is produced in Fig. 10.
  • the hard lead is symbolized by dots.
  • the projectile located in a die is conically shaped in its rear part, as shown in FIG. 11.
  • the rear edge is flanged over the heavy metal core in a next method step.
  • the floor is calibrated in a matrix.
  • a gag groove 20 for the cartridge case is rolled in the area of the cylindrical part of the projectile, as the section in FIG. 14 shows.
  • the above-described small-caliber ammunition and the above-described shell projectile are distinguished by the fact that, contrary to expectations, in some important properties they have very considerable improvements over the previously known small-caliber ammunition or the previously known shell projectile of this type, in which the front part is ogival, ie parabolic, conical or spherical is.
  • the high probability of being hit by this projectile is the most significant due to its optimal casing geometry. This is achieved without the use of special rifle barrels, which give the projectile a higher spin.
  • Trials have shown that many properties of the projectile are significantly improved; the spreading in the horizontal and vertical axes of the spreading distribution is 30% and 60% cheaper for shooting distances from 30 to 300 m.
  • This bullet also has a breakthrough performance against lightly armored targets, which can be compared to steel and hard core bullets, without having their significantly higher manufacturing costs.
  • the deformation resistance as well as the increased penetration and penetration ability can be explained with the massive bullet tip, see Fig. 11 to 14.
  • a projectile produced according to the invention has high strength in the target and only disassembles under extreme conditions.
  • the table below shows measurement data for some important properties of known, conventional ammunition with a caliber of 5.56 mm and the corresponding values for the ammunition according to the invention of the same caliber. The relative differences compared to the values obtained with the known ammunition are also given in percent. It can be seen from the table that the shell projectile, which is aerodynamically optimized in terms of air resistance according to the invention, has a relatively less steep trajectory and a somewhat shorter flight time. It has a considerably higher final ballistic energy, especially with long shooting distances. The deflection due to cross winds is reduced by the high amount of 25% for all shot ranges examined, although the projectile according to the invention has a higher weight and a lower muzzle velocity compared to the known projectile.
  • the data reproduced in the table were determined in a customary manner by using the known light barrier method for determining the drag coefficient and by conventional calculations from the drag coefficient obtained.
  • the small-caliber ammunition described above and the mantle bullet therefor have the particular advantage that they can be used with most of the major weapon designs currently in use.
  • the new shell bullet profile does not require any changes in the rifle design for use.
  • the use of the aerodynamically optimized profile according to the invention is not limited to jacket storeys. Bullets made of a full material appear to be suitable in special applications due to their high initial speed, especially for hand and handguns.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Powder Metallurgy (AREA)

Claims (8)

1. Munition de petit calibre, composée d'un projectile (3 à 7; 12) à symétrie de révolution, d'une douille (1) avec une charge de poudre (2) et d'une amorce (11), centrée par rapport à l'axe longitudinal de la douille, qui est fixée dans une section (7) comprise entre la pointe aplatie (12) du projectile et l'extrémité arrière (6) de ce dernier, caractérisée en ce que le profil du projectile (3 à 7; 12 à 14) est défini par une fonction composite
Figure imgb0026
dans laquelle l'intervalle de X1 est donné par
Figure imgb0027
avec h = longueur imaginaire de x1 pour a = π jusqu'à une pointe imaginaire du projectile (3 à 7; 12 à 14) et avec arc cos
Figure imgb0028
dans laquelle les valeurs correspondantes de r1 sont données par
Figure imgb0029
avec arc cos
Figure imgb0030
et dans laquelle l'intervalle de x2 est défini par
Figure imgb0031
r2 étant constant et égal à ro, la pointe imaginaire du projectile (3 à 7; 12) se situant à une distance (-s) de l'origine d'un système de coordonnées rectangulaires, dont l'axe positif X représente un axe de symétrie et l'axe Y une direction du rayon r du projectile (3 à 7; 12), dont la pointe réelle (12) se situe à l'origine de ce système (figure 2; figure 1).
2. Munition de petit calibre suivant la revendication 1, caractérisée en ce que la section (7), prévue pour la fixation de la douille (1), est déportée dans l'intervalle de x2 d'une distance comprise entre 0,1 et 0,5 ro, à partir d'un point correspondant à une valeur limite supérieure de xi (figure 2).
3. Munition de petit calibre suivant l'une quelconque des revendications 1 et 2, caractérisée en ce qu'une extrémité arrière (6) du projectile (4 à 7, 12 à 14) présente deux sections (13, 14) essentiellement tronconiques, dont les pointes de cône imaginaires se situent sur l'axe de symétrie de ce projectile, et en ce que la section (13), interne par rapport à l'extrémité, a un angle de cône de 5 à 10° et une longueur de 0,5 à 2 ro, la section (14), externe par rapport à l'extrémité, ayant un angle de cône de l'ordre de 60° et s'achevant à une certaine distance de l'axe de symétrie précité (figure 2).
4. Munition de petit calibre suivant l'une quelconque des revendications précédentes, caractérisée en ce que le projectile (3 à 7, 12 à 15) est un projectile chemisé, dont la chemise (3) se compose d'un acier allié plaqué, dans lequel est placé un noyau de métal lourd (15) (figure 2; figure 1).
5. Munition de petit calibre suivant les revendications 1 à 4, caractérisée en ce que la chemise (3) est dotée, entre ses deux extrémités (4, 6), d'une section (7) en forme de rainure pour sa fixation sur la douille (1) (figure 1).
6. Procédé de fabrication d'un projectile chemisé à symétrie de révolution, prévu pour la munition de petit calibre suivant la revendication 1, un godet cylindrique (16), arrondi côté fond, étant embouti, caractérisée en ce que le godet préformé (16), soumis à des opérations d'étirage, est allongé dans une première opération, avec une épaisseur de fond constante, l'angle du cône intérieur étant alors réduit, en ce que la partie cylindrique du projectile est étirée dans une deuxième opération et un rebord d'appui formé sur son extrémité, l'angle du cône intérieur étant encore réduit, en ce que la pointe du projectile est préformée dans une troisième opération, dans une matrice lisse et polie, en ce que cette pointe est formée définitivement dans une quatrième opération, dans une autre matrice lisse et polie, en ce que le projectile est découpé à sa longueur provisoire dans la zone du rebord d'appui, dans une cinquième opération, en ce qu'un noyau de métal lourd préformé est emmanché dans le projectile, dans une sixième opération, en ce que la partie arrière du projectile est formée en cône, dans une septième opération, en ce que le rebord arrière est bordé sur le noyau de métal lourd, dans une huitième opération, en ce que l'extrémité arrière du projectile est formée définitivement, dans une neuvième opération, et en ce que le projectile est poussé dans une matrice de calibrage, dans une dixième opération.
7. Procédé suivant la revendication 6, caractérisé en ce que les opérations 1 à 10 sont enchaînées et assurées sur une presse transfert unique.
8. Application du procédé suivant l'une quelconque des revendications 6 et 7, pour la fabrication d'un projectile de petit calibre à noyau de plomb antimonié (figure 2).
EP19830201455 1982-10-18 1983-10-11 Munition de petit calibre et son procédé de fabrication Expired EP0106411B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83201455T ATE27999T1 (de) 1982-10-18 1983-10-11 Kleinkalibermunition und verfahren zu ihrer herstellung.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US06/434,911 US4517897A (en) 1982-10-18 1982-10-18 Small arms projectile
US434911 1982-10-18
CH450883A CH666345A5 (de) 1983-08-18 1983-08-18 Verfahren zur herstellung eines rotationssymmetrischen mantelgeschosses und danach hergestelltes kleinkalibergeschoss.
CH4508/83 1983-08-18

Publications (3)

Publication Number Publication Date
EP0106411A2 EP0106411A2 (fr) 1984-04-25
EP0106411A3 EP0106411A3 (en) 1984-09-05
EP0106411B1 true EP0106411B1 (fr) 1987-06-24

Family

ID=25695652

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830201455 Expired EP0106411B1 (fr) 1982-10-18 1983-10-11 Munition de petit calibre et son procédé de fabrication

Country Status (3)

Country Link
EP (1) EP0106411B1 (fr)
DE (1) DE3372231D1 (fr)
SG (1) SG76888G (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR200000524T2 (tr) 1997-08-26 2000-07-21 Sm Schweizerische Munitionsunternehmung Ag Sert bir nüve içeren gömlekli mermi
EP0997700A1 (fr) 1998-10-30 2000-05-03 SM Schweizerische Munitionsunternehmung AG Balle chemisée ne nuisant pas à l'environment et son procédé de fabrication
BRPI0511041B1 (pt) 2004-05-11 2018-03-06 Ruag Ammotec Projétil de pequeno calibre
CN1309498C (zh) * 2005-06-15 2007-04-11 福建工程学院 弹头壳的多工位连续成形冲压工艺
GB2525889A (en) * 2014-05-07 2015-11-11 Murtaza Abdulhussein Bullet adjustment
DE102019116283A1 (de) * 2019-06-14 2020-12-17 Ruag Ammotec Gmbh Projektil, Verfahren zum Herstellen eines Projektils und Munition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US546413A (en) * 1895-09-17 brantingham
FR797218A (fr) * 1935-01-26 1936-04-23 Chanay & Maitrot Procédé de fabrication des obus en acier
US2301565A (en) * 1941-01-14 1942-11-10 Lenape Hydraulic Pressing & Fo Method of making nosepieces for explosive bodies
US2920374A (en) * 1953-10-28 1960-01-12 Lyon George Albert Method of making projectiles
BE599124A (fr) * 1960-01-21 1961-07-17 Heini Nussli Raccord parallèle pour tubes, notamment pour la construction d'échafaudages
DE1428692A1 (de) * 1964-11-28 1969-04-30 Karlsruhe Augsburg Iweka Infanteriegewehrgeschoss
US3485173A (en) * 1968-02-06 1969-12-23 Us Army Variable centroid projectile
DE1728237B1 (de) * 1968-09-14 1971-11-25 Karlsruhe Augsburg Iweka Treibmittel und mit diesem Treibmittel aufgebaute Treibladung,insbesondere fuer Patronen
DE2525230A1 (de) * 1975-06-06 1976-12-23 Dynamit Nobel Ag Verfahren zum herstellen von mantelgeschossen

Also Published As

Publication number Publication date
DE3372231D1 (en) 1987-07-30
EP0106411A2 (fr) 1984-04-25
EP0106411A3 (en) 1984-09-05
SG76888G (en) 1991-01-04

Similar Documents

Publication Publication Date Title
EP1502074B1 (fr) Projectile a decomposition partielle et a deformation a point d'impact identique et procede de manufacture d'un tel projectile
EP0853228A1 (fr) Projectile et son procédé de fabrication
DE3991343C1 (de) Deformationsgeschoß, damit ausgerüstete Munition, sowie Verfahren zur Herstellung des Geschosses
DE19604061C2 (de) Geschoß
EP4085229A1 (fr) Balle solide, procédé intermédiaire de fabrication d'une balle solide et procédé de production d'une balle solide
EP3494357B1 (fr) Balle solide métallique, système d'outil et procédé de production de balles solides métalliques
EP0106411B1 (fr) Munition de petit calibre et son procédé de fabrication
EP0049738A2 (fr) Projectile du type perforant à ailettes stabilisatrices
DE2422085A1 (de) Uebungsgeschoss fuer schusswaffen
CH661978A5 (de) Geschoss fuer uebungsmunition.
EP0422477B1 (fr) Projectile d'exercice pour le tir au cible sans explosif avec armes de gros calibre
CH658717A5 (de) Geschoss, insbesondere fuer uebungszwecke.
EP0123266B1 (fr) Projectile à sabot
DE211778C (fr)
DE1678497B1 (de) Geschosskoerper,insbesondere fuer automatische Waffen kleinen Kalibers,wie Schnellfeuerwaffen
DE3008912A1 (de) Verfahren zur herstellung von geschossen und damit hergestelltes geschoss
EP3317607A1 (fr) Projectile sous-calibré empenné pouvant être tiré depuis un canon rayé et son procédé de fabrication
DE1165457B (de) Scheibenstand-Patrone
CH687788A5 (de) Deformationsgeschoss, damit ausgeruestete Munition, sowie Verfahren zur Herstellung des Geschosses.
DE20317717U1 (de) Reibungsarmes Führbandvollgeschoß
EP3638974B1 (fr) Procédé de fabrication d'un projectile de petit calibre, projectile de petit calibre et munition de petit calibre contenant un tel projectile de petit calibre
EP0997700A1 (fr) Balle chemisée ne nuisant pas à l'environment et son procédé de fabrication
DE2525230A1 (de) Verfahren zum herstellen von mantelgeschossen
DE3525356C1 (de) Unterkalibriges Pfeilgeschoss
CH666345A5 (de) Verfahren zur herstellung eines rotationssymmetrischen mantelgeschosses und danach hergestelltes kleinkalibergeschoss.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850102

17Q First examination report despatched

Effective date: 19860415

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 27999

Country of ref document: AT

Date of ref document: 19870715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3372231

Country of ref document: DE

Date of ref document: 19870730

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 83201455.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950929

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19951001

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951002

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951013

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951017

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951031

Year of fee payment: 13

Ref country code: BE

Payment date: 19951031

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951214

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951220

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: SCHWEIZERISCHE EIDGENOSSENSCHAFT, EIDG. MUNITIONSFABRIK THUN DER TRANSFER- SCHWEIZERISCHE EIDGENOSSENSCHAFT , SM SCHWEIZERISCHE MUNITIONSUNTERNEHMUNG DER GRUPPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961011

Ref country code: GB

Effective date: 19961011

Ref country code: AT

Effective date: 19961011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961031

Ref country code: CH

Effective date: 19961031

Ref country code: BE

Effective date: 19961031

BERE Be: lapsed

Owner name: SCHWEIZERISCHE EIDGENOSSENSCHAFT VERTRETEN DURCH

Effective date: 19961031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961011

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970701

EUG Se: european patent has lapsed

Ref document number: 83201455.9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST