EP0106411B1 - Small arms ammunition, and manufacturing process therefor - Google Patents

Small arms ammunition, and manufacturing process therefor Download PDF

Info

Publication number
EP0106411B1
EP0106411B1 EP19830201455 EP83201455A EP0106411B1 EP 0106411 B1 EP0106411 B1 EP 0106411B1 EP 19830201455 EP19830201455 EP 19830201455 EP 83201455 A EP83201455 A EP 83201455A EP 0106411 B1 EP0106411 B1 EP 0106411B1
Authority
EP
European Patent Office
Prior art keywords
projectile
tip
small arms
axis
cartridge case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19830201455
Other languages
German (de)
French (fr)
Other versions
EP0106411A2 (en
EP0106411A3 (en
Inventor
Beat Kneubühl
Hans Schwendimann
Max Ruf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schweizerische Eidgenossenschaft
Original Assignee
Schweizerische Eidgenossenschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/434,911 external-priority patent/US4517897A/en
Priority claimed from CH450883A external-priority patent/CH666345A5/en
Application filed by Schweizerische Eidgenossenschaft filed Critical Schweizerische Eidgenossenschaft
Priority to AT83201455T priority Critical patent/ATE27999T1/en
Publication of EP0106411A2 publication Critical patent/EP0106411A2/en
Publication of EP0106411A3 publication Critical patent/EP0106411A3/en
Application granted granted Critical
Publication of EP0106411B1 publication Critical patent/EP0106411B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/76Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the casing
    • F42B12/78Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the casing of jackets for smallarm bullets ; Jacketed bullets or projectiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/02Making machine elements balls, rolls, or rollers, e.g. for bearings
    • B21K1/025Making machine elements balls, rolls, or rollers, e.g. for bearings of bullets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/04Shaping thin-walled hollow articles, e.g. cartridges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B30/00Projectiles or missiles, not otherwise provided for, characterised by the ammunition class or type, e.g. by the launching apparatus or weapon used
    • F42B30/02Bullets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • F42B5/025Cartridges, i.e. cases with charge and missile characterised by the dimension of the case or the missile

Definitions

  • the present invention relates to a small-caliber ammunition consisting of a rotationally symmetrical projectile, a cartridge case with a powder charge and a primer arranged centrally with respect to its longitudinal axis, the cartridge case being fastened in a section between the flattened tip of the projectile and its rear end.
  • the invention further relates to a method for producing small-caliber ammunition and to an application of this method.
  • Small-caliber ammunition is understood to mean ammunition with a caliber of less than 12.7 mm, in particular with a caliber in the range from 4 to 6.35 mm.
  • a rotationally symmetrical mantle bullet is from the publication of the US Department of Commerce, National Technical Information Service, No. AD-A025 131 (Michael Pino, "The Effect of Varying certain Parameters on the Performance of the S.C.A.M.P. produced 5.56 mm Projectile", DARCOM Intern Training Center, May 1976).
  • the known projectile has an ogival-shaped profile part, a cylindrical middle part and a frustoconical rear end part.
  • the profile part described is parabolic, conical or spherical in shape. It is expressly stated that a change in the profile part requires a change in the design of the weapon.
  • DE-A 25 25 230 describes a method for producing jacket bullets and the bullets produced using this method.
  • the object of the invention is to provide a projectile of the type mentioned at the outset which has a better chance of being hit and an increased ballistic final energy.
  • Another object is to provide a method for producing such a jacket bullet, which is economically suitable for large-scale production despite increased penetration. It must also not disassemble at the finish line and must meet the requirements of the CICR (Comite International de la Croix-Rouge).
  • the imaginary point of the projectile is a distance (-s) from the origin of a rectangular coordinate system, the positive X-axis of which represents an axis of symmetry and the Y-axis of which represents the direction of the radius r of the projectile, the actual point of the projectile is arranged in the origin of the coordinate system.
  • the invention is based on the surprising finding that, contrary to what is expected by experts, an aerodynamic design of small-caliber ammunition influences the probability of a hit very favorably despite the small size, the relatively short range and the relatively short flight time, which are typical for such projectiles.
  • the starting point for this optimization is a mathematical formula from Haack for the shape of a bullet with minimal air resistance, which is applicable to large-caliber bullets with muzzle velocity in the supersonic range (Oerlikon paperback, machine tools Oerlikon-Briggle AG factory, Zurich, Switzerland, May 1981, chap. 5.2.3., Pages 168 to 171). From this equation, a parameter equation for the calculation of a shape optimized in relation to the air resistance was derived for the profile part of small-caliber ammunition.
  • the section for fastening the cartridge case is shifted from the location corresponding to an upper limit value of X1 by a distance in the range from 0.1 to 0.5 r o to the range of X2 .
  • a small piece of the cylindrical part protrudes from the cartridge case when it is connected to the shell bullet, whereby favorable guiding properties are obtained.
  • a rear end of the projectile has two essentially frusto-conical sections, the imaginary cone tips of which lie on the axis of symmetry of the projectile, and that the section lying on the inside with respect to the end has a cone angle in the range from 5 to 10 Degrees and a length in the range of 0.5 to 2 r o and the portion lying outside with respect to the end has a cone angle in the range of 60 degrees and ends at a distance from the axis of symmetry of the projectile.
  • Such a design of the rear end also has a favorable influence on the stability and the flight behavior of the projectile.
  • the projectile according to claim 4 is a jacket bullet, the jacket of which consists of a plated alloy steel in which a heavy metal core is inserted.
  • Such projectiles can be efficiently produced by train-pressure forming. Even with large quantities, the required precision in the design can be achieved.
  • the jacket has at both ends a groove-shaped section for its attachment to the cartridge case.
  • the rotationally symmetrical jacket bullets for small-caliber ammunition are manufactured in such a way that a cylindrical bowl rounded at the bottom is deep-drawn, that according to the invention the preformed bowl is then extended in a first step with a constant floor thickness and the angle of the inner cone is reduced in one step second step, the cylinder part of the projectile is drawn and a squeeze collar is formed at the end, the angle of the inner cone being reduced again, that in a third step the tip of the projectile is preformed in a polished and smooth die, and in a fourth step in a further polished one and smooth die, the tip of the projectile is finally shaped, that in a fifth step the projectile is cut to its preliminary length in the region of the crimping collar, that in a sixth step a preformed heavy metal core is pressed into the projectile is that in a seventh step the rear part of the projectile is shaped conically, in an eighth step the rear edge is flanged over the heavy metal core, in a ninth step the rear end of the projectile is
  • the first to tenth process steps are expediently linked together and take place on a single step press. In this way, economical production is achieved.
  • the aforementioned method is advantageously used to produce a small-caliber hard lead core. This application is particularly advantageous and tried and tested.
  • Fig. 1 shows in longitudinal section a small-caliber ammunition with a caliber of 5.56 mm, which is a common type of small-caliber ammunition.
  • This ammunition consists of a conventional cartridge case 1 made of brass, which contains a powder charge 2 of the usual composition (e.g. from a smokeless powder for small-caliber weapons) as well as from a jacket bullet, the jacket 3 of which consists of the material usually used for this (e.g. from plated alloy steel) copper-rich non-ferrous metal and the like).
  • the core 15 contained therein consists of a material usually used for this purpose, such as lead or a lead alloy; the core 15 can also consist of steel or sintered material.
  • the projectile has a front part 4, the shape of which is aerodynamically optimized so that the air resistance is reduced to a minimum, as will be described in detail below.
  • the middle part 5 is provided with a groove-shaped section 7 for fastening the jacket 3 to the cartridge case 1. Instead of the groove, however, the cylindrical middle part 5 can also be knurled for fastening the cartridge case 1.
  • the cylindrical middle part 5 extends outwards from the section 7 by 0.254 mm, corresponding to approximately 0.1 r o , where r o represents the radius of the cylindrical middle part 5.
  • the outward protruding extension can be in the range between 0.1 and 0.5 r o .
  • the remaining portion of the cylindrical middle part 5 and the rear end 6 are enclosed in the cartridge case 1.
  • a primer 11 is arranged in the closed end 10 of the cartridge case 1 and is centered with respect to the longitudinal axis of the cartridge case 1.
  • the projectile described is shown in detail in FIG. 2 and on an enlarged scale in longitudinal section.
  • the front part 4 has a truncated front end 12 made of solid material.
  • the rounded front part 4 of the projectile is designated as x 1 and the cylindrical middle part 5 with its section 5a as x 2 .
  • the distance from the end of the imaginary tip to the beginning of the cylindrical middle part 5 and 5a of the projectile is denoted by h.
  • the profile of the projectile is determined by the parameter equation given below, which was derived from the Haack equation known per se and relates to a form of minimal air resistance for large-caliber projectiles, the air resistance being expressed by the coefficient of drag c w .
  • the actual tip of the mantle storey is, according to FIG. 2, in the origin of a right-angled coordinate system in which the height of the mantle storey runs along the positive X axis, while the radius of the storey extends in the Y direction.
  • the profile of the mantle storey is represented by a continuous function r (x), whose continuous differential quotient d r dx assumes a finite value.
  • This function is a sum function:
  • This sum function comprises a range r 1 (x i ) which is connected to a continuously decreasing differential quotient and a range r 2 ( X2 ) in which the differential quotient is constant and equal to zero.
  • the sum function extends up to an imaginary tip of the mantle storey, which is shifted by a distance -s from the origin of the coordinate system.
  • s is the displacement of the actual front end 12 relative to the imaginary tip
  • a is a parameter that is within the range of arc cos can take on any value.
  • the following parameter equation for r for the first term of the above-mentioned sum function is readily obtained from the further Haack equation: Therein, r is the radius of the cylindrical middle part 5 of the jacket storey, r 1 is the radius of the jacket storey in the area x 1 and arc cos
  • the second term in the above sum function refers to the range X2 > h and is by the equation certainly.
  • s has a value of 0.65 mm or 0.232 units of the radius r o of the mantle storey; However, s can have any value in the range from 0.1 to 0.5 r o .
  • the front end 12 generates a defined turbulence during the flight of the jacket floor, so that instabilities due to an otherwise in the we substantial laminar flow can be avoided.
  • the cylindrical middle part 5, which corresponds to the area X2 in the formula given above, has a groove-shaped section 7 for connection to the cartridge case according to FIG. 1.
  • the section 7 can be replaced by a knurled section.
  • the cylindrical middle part 5 extends beyond the section 7 by a section 5a, the axial length of which is 0.254 mm or approximately 0.1 r o .
  • Section 5a can take any value in the range between 0.1 and 0.5 r o .
  • the middle part 5 is followed by the rear end 6, which consists of two essentially frustoconical sections 13 and 14.
  • the inner section 13 has a cone angle of 8 °, but can have any value in the range from 5 ° to 10 °. Its length is 1.82 mm corresponding to 0.65 r o .
  • the outer section 14 has a cone angle of 60 °, but can also have other values in this range.
  • This section ends at a distance from the axis of symmetry.
  • the aforementioned cone angles each end in an imaginary cone tip, which lies on the imaginary extension of the axis of symmetry outside the shell floor.
  • the special shape of the rear end 6 supports the effect of the profile described above on the flight behavior of the projectile by favorably influencing the stability and the air resistance behavior.
  • the jacket bullet described above includes a core 15 made of lead or a lead alloy, which can also consist of another conventional material such as steel or sintered material.
  • a particularly preferred embodiment of the shell bullet consists in a variation of the rear end 6 in the inner, frustoconical section 13, the cone angle of which is only 7 ° and the length is 3.6 mm or 1.3 r o .
  • the bowl 16 is prefabricated in large quantities and is intended for intermediate storage in the sense of a semi-finished product.
  • the bowl 16 is fed to a step press with ten workstations, which is operated in a frame stand by a mono slide driven by a crankshaft and two connecting rods, with a cycle rate of 120 cycles / min. is operated.
  • the individual work stations are linked together by a linear feed device.
  • the feeding of the bowls 16 takes place with the aid of a vibrator known per se with spiral guideways.
  • a squeeze collar is formed at the end with the superfluous material.
  • the angle of the inner cone is reduced again; the wall thickness of the cylindrical part of the floor already has its calibratable dimension.
  • the tip of the projectile is preformed in a finely polished and smooth die, as shown in FIG. 6.
  • the tip of the projectile is finally shaped in a fourth work station, also in a finely polished and smooth die, cf. Fig. 7.
  • the projectile is cut to its preliminary length in the region of the squeeze collar, corresponding to FIG. 8.
  • a hard lead (98% Pb + 2% Sb), pre-fabricated according to the shape of FIG. 9, is pressed into the interior of the floor; the sectional view is produced in Fig. 10.
  • the hard lead is symbolized by dots.
  • the projectile located in a die is conically shaped in its rear part, as shown in FIG. 11.
  • the rear edge is flanged over the heavy metal core in a next method step.
  • the floor is calibrated in a matrix.
  • a gag groove 20 for the cartridge case is rolled in the area of the cylindrical part of the projectile, as the section in FIG. 14 shows.
  • the above-described small-caliber ammunition and the above-described shell projectile are distinguished by the fact that, contrary to expectations, in some important properties they have very considerable improvements over the previously known small-caliber ammunition or the previously known shell projectile of this type, in which the front part is ogival, ie parabolic, conical or spherical is.
  • the high probability of being hit by this projectile is the most significant due to its optimal casing geometry. This is achieved without the use of special rifle barrels, which give the projectile a higher spin.
  • Trials have shown that many properties of the projectile are significantly improved; the spreading in the horizontal and vertical axes of the spreading distribution is 30% and 60% cheaper for shooting distances from 30 to 300 m.
  • This bullet also has a breakthrough performance against lightly armored targets, which can be compared to steel and hard core bullets, without having their significantly higher manufacturing costs.
  • the deformation resistance as well as the increased penetration and penetration ability can be explained with the massive bullet tip, see Fig. 11 to 14.
  • a projectile produced according to the invention has high strength in the target and only disassembles under extreme conditions.
  • the table below shows measurement data for some important properties of known, conventional ammunition with a caliber of 5.56 mm and the corresponding values for the ammunition according to the invention of the same caliber. The relative differences compared to the values obtained with the known ammunition are also given in percent. It can be seen from the table that the shell projectile, which is aerodynamically optimized in terms of air resistance according to the invention, has a relatively less steep trajectory and a somewhat shorter flight time. It has a considerably higher final ballistic energy, especially with long shooting distances. The deflection due to cross winds is reduced by the high amount of 25% for all shot ranges examined, although the projectile according to the invention has a higher weight and a lower muzzle velocity compared to the known projectile.
  • the data reproduced in the table were determined in a customary manner by using the known light barrier method for determining the drag coefficient and by conventional calculations from the drag coefficient obtained.
  • the small-caliber ammunition described above and the mantle bullet therefor have the particular advantage that they can be used with most of the major weapon designs currently in use.
  • the new shell bullet profile does not require any changes in the rifle design for use.
  • the use of the aerodynamically optimized profile according to the invention is not limited to jacket storeys. Bullets made of a full material appear to be suitable in special applications due to their high initial speed, especially for hand and handguns.

Description

Die vorliegende Erfindung betrifft eine Kleinkalibermunition bestehend aus einem rotationssymetrischen Geschoss, einer Patronenhülse mit einer Pulverladung und einem zentral in bezug auf deren Längsachse angeordneten Zündhütchen, wobei die Patronenhülse in einem Abschnitt zwischen der abgeflachten Spitze des Geschosses und dessen hinteren Ende befestigt ist. Die Erfindung bezieht sich weiter auf ein Verfahren zur Herstellung der Kleinkalibermunition und auf eine Anwendung dieses Verfahrens.The present invention relates to a small-caliber ammunition consisting of a rotationally symmetrical projectile, a cartridge case with a powder charge and a primer arranged centrally with respect to its longitudinal axis, the cartridge case being fastened in a section between the flattened tip of the projectile and its rear end. The invention further relates to a method for producing small-caliber ammunition and to an application of this method.

Unter Kleinkalibermunition ist eine Munition mit einem Kaliber unter 12,7 mm, insbesondere mit einem Kaliber im Bereich von 4 bis 6,35 mm zu verstehen.Small-caliber ammunition is understood to mean ammunition with a caliber of less than 12.7 mm, in particular with a caliber in the range from 4 to 6.35 mm.

Ein rotationssymmetrisches Mantelgeschoss ist aus der Veröffentlichung des US Department of Commerce, National Technical Information Service, No. AD-A025 131 (Michael Pino, «The Effect of Varying certain Parameters on the Performance of the S.C.A.M.P. produced 5.56 mm Projectile», DARCOM Intern Training Center, May 1976) bekannt. Das bekannte Geschoss hat ein ogival geformtes Profilteil, ein zylindrisches Mittelteil und ein kegelstumpfförmiges rückwärtiges Endteil. Das beschriebene Profilteil ist parabolisch, konisch oder sphärisch geformt. Es wird ausdrücklich festgestellt, dass eine Änderung des Profilteils, eine Änderung in der Konstruktion der Waffe erfordere. In der DE-A 25 25 230 ist ein Verfahren zur Herstellung von Mantelgeschossen und die mit diesem Verfahren hergestellten Geschosse beschrieben und dargestellt. Bei diesen Geschossen ändert sich die Krümmung ihrer Spitze, sie ist jedoch nicht präzise definiert, so dass man die Krümmung nur nach der Zeichnung beurteilen kann. Bei der Herstellung werden aus einem rohrförmigen Geschossrohling in an sich bekannter Weise die Geschosse geformt und getrennt. In den US-A 2 301 565 und US-A 2 920 374 sind verschiedene Arten beschrieben, auf die der Mantel des Geschosses geformt wird. Es werden mehrere Schritte mit verschiedenen Werkzeugen verwendet. Die Formen der Mäntel der Geschosse sind nicht mathematisch definiert und man kann sie nur ungenau aus den Zeichnungen ablesen.A rotationally symmetrical mantle bullet is from the publication of the US Department of Commerce, National Technical Information Service, No. AD-A025 131 (Michael Pino, "The Effect of Varying certain Parameters on the Performance of the S.C.A.M.P. produced 5.56 mm Projectile", DARCOM Intern Training Center, May 1976). The known projectile has an ogival-shaped profile part, a cylindrical middle part and a frustoconical rear end part. The profile part described is parabolic, conical or spherical in shape. It is expressly stated that a change in the profile part requires a change in the design of the weapon. DE-A 25 25 230 describes a method for producing jacket bullets and the bullets produced using this method. The curvature of the tip of these bullets changes, but it is not precisely defined, so that the curvature can only be assessed according to the drawing. During manufacture, the projectiles are formed and separated from a tubular projectile blank in a manner known per se. US-A-2 301 565 and US-A 2 920 374 describe various ways in which the shell of the projectile is formed. Several steps are used with different tools. The shapes of the shells of the floors are not mathematically defined and can only be read inaccurately from the drawings.

Es ist bekannt, dass die Wirkungen durch Änderungen in der Form der Spitze und/oder des rückwärtigen Endes in bezug auf das ballistische Verhalten des Geschosses hervorgerufen werden.It is known that the effects are caused by changes in the shape of the tip and / or the rear end in relation to the ballistic behavior of the projectile.

Die Aufgabe der Erfindung besteht darin, ein Geschoss der eingangs genannten Art zu schaffen, das eine bessere Trefferwahrscheinlichkeit und eine erhöhte ballistische Endenergie aufweist.The object of the invention is to provide a projectile of the type mentioned at the outset which has a better chance of being hit and an increased ballistic final energy.

Eine weitere Aufgabe ist es, ein Verfahren zur Herstellung eines solchen Mantelgeschosses zu schaffen, welches trotz gesteigerter Durchschlagsleistung wirtschaftlich für eine Gross-Serienfabrikation geeignet ist. Es darf sich zudem im Ziel nicht zerlegen und muss den Anforderungen des CICR (Comite International de la Croix-Rouge) genügen.Another object is to provide a method for producing such a jacket bullet, which is economically suitable for large-scale production despite increased penetration. It must also not disassemble at the finish line and must meet the requirements of the CICR (Comite International de la Croix-Rouge).

Erfindungsgemäss wird die vorgenannte Aufgabe dadurch gekennzeichnet, dass, das Profil des Geschosses durch eine Summenfunktion

Figure imgb0001
bestimmt ist, in der der Bereich von x1 durch
Figure imgb0002
worin h eine gedachte Länge von xi für a = π bis zu einer gedachten Spitze des Geschosses und arc cos
Figure imgb0003
ist und die zugehörigen Werte von r1 durch
Figure imgb0004
gegeben sind, worin arc cos
Figure imgb0005
ist, und in der der Bereich von x2 durch
Figure imgb0006
bestimmt ist, in dem r2 = const. = ro, wobei die gedachte Spitze des Geschosses um einen Abstand (-s) vom Ursprung eines rechtwinkligen Koordinatensystems entfernt ist, dessen positive X-Achse eine Symmetrieachse und dessen Y-Achse eine Richtung des Radius r des Geschosses darstellt, wobei die tatsächliche Spitze des Geschosses im Ursprung des Koordinatensystems angeordnet ist.According to the invention, the aforementioned task is characterized in that the profile of the projectile is represented by a sum function
Figure imgb0001
in which the range of x 1 is determined by
Figure imgb0002
where h is an imaginary length from x i for a = π to an imaginary tip of the projectile and arc cos
Figure imgb0003
and the associated values of r 1
Figure imgb0004
are given, in which arc cos
Figure imgb0005
and in which the range of x 2 is through
Figure imgb0006
is determined in which r 2 = const. = r o , where the imaginary point of the projectile is a distance (-s) from the origin of a rectangular coordinate system, the positive X-axis of which represents an axis of symmetry and the Y-axis of which represents the direction of the radius r of the projectile, the actual point of the projectile is arranged in the origin of the coordinate system.

Die Erfindung beruht auf der überraschenden Erkenntnis, dass entgegen der Erwartung durch die Fachwelt, eine aerodynamische Ausbildung von Kleinkalibermunition die Trefferwahrscheinlichkeit trotz der geringen Grösse, der relativ kurzen Reichweite und der relativ kurzen Flugzeit, die für solche Geschosse typisch sind, sehr günstig beeinflusst wird.The invention is based on the surprising finding that, contrary to what is expected by experts, an aerodynamic design of small-caliber ammunition influences the probability of a hit very favorably despite the small size, the relatively short range and the relatively short flight time, which are typical for such projectiles.

Die im Patentanspruch aufgezeigte stetige Funktion r(x) beschreibt das Profil des Geschosses im wesentlichsten. Selbstverständlich kann die geforderte Stetigkeit an den Geschossenden sowie im Bereich der Befestigung der Patronenhülse, in praxi, ohne Einbusse der Lehre und des Resultates, partiell nicht erfüllt sein.The continuous function r (x) shown in the claim describes the profile of the projectile in the most essential. Of course, the required continuity at the ends of the storeys and in the area of the cartridge case fastening, in practice, can not be partially achieved without loss of teaching and the result.

Ausgangspunkt dieser Optimierung ist eine mathematische Formel von Haack für die Form eines Geschosses mit minimalem Luftwiderstand, die auf grosskalibrige Geschosse mit Mündungsgeschwindigkeiten im Überschallbereich anwendbar ist (Oerlikon Taschenbuch, Werkzeugmaschinenfabrik Oerlikon-Bührle AG, Zürich, Schweiz, Mai 1981, Kap. 5.2.3., Seiten 168 bis 171). Aus dieser Gleichung wurde eine Parametergleichung für die Berechnung einer in bezug auf den Luftwiderstand optimierten Form für den Profilteil von Kleinkalibermunition abgeleitet.The starting point for this optimization is a mathematical formula from Haack for the shape of a bullet with minimal air resistance, which is applicable to large-caliber bullets with muzzle velocity in the supersonic range (Oerlikon paperback, machine tools Oerlikon-Bührle AG factory, Zurich, Switzerland, May 1981, chap. 5.2.3., Pages 168 to 171). From this equation, a parameter equation for the calculation of a shape optimized in relation to the air resistance was derived for the profile part of small-caliber ammunition.

Es ist zweckmässig, wenn nach Anspruch 2 der Abschnitt zur Befestigung der Patronenhülse von dem einem oberen Grenzwert von X1 entsprechenden Ort um einen Abstand im Bereich von 0,1 bis 0,5 ro in den Bereich von X2 verschoben ist. Dadurch steht ein kleines Stück des zylindrischen Teils aus der Patronenhülse vor, wenn diese mit dem Mantelgeschoss verbunden ist, wodurch günstige Führungseigenschaften erhalten werden.It is expedient if, according to claim 2, the section for fastening the cartridge case is shifted from the location corresponding to an upper limit value of X1 by a distance in the range from 0.1 to 0.5 r o to the range of X2 . As a result, a small piece of the cylindrical part protrudes from the cartridge case when it is connected to the shell bullet, whereby favorable guiding properties are obtained.

Eine vorteilhafte Weiterbildung nach Anspruch 3 besteht darin, dass ein hinteres Ende des Geschosses zwei im wesentlichen kegelstumpfförmige Abschnitte aufweist, deren gedachte Kegelspitzen auf der Symmetrieachse des Geschosses liegen, und dass der in bezug auf das Ende innenliegende Abschnitt einen Kegelwinkel im Bereich von 5 bis 10 Grad und eine Länge im Bereich von 0,5 bis 2 ro und der in bezug auf das Ende aussenliegende Abschnitt einen Kegelwinkel im Bereich von 60 Grad aufweist und in einem Abstand von der Symmetrieachse des Geschosses endet. Durch eine solche Ausbildung des hinteren Endes werden zusätzlich die Stabilität und das Flugverhalten des Geschosses günstig beeinflusst.An advantageous further development according to claim 3 consists in that a rear end of the projectile has two essentially frusto-conical sections, the imaginary cone tips of which lie on the axis of symmetry of the projectile, and that the section lying on the inside with respect to the end has a cone angle in the range from 5 to 10 Degrees and a length in the range of 0.5 to 2 r o and the portion lying outside with respect to the end has a cone angle in the range of 60 degrees and ends at a distance from the axis of symmetry of the projectile. Such a design of the rear end also has a favorable influence on the stability and the flight behavior of the projectile.

Vorteilhafterweise ist das Geschoss nach Anspruch 4 ein Mantelgeschoss, dessen Mantel aus einem plattierten legierten Stahl besteht, in welchem ein Schwermetallkern eingebracht ist. Durch Zug-Druckumformen lassen sich derartige Geschosse rationell herstellen. Auch bei grossen Stückzahlen kann dabei die geforderte Präzision in der Formgebung realisiert werden.Advantageously, the projectile according to claim 4 is a jacket bullet, the jacket of which consists of a plated alloy steel in which a heavy metal core is inserted. Such projectiles can be efficiently produced by train-pressure forming. Even with large quantities, the required precision in the design can be achieved.

In vorteilhafter Weise weist gemäss Anspruch 5 der Mantel an seinen beiden Enden einen nutförmigen Abschnitt zu seiner Befestigung an der Patronenhülse auf.Advantageously, according to claim 5, the jacket has at both ends a groove-shaped section for its attachment to the cartridge case.

Die rotationssymmetrischen Mantelgeschosse für die Kleinkalibermunition werden so hergestellt, dass ein zylindrischer, bodenseitig abgerundeter Napf tiefgezogen wird, dass danach erfindungsgemäss gemäss Anspruch 6 der vorgeformte Napf im Weiterzug in einem ersten Schritt bei gleichbleibender Bodendicke verlängert und der Winkel des Innenkonuses reduziert wird, dass in einem zweiten Schritt die Zylinderpartie des Geschosses gezogen sowie endseitig ein Abquetschkragen geformt werden, wobei der Winkel des Innenkonuses nochmals reduziert wird, dass in einem dritten Schritt in einer polierten und glatten Matrize die Spitze des Geschosses vorgeformt wird, dass in einem vierten Schritt in einer weiteren polierten und glatten Matrize die Spitze des Geschosses endgültig geformt wird, dass in einem fünften Schritt das Geschoss im Bereich des Abquetschkragens auf seine vorläufige Länge abgeschnitten wird, dass in einem sechsten Schritt ein vorgeformter Schwermetallkern in das Geschoss eingepresst wird, dass in einem siebten Schritt das Heckteil des Geschosses konisch geformt wird, dass in einem achten Schritt die Heckkante über den Schwermetallkern gebördelt wird, dass in einem neunten Schritt das hintere Ende des Geschosses endgültig geformt wird und dass in einem zehnten Schritt das Geschoss durch eine Kalibrier-Matrize hindurch geschoben wird. Diese Verfahren stellt eine Optimierung der Verformungsarbeit pro Verfahrensschritt dar und erlaubt trotz hoher Taktzahl der Presse die Herstellung von Geschossen hoher und reproduzierbarer Qualität.The rotationally symmetrical jacket bullets for small-caliber ammunition are manufactured in such a way that a cylindrical bowl rounded at the bottom is deep-drawn, that according to the invention the preformed bowl is then extended in a first step with a constant floor thickness and the angle of the inner cone is reduced in one step second step, the cylinder part of the projectile is drawn and a squeeze collar is formed at the end, the angle of the inner cone being reduced again, that in a third step the tip of the projectile is preformed in a polished and smooth die, and in a fourth step in a further polished one and smooth die, the tip of the projectile is finally shaped, that in a fifth step the projectile is cut to its preliminary length in the region of the crimping collar, that in a sixth step a preformed heavy metal core is pressed into the projectile is that in a seventh step the rear part of the projectile is shaped conically, in an eighth step the rear edge is flanged over the heavy metal core, in a ninth step the rear end of the projectile is finally formed and in a tenth step the projectile is through a calibration die is pushed through. This process represents an optimization of the deformation work per process step and, despite the high number of cycles of the press, permits the production of bullets of high and reproducible quality.

Zweckmässig sind gemäss Anspruch 7 der erste bis zehnte Verfahrensschritt miteinander verkettet sind und erfolgen auf einer einzigen Stufenpresse. Auf diese Weise wird eine wirtschaftliche Herstellung erreicht.According to claim 7, the first to tenth process steps are expediently linked together and take place on a single step press. In this way, economical production is achieved.

Vorteilhaft wird gemäss Anspruch 8 das vorgenannte Verfahren zur Herstellung eines kleinkalibrigen Hartbleikerngeschosses angewendet. Diese Anwendung ist besonders vorteilhaft und praxiserprobt.According to claim 8, the aforementioned method is advantageously used to produce a small-caliber hard lead core. This application is particularly advantageous and tried and tested.

Ausführungsbeispiele der Erfindung sind in den Abbildungen dargestellt und werden nachfolgend im einzelnen anhand von Zeichnungen erläutert und beschrieben.Embodiments of the invention are shown in the figures and are explained and described in detail below with reference to drawings.

Es zeigen:

  • Fig. 1 einen Längsschnitt durch eine Patrone der erfindungsgemässen Kleinkalibermunition;
  • Fig. 2 einen Längsschnitt in einem vergrösserten Massstab durch ein erstes Ausführungsbeispiel eines Mantelgeschosses für die Kleinkalibermunition nach Fig. 1;
  • Fig. den im Erstzug erstellten Napf für eine Kleinkalibermunition mit einem kegelstumpfförmigen und bodenseitig verdickten Innenbereich in stark vergrösserter Schnittdarstellung,
  • Fig. 3a den Napf Fig. 3 in der relativen Grösse zum Geschoss in dessen endgültigen Form,
  • Fig. bis 14 die einzelnen Verfahrensschritte zur Erstellung des endgültigen Geschosses, wobei Fig. 9 den einzupressenden Hartbleikern zeigt, und
  • Fig. 15 den im ersten Ziehgang des Weiterzugs benutzten Stempel in vergrösserter Teil-Darstellung.
Show it:
  • 1 shows a longitudinal section through a cartridge of the small-caliber ammunition according to the invention;
  • FIG. 2 shows a longitudinal section on an enlarged scale through a first embodiment of a jacket bullet for small-caliber ammunition according to FIG. 1;
  • FIG. 1 shows the bowl created in the first move for a small-caliber ammunition with a truncated cone-shaped and thickened inner area in a greatly enlarged sectional view, FIG.
  • 3a the bowl Fig. 3 in the relative size to the projectile in its final form,
  • FIGS. 14 to 14 show the individual method steps for creating the final floor, FIG. 9 showing the hard lead to be pressed in, and
  • Fig. 15 shows the stamp used in the first pass of the move in an enlarged partial view.

Fig. 1 zeigt im Längsschnitt eine Kleinkalibermunition mit einem Kaliber von 5,56 mm, die eine übliche Art von Kleinkalibermunition darstellt. Diese Munition besteht aus einer konventionellen Patronenhülse 1 aus Messing, die eine Pulverladung 2 üblicher Zusammensetzung enthält (z.B. aus einem rauchlosen Pulver für Kleinkaliberwaffen) sowie aus einem Mantelgeschoss, dessen Mantel 3 aus dem dafür üblicherweise verwendeten Material besteht (z.B. aus plattiertem legiertem Stahl, aus kupferreichem Nichteisenmetall und dergleichen). Der darin enthaltene Kern 15 besteht aus einem dafür üblicherweise verwendeten Material wie Blei oder einer Bleilegierung; der Kern 15 kann aber auch aus Stahl oder Sintermaterial bestehen. Das Geschoss weist ein Vorderteil 4 auf, das in seiner Form aerodynamisch so optimiert ist, dass der Luftwiderstand auf ein Minimum reduziert ist, wie weiter unten noch im einzelnen beschrieben wird. Weiterhin besteht das Geschoss aus einem im wesentlichen zylindrischen Mittelteil 5 und einem im allgemeinen kegelstumpfförmigen hinteren Ende 6. Das Mittelteil 5 ist mit einem nutförmigen Abschnitt 7 zur Befestigung des Mantels 3 an der Patronenhülse 1 versehen. Anstelle der Nut kann aber auch das zylindrische Mittelteil 5 zur Befestigung der Patronenhülse 1 gerändelt sein. Das zylindrische Mittelteil 5 erstreckt sich von dem Abschnitt 7 um 0,254 mm nach aussen, entsprechend ungefähr 0,1 ro, wobei ro den Radius des zylindrischen Mittelteils 5 darstellt. Die nach aussen, vorstehende Verlängerung kann in dem Bereich zwischen 0,1 und 0,5 ro bemessen sein. Der verbleibende Abschnitt des zylindrischen Mittelteils 5 und das hintere Ende 6 sind in der Patronenhülse 1 eingeschlossen. In dem geschlossenen Ende 10 der Patronenhülse 1 ist ein Zündhütchen 11 angeordnet, das in bezug auf die Längsachse der Patronenhülse 1 zentriert ist.Fig. 1 shows in longitudinal section a small-caliber ammunition with a caliber of 5.56 mm, which is a common type of small-caliber ammunition. This ammunition consists of a conventional cartridge case 1 made of brass, which contains a powder charge 2 of the usual composition (e.g. from a smokeless powder for small-caliber weapons) as well as from a jacket bullet, the jacket 3 of which consists of the material usually used for this (e.g. from plated alloy steel) copper-rich non-ferrous metal and the like). The core 15 contained therein consists of a material usually used for this purpose, such as lead or a lead alloy; the core 15 can also consist of steel or sintered material. The projectile has a front part 4, the shape of which is aerodynamically optimized so that the air resistance is reduced to a minimum, as will be described in detail below. This continues to exist Projectile consisting of a substantially cylindrical middle part 5 and a generally frustoconical rear end 6. The middle part 5 is provided with a groove-shaped section 7 for fastening the jacket 3 to the cartridge case 1. Instead of the groove, however, the cylindrical middle part 5 can also be knurled for fastening the cartridge case 1. The cylindrical middle part 5 extends outwards from the section 7 by 0.254 mm, corresponding to approximately 0.1 r o , where r o represents the radius of the cylindrical middle part 5. The outward protruding extension can be in the range between 0.1 and 0.5 r o . The remaining portion of the cylindrical middle part 5 and the rear end 6 are enclosed in the cartridge case 1. A primer 11 is arranged in the closed end 10 of the cartridge case 1 and is centered with respect to the longitudinal axis of the cartridge case 1.

Das beschriebene Geschoss ist in Fig. 2 im einzelnen und in einem vergrösserten Massstab im Längsschnitt dargestellt. Das Vorderteil 4 weist ein abgestumpftes Vorderende 12 aus Vollmaterial auf. Das zylindrische Mittelteil 5 und 5a mit dem Abschnitt 7 und das hintere Ende 6, gebildet aus einem kegelstumpfförmigen Abschnitt 13 und einem weiteren kegelstumpfförmigen Abschnitt 14, enthalten einen Geschosskern 15. In der Fig. 2 ist der abgerundete Vorderteil 4 des Geschosses als x1 bezeichnet und der zylindrische Mittelteil 5 mit seinem Abschnitt 5a als x2. Die Entfernung des Endes der gedachten Spitze zum Anfang des zylindrischen Mittelteils 5 und 5a des Geschosses ist mit h bezeichnet. Neben dem Vorderteil 4 und dem Mittelteil 5 sind die entsprechenden Gleichheiten für die Radien r1 und r2 beider Teile erwähnt. Aus dieser Fig. 2 ist sichtbar, dass der Radius r1 des Vorderteils sich von der Spitze zum zylindrischen Mittelteil 5a, 5 vergrössert, wobei sich seine Krümmung von der Spitze zum Mittelteil verkleinert, bis sie kontinuierlich stufenlos in den zylindrischen Mittelteil 5a, 5 übergeht.The projectile described is shown in detail in FIG. 2 and on an enlarged scale in longitudinal section. The front part 4 has a truncated front end 12 made of solid material. The cylindrical middle part 5 and 5a with the section 7 and the rear end 6, formed from a frustoconical section 13 and a further frustoconical section 14, contain a projectile core 15. In FIG. 2, the rounded front part 4 of the projectile is designated as x 1 and the cylindrical middle part 5 with its section 5a as x 2 . The distance from the end of the imaginary tip to the beginning of the cylindrical middle part 5 and 5a of the projectile is denoted by h. In addition to the front part 4 and the middle part 5, the corresponding similarities for the radii r 1 and r 2 of both parts are mentioned. From this Fig. 2 it can be seen that the radius r 1 of the front part increases from the tip to the cylindrical central part 5a, 5, its curvature decreasing from the tip to the central part until it merges continuously into the cylindrical central part 5a, 5 .

Das Profil des Geschosses ist durch die weiter unten angegebene Parametergleichung bestimmt, die aus der an sich bekannten Haack-Gleichung abgeleitet wurde und sich auf eine Form minimalen Luftwiderstands für grosskalibrige Geschosse bezieht, wobei der Luftwiderstand durch den Luftwiderstandsbeiwert cw ausgedrückt wird. Die tatsächliche Spitze des Mantelgeschosses befindet sich entsprechend Fig. 2 im Ursprung eines rechtwinkligen Koordinatensystems, in dem die Höhe des Mantelgeschosses entlang der positiven X-Achse verläuft, während sich der Radius des Geschosses in der Y-Richtung erstreckt. Mit Ausnahme des Vorderendes 12, des Abschnitts 7 und des rückwärtigen Endes 6 wird das Profil des Mantelgeschosses durch eine stetige Funktion r(x) dargestellt, deren stetiger Differentiaiquotient d r dx einen endlichen Wert annimmt.The profile of the projectile is determined by the parameter equation given below, which was derived from the Haack equation known per se and relates to a form of minimal air resistance for large-caliber projectiles, the air resistance being expressed by the coefficient of drag c w . The actual tip of the mantle storey is, according to FIG. 2, in the origin of a right-angled coordinate system in which the height of the mantle storey runs along the positive X axis, while the radius of the storey extends in the Y direction. With the exception of the front end 12, the section 7 and the rear end 6, the profile of the mantle storey is represented by a continuous function r (x), whose continuous differential quotient d r dx assumes a finite value.

Diese Funktion stellt eine Summenfunktion dar:

Figure imgb0007
This function is a sum function:
Figure imgb0007

Diese Summenfunktion umfasst einen Bereich r1 (xi), der mit einem kontinuierlich abnehmenden Differentialquotienten verbunden ist und einen Bereich r2 (X2), in dem der Differentialquotient konstant und gleich Null ist. Die Summenfunktion erstreckt sich bis zu einer gedachten Spitze des Mantelgeschosses, die um einen Abstand -s gegen den Ursprung des Koordinatensystems verschoben ist.This sum function comprises a range r 1 (x i ) which is connected to a continuously decreasing differential quotient and a range r 2 ( X2 ) in which the differential quotient is constant and equal to zero. The sum function extends up to an imaginary tip of the mantle storey, which is shifted by a distance -s from the origin of the coordinate system.

Ausgehend von der Haack-Gleichung für x wird für das erste Glied der obengenannten Summenfunktion die folgende Parametergleichung erhalten:

Figure imgb0008
Starting from the Haack equation for x, the following parameter equation is obtained for the first term of the above sum function:
Figure imgb0008

Darin ist h die gedachte Höhe des Mantelgeschosses von dem Wert für x1 bei a = π bis zur gedachten Spitze, s ist die Verschiebung des tatsächlichen Vorderendes 12 gegenüber der gedachten Spitze und a ist ein Parameter, der innerhalb des Bereiches von arc cos

Figure imgb0009
jeden Wert annehmen kann. Aus der weiteren Haack-Gleichung wird die folgende Parametergleichung für r für das erste Glied der obengenannten Summenfunktion ohne weiteres erhalten:
Figure imgb0010
Darin ist r der Radius des zylindrischen Mittelteils 5 des Mantelgeschosses, r1 der Radius des Mantelgeschosses im Bereich x1 und arc cos
Figure imgb0011
In this, h is the imaginary height of the shell bullet from the value for x 1 at a = π to the imaginary tip, s is the displacement of the actual front end 12 relative to the imaginary tip and a is a parameter that is within the range of arc cos
Figure imgb0009
can take on any value. The following parameter equation for r for the first term of the above-mentioned sum function is readily obtained from the further Haack equation:
Figure imgb0010
Therein, r is the radius of the cylindrical middle part 5 of the jacket storey, r 1 is the radius of the jacket storey in the area x 1 and arc cos
Figure imgb0011

Das zweite Glied in der obengenannten Summenfunktion bezieht sich auf den Bereich X2 > h und ist durch die Gleichung

Figure imgb0012
bestimmt. Wie man ohne weiteres sieht, zeichnet sich das durch die vorgenannte Summenfunktion bestimmte Profil dadurch aus, dass zwischen den Bereichen von x1 und x2 ein absolut kontinuierlicher Übergang besteht, da für den Fall a = π die Werte von r1 und r2 identisch werden.The second term in the above sum function refers to the range X2 > h and is by the equation
Figure imgb0012
certainly. As can easily be seen, the profile determined by the aforementioned sum function is characterized by the fact that there is an absolutely continuous transition between the ranges of x 1 and x 2 , since the values of r 1 and r 2 are identical for the case a = π will.

In dem dargestellten Ausführungsbeispiel hat s einen Wert von 0,65 mm bzw. 0,232 Einheiten des Radius ro des Mantelgeschosses; s kann aber jeden Wert im Bereich von 0,1 bis 0,5 ro annehmen. Das Vorderende 12 erzeugt während des Fluges des Mantelgeschosses eine definierte Turbulenz, so dass Instabilitäten aufgrund einer sonst im wesentlichen laminaren Strömung vermieden werden. Das zylindrische Mittelteil 5, das in der oben gegebenen Formel dem Bereich X2 entspricht, hat einen nutförmigen Abschnitt 7 zur Verbindung mit der Patronenhülse entsprechend Fig. 1. Der Abschnitt 7 kann durch einen gerändelten Abschnitt ersetzt werden. In dem dargestellten Ausführungsbeispiel erstreckt sich das zylindrische Mittelteil 5 über den Abschnitt 7 um einen Abschnitt 5a hinaus, dessen axiale Länge 0,254 mm bzw. ungefähr 0,1 ro beträgt.In the exemplary embodiment shown, s has a value of 0.65 mm or 0.232 units of the radius r o of the mantle storey; However, s can have any value in the range from 0.1 to 0.5 r o . The front end 12 generates a defined turbulence during the flight of the jacket floor, so that instabilities due to an otherwise in the we substantial laminar flow can be avoided. The cylindrical middle part 5, which corresponds to the area X2 in the formula given above, has a groove-shaped section 7 for connection to the cartridge case according to FIG. 1. The section 7 can be replaced by a knurled section. In the exemplary embodiment shown, the cylindrical middle part 5 extends beyond the section 7 by a section 5a, the axial length of which is 0.254 mm or approximately 0.1 r o .

Der Abschnitt 5a kann jeden Wert in dem Bereich zwischen 0,1 und 0,5 ro annehmen. An dem dem Vorderteil 4abgewandten Ende schIiesst sich an das Mittelteil 5 das hintere Ende 6 an, das aus zwei im wesentlichen kegelstumpfförmigen Abschnitten 13 und 14 besteht. Der innenliegende Abschnitt 13 hat bei diesem Ausführungsbeispiel einen Kegelwinkel von 8°, kann aber jeden Wert im Bereich von 5° bis 10° annehmen. Seine Länge beträgt 1,82 mm entsprechend 0,65 ro. Der aussenliegende Abschnitt 14 hat einen Kegelwinkel von 60°, kann aber auch andere Werte in diesem Bereich aufweisen. Dieser Abschnitt endet in einem Abstand von der Symmetrieachse. Die vorerwähnten Kegelwinkel enden jeweils in einer gedachten Kegelspitze, die ausserhalb des Mantelgeschosses auf einer gedachten Verlängerung der Symmetrieachse liegt. Die besondere Form des hinteren Endes 6 unterstützt die Wirkung des vorstehend beschriebenen Profils auf das Flugverhalten des Geschosses, indem sie die Stabilität und das Luftwiderstandsverhalten günstigt beeinflusst.Section 5a can take any value in the range between 0.1 and 0.5 r o . At the end facing away from the front part 4, the middle part 5 is followed by the rear end 6, which consists of two essentially frustoconical sections 13 and 14. In this exemplary embodiment, the inner section 13 has a cone angle of 8 °, but can have any value in the range from 5 ° to 10 °. Its length is 1.82 mm corresponding to 0.65 r o . The outer section 14 has a cone angle of 60 °, but can also have other values in this range. This section ends at a distance from the axis of symmetry. The aforementioned cone angles each end in an imaginary cone tip, which lies on the imaginary extension of the axis of symmetry outside the shell floor. The special shape of the rear end 6 supports the effect of the profile described above on the flight behavior of the projectile by favorably influencing the stability and the air resistance behavior.

Das vorstehende beschriebene Mantelgeschoss schliesst einen Kern 15 aus Blei oder einer Bleilegierung ein, der auch aus einem anderen konventionellen Material wie Stahl oder Sintermaterial bestehen kann.The jacket bullet described above includes a core 15 made of lead or a lead alloy, which can also consist of another conventional material such as steel or sintered material.

Ein besonders bevorzugtes Ausführungsbeispiel des Mantelgeschosses besteht in einer Variation des hinteren Endes 6 in dem innenliegenden, kegelstumpfförmigen Abschnitt 13, dessen Kegelwinkel nur 7° und dessen Länge 3,6 mm bzw. 1,3 ro beträgt.A particularly preferred embodiment of the shell bullet consists in a variation of the rear end 6 in the inner, frustoconical section 13, the cone angle of which is only 7 ° and the length is 3.6 mm or 1.3 r o .

Erfindungsgemässe Mantelgeschosse werden nach folgender Methode hergestellt:

  • Hierzu zeigt Fig. 3 einen Napf 16, welcher aus einer beidseitig kupfer/nickelplattierten, aus einem Stahlblech gestanzten Rondelle in einem Erstzug nach Art des Napf-Rückwärts-Fliesspressens erstellt wurde. Dabei ist der Napf mit 16 bezeichnet, dessen zylindrischer Teil mit 17 und dessen abgerundeter Teil mit 18. Ein bodennaher Bereich 19 ist im Innern kegelstumpfförmig ausgebildet, im Äusseren abgerundet und weist gegenüber seinem zylindrischen Teil 17 eine grössere Wandstärke auf. Der Kegelwinkel des Innenkonuses ist mit alpha 1 bezeichnet und beträgt zirka 20°.
Cladding bullets according to the invention are produced by the following method:
  • 3 shows a bowl 16, which was created from a copper / nickel-plated rondelle on both sides and stamped from a steel sheet in a first pass in the manner of the bowl backward extrusion. The bowl is designated 16, its cylindrical part 17 and its rounded part 18. A region 19 near the bottom is frustoconical on the inside, rounded on the outside and has a greater wall thickness than its cylindrical part 17. The cone angle of the inner cone is labeled alpha 1 and is approximately 20 °.

Der Napf 16 wird in grossen Stückzahlen vorfabriziert und ist im Sinne eines Halbfabrikates zur Zwischenlagerung bestimmt.The bowl 16 is prefabricated in large quantities and is intended for intermediate storage in the sense of a semi-finished product.

Zu gegebener Zeit wird der Napf 16 einer Stufenpresse mit zehn Arbeitsstationen zugeführt, welche in einem Rahmenständer, durch einen mittels einer Kurbelwelle und zwei Pleuel angetriebenen Monoschlitten, mit einer Taktzahl von 120 Takten/Min. betrieben wird.At the appropriate time, the bowl 16 is fed to a step press with ten workstations, which is operated in a frame stand by a mono slide driven by a crankshaft and two connecting rods, with a cycle rate of 120 cycles / min. is operated.

Die einzelnen Arbeitsstationen sind untereinander durch eine Linear-Vorschubeinrichtung verkettet. Die Zuführung der Näpfe 16 erfolgt mit Hilfe eines an sich bekannten Vibrators mit spiralförmigen Führungsbahnen.The individual work stations are linked together by a linear feed device. The feeding of the bowls 16 takes place with the aid of a vibrator known per se with spiral guideways.

Das Geschoss wird in dieser Stufenpresse in den zehn aufeinanderfolgenden Verfahrensschritten fertig gepresst, und zwar in der folgenden Reihenfolge:

  • Das Halbfabrikat gemäss Fig. 3a wird in einem ersten Schritt durch einen Stempel, Fig. 15, mit einer endseitig konkaven Ausnehmung R bei gleichbleibender Bodendicke, entsprechend Fig. 4 verlängert, wobei der Winkel des Innenkonuses alpha 2 auf 10° reduziert wird.
The projectile is finished pressed in this step press in the ten successive process steps, in the following order:
  • In a first step, the semifinished product according to FIG. 3a is extended by a stamp, FIG. 15, with a concave recess R at the end with a constant bottom thickness, corresponding to FIG. 4, the angle of the inner cone alpha 2 being reduced to 10 °.

In einem zweiten Schritt wird die Zylinderpartie gemäss Fig. 5 gezogen und endseitig ein Abquetschkragen mit dem überflüssigen Material geformt. Dabei wird der Winkel des Innenkonuses nochmals reduziert; die Wandstärke des zylindrischen Teils des Geschosses besitzt hier bereits sein kalibrierfähiges Mass.In a second step, the cylinder section is drawn according to FIG. 5 and a squeeze collar is formed at the end with the superfluous material. The angle of the inner cone is reduced again; the wall thickness of the cylindrical part of the floor already has its calibratable dimension.

In einem dritten Schritt wird in einer fein polierten und glatten Matrize die Spitze des Geschosses, entsprechend Fig. 6, vorgeformt.In a third step, the tip of the projectile is preformed in a finely polished and smooth die, as shown in FIG. 6.

In einer vierten Arbeitsstation wird die Spitze des Geschosses, ebenfalls in einer fein polierten und glatten Matrize, endgültig geformt, vgl. Fig. 7.The tip of the projectile is finally shaped in a fourth work station, also in a finely polished and smooth die, cf. Fig. 7.

In einem fünften Verfahrensschritt wird das Geschoss im Bereich des Abquetschkragens auf seine vorläufige Länge, entsprechend Fig. 8, abgeschnitten.In a fifth method step, the projectile is cut to its preliminary length in the region of the squeeze collar, corresponding to FIG. 8.

In einem sechsten Schritt wird in das Innere des Geschosses ein Hartbleikern (98 % Pb + 2 % Sb), entsprechend der Form Fig. 9 vorfabriziert, eingepresst; es entsteht das Schnittbild Fig. 10. Der Hartbleikern ist hier, wie auch in den weiteren Figuren, durch Punkte symbolisiert.In a sixth step, a hard lead (98% Pb + 2% Sb), pre-fabricated according to the shape of FIG. 9, is pressed into the interior of the floor; the sectional view is produced in Fig. 10. Here, as in the other figures, the hard lead is symbolized by dots.

In einer siebten Arbeitsstation wird das in einer Matrize befindliche Geschoss in seinem Heckteil konisch vorgeformt, wie Fig. 11 zeigt.In a seventh work station, the projectile located in a die is conically shaped in its rear part, as shown in FIG. 11.

Entsprechend der Darstellung Fig. 12 wird in einem nächsten Verfahrensschritt die Heckkante über den Schwermetallkern gebördelt.According to the illustration in FIG. 12, the rear edge is flanged over the heavy metal core in a next method step.

In einem neunten Schritt wird das Heckteil des Geschosses endgültig geformt, wie Fig. 13 zeigt.In a ninth step, the rear part of the projectile is finally shaped, as shown in FIG. 13.

In einer zehnten und letzten Arbeitsstation wird das Geschoss in einer Matrize kalibriert.In a tenth and final work station, the floor is calibrated in a matrix.

Ausserhalb der Stufenpresse wird im Bereich des zylindrischen Teils des Geschosses eine Würgerille 20 für die Patronenhülse eingewalzt, wie der Schnitt Fig. 14 zeigt.Outside the step press, a gag groove 20 for the cartridge case is rolled in the area of the cylindrical part of the projectile, as the section in FIG. 14 shows.

Die vorstehend beschriebene Kleinkalibermunition und das vorstehend beschriebene Mantelgeschoss zeichnen sich dadurch aus, dass sie entgegen der Erwartung in einigen wichtigen Eigenschaften sehr erhebliche Verbesserungen gegenüber der vorbekannten Kleinkalibermunition bzw. dem vorbekannten Mantelgeschoss dieser Art aufweisen, in denen das Vorderteil ogival, d. h. parabolisch, konisch oder sphärisch ausgebildet ist. Von diesen Eigenschaften ist die hohe Trefferwahrscheinlichkeit dieses Geschosses aufgrund seiner optimalen Mantelgeometrie die bedeutendste. Dies wird erreicht, ohne dass besondere Gewehrläufe eingesetzt sind, welche dem Geschoss einen höheren Drall verleihen. Bei Schiessversuchen hat sich gezeigt, dass viele Eigenschaften des Geschosses erheblich verbessert sind; so ist die Streuung in der horizontalen und vertikalen Achse der Streuverteilung bei Schussweiten von 30 bis 300 m um 30 % bzw. 60 % günstiger. Auch weist dieses Geschoss eine Durchschlagsleistung gegen leicht gepanzerte Ziele auf, welche sich mit Stahl- und Hartkerngeschossen vergleichen lässt, ohne deren bedeutend höheren Herstellungskosten aufzuweisen. Die Verformfestigkeit sowie die gesteigerte Durchschlags- und Eindringfähigkeit lassen sich mit der massiven Geschossspitze erklären, siehe Fig. 11 bis 14.The above-described small-caliber ammunition and the above-described shell projectile are distinguished by the fact that, contrary to expectations, in some important properties they have very considerable improvements over the previously known small-caliber ammunition or the previously known shell projectile of this type, in which the front part is ogival, ie parabolic, conical or spherical is. Of these properties, the high probability of being hit by this projectile is the most significant due to its optimal casing geometry. This is achieved without the use of special rifle barrels, which give the projectile a higher spin. Trials have shown that many properties of the projectile are significantly improved; the spreading in the horizontal and vertical axes of the spreading distribution is 30% and 60% cheaper for shooting distances from 30 to 300 m. This bullet also has a breakthrough performance against lightly armored targets, which can be compared to steel and hard core bullets, without having their significantly higher manufacturing costs. The deformation resistance as well as the increased penetration and penetration ability can be explained with the massive bullet tip, see Fig. 11 to 14.

Ein erfindungsgemäss hergestelltes Geschoss besitzt eine hohe Festigkeit im Ziel und zerlegt sich nur unter extremen Bedingungen.A projectile produced according to the invention has high strength in the target and only disassembles under extreme conditions.

Die nachfolgende Tabelle gibt Messdaten für einige wichtige Eigenschaften bekannter, konventioneller Munition mit einem Kaliber von 5,56 mm und die entsprechenden Werte für die erfindungsgemässe Munition des gleichen Kalibers wieder. Darin sind auch die relativen Unterschiede gegenüber den mit der bekannten Munition erhaltenen Werten in Prozenten angegeben.

Figure imgb0013
Es ist aus der Tabelle erkennbar, dass das in seiner Form in bezug auf den Luftwiderstand aerodynamisch optimierte Mantelgeschoss nach der Erfindung eine relativ weniger steile Flugbahn und eine etwas geringere Flugzeit aufweist. Es besitzt, besonders bei grossen Schussweiten, eine beträchtlich höhere ballistische Endenergie. Die Auslenkung durch Seitenwind wird bei allen untersuchten Schussweiten um den hohen Betrag von 25 % reduziert, obwohl das erfindungsgemässe Geschoss im Vergleich zu dem bekannten Geschoss ein höheres Gewicht und eine geringere Mündungsgeschwindigkeit aufweist.The table below shows measurement data for some important properties of known, conventional ammunition with a caliber of 5.56 mm and the corresponding values for the ammunition according to the invention of the same caliber. The relative differences compared to the values obtained with the known ammunition are also given in percent.
Figure imgb0013
It can be seen from the table that the shell projectile, which is aerodynamically optimized in terms of air resistance according to the invention, has a relatively less steep trajectory and a somewhat shorter flight time. It has a considerably higher final ballistic energy, especially with long shooting distances. The deflection due to cross winds is reduced by the high amount of 25% for all shot ranges examined, although the projectile according to the invention has a higher weight and a lower muzzle velocity compared to the known projectile.

Die in der Tabelle wiedergegebenen Daten wurden in üblicher Weise durch Verwendung des bekannten Lichtschrankenverfahrens zur Bestimmung des Luftwiderstandsbeiwertes und durch übliche Berechnungen aus dem erhaltenen Luftwiderstandsbeiwert bestimmt.The data reproduced in the table were determined in a customary manner by using the known light barrier method for determining the drag coefficient and by conventional calculations from the drag coefficient obtained.

Die vorstehend beschriebene Kleinkalibermunition und das Mantelgeschoss dafür, haben den besonderen Vorteil, dass sie mit den meisten bedeutenden, derzeit benutzten Waffenkonstruktionen verwendet werden können. Das neue Mantelgeschossprofil erfordert keine Änderungen in der Gewehrkonstruktion für den Gebrauch.The small-caliber ammunition described above and the mantle bullet therefor have the particular advantage that they can be used with most of the major weapon designs currently in use. The new shell bullet profile does not require any changes in the rifle design for use.

Das erfindungsgemäss aerodynamisch optimierte Profil ist in seiner Verwendung nicht auf Mantelgeschosse beschränkt. Geschosse aus einem vollen Material erscheinen aufgrund ihrer hohen Anfangsgeschwindigkeit, insbesondere für Hand- und Faustfeuerwaffen, in speziellen Anwendungen als geeignet.The use of the aerodynamically optimized profile according to the invention is not limited to jacket storeys. Bullets made of a full material appear to be suitable in special applications due to their high initial speed, especially for hand and handguns.

BezeichnungslisteLabel list

  • 1 = Patronenhülse1 = cartridge case
  • 2 = Pulverladung2 = powder charge
  • 3 = Geschossmantel3 = bullet jacket
  • 4 = Vorderteil4 = front part
  • 5 = Mittelteil5 = middle section
  • 5a = Abschnitt des Mittelteils 55a = section of the middle part 5
  • 6 = hinteres Ende6 = rear end
  • 7 = nutförmiger Abschnitt7 = groove-shaped section
  • 8 = offenes Ende der Patronenhülse 18 = open end of the cartridge case 1
  • 9 = Rand des offenen Endes 89 = edge of the open end 8
  • 10 = geschlossenes Ende der Patronenhülse 110 = closed end of the cartridge case 1
  • 11 = Zündhütchen11 = primer
  • 12 = Vorderende12 = front end
  • 13 = innerer, kegelstumpfförmiger Abschnitt des Endes 613 = inner, frustoconical section of the end 6
  • 14 = äusserer, kegelstumpfförmiger Abschnitt des Endes 614 = outer, frustoconical section of the end 6
  • 15 = Kern des Mantelgeschosses15 = core of the mantle storey
  • 16 = Napf16 = bowl
  • 17 = zylindrischer Teil des Napfes17 = cylindrical part of the bowl
  • 18 = gerundeter Teil des Napfes18 = rounded part of the bowl
  • 19 = bodennaher Bereich des Napfes19 = area of the bowl near the bottom
  • 20 = Würgerille20 = gag groove

Claims (8)

1. Small arms ammunition, comprising an axially symmetrical projectile (3 to 7; 12), a cartridge case (1) with a powder charge (2) and a primer (11) disposed centrally with respect to the longitudinal axis thereof, the cartridge case being secured in a portion (7) between the flattened tip (12) of the projectile and its rear end (6), characterized in that the profile of the projectile (3 to 7; 12 to 14) is defined by a summation function
Figure imgb0020
in which the range of X1 [is defined] by
Figure imgb0021
in which h is an assumed length of x1 for a = π up to a theoretical tip of the projectile (3 to 7; 12 to 14) and arc cos
Figure imgb0022
and the associated values of r1 are given by
Figure imgb0023
in which arc cos
Figure imgb0024
and in which the range of x2 is defined by
Figure imgb0025
in which r2 = const. = ro, the theoretical tip of the projectile (3 to 7; 12) being remote by a distance (-s) from the zero point of a right-angled system of coordinates, the positive X-axis of which is an axis of symmetry and the Y-axis of which represents a direction of the radius r of the projectile and the actual tip (12) of the projectile (3 to 7; 12) is situated at the zero point of the system of coordinates. (Fig. 2; Fig. 1)
2. Small arms ammunition according to Claim 1, characterized in that the portion (7) for securing the cartridge case (1) is displaced from the position corresponding to an upper threshold value of X1 by a distance in the region of between 0.1 and 0.5 ro into the region of x2. (Fig. 2)
3. Small arms ammunition according to one of Claims 1 and 2, characterized in that a rear end (6) of the projectile (4 to 7, 12 to 14) comprises two essentially frustoconical portions (13, 14), the theoretical cone apices of which lie on the axis of symmetry of the projectile, and the portion (13) length in the region of between 0.5 and 2 ro and the portion (14) lying outside with respect to the end has an angle of taper in the region of 60° and terminates at a distance from the axis of symmetry of the projectile. Fig. 2)
4. Small arms ammunition according to any one of the preceding Claims, characterized in that the projectile (3 to 7, 12 to 15) is a jacketed projectile, the jacket (3) of which consists of a clad, alloyed steel in which a heavy metal core (15) is inserted. (Fig. 2; Fig. 1)
5. Small arms ammunition according to Claims 1 to 4, characterized in that between the ends (4, 6) the jacket (3) has a groove-shaped portion (7) for securing the jacket on the cartridge case (1). (Fig. 1)
6. A method of manufacturing an axially symmetrical jacketed projectile for small arms ammunition according to Claim 1, a cylindrical cup (16) rounded at the base being deep-drawn, characterized in that in a first step the pre-formed cup (16) is extended in the successive drawing with the thickness of the base remaining unchanged and the angle of the internal taper is reduced, in a second step the cylindrical portion of the projectile is drawn and a flash collar is formed at the end, the angle of the internal taper being further reduced, in a third step the tip of the projectile is pre-formed in a polished and smooth die, in a fourth step the tip of the projectile isfinally shaped in a further polished and smooth die, in a fifth step the projectile is cut off to its provisional length in the region of the flash collar, in a sixth step a pre-formed heavy metal core is pressed into the projectile, in a seventh step the rear portion of the projectile is given a tapered shape, in an eighth step the rear edge is flanged over the heavy metal core, in a ninth step the rear end of the projectile is finally shaped, and in a tenth step the projectile is pushed through a calibrating die.
7. A method according to Claim 6, characterized in that the first to the tenth method steps are interlinked and are performed on a single progressive press.
8. The application of the method according to any one of the preceding Claims 6 and 7 for producing a small-arms hard-lead core projectile. (Fig. 2)
EP19830201455 1982-10-18 1983-10-11 Small arms ammunition, and manufacturing process therefor Expired EP0106411B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83201455T ATE27999T1 (en) 1982-10-18 1983-10-11 SMALL CALIBER AMMUNITION AND PROCESS FOR THEIR MANUFACTURE.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US06/434,911 US4517897A (en) 1982-10-18 1982-10-18 Small arms projectile
US434911 1982-10-18
CH450883A CH666345A5 (en) 1983-08-18 1983-08-18 Small calibre munition with aerodynamically optimised projectile
CH4508/83 1983-08-18

Publications (3)

Publication Number Publication Date
EP0106411A2 EP0106411A2 (en) 1984-04-25
EP0106411A3 EP0106411A3 (en) 1984-09-05
EP0106411B1 true EP0106411B1 (en) 1987-06-24

Family

ID=25695652

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19830201455 Expired EP0106411B1 (en) 1982-10-18 1983-10-11 Small arms ammunition, and manufacturing process therefor

Country Status (3)

Country Link
EP (1) EP0106411B1 (en)
DE (1) DE3372231D1 (en)
SG (1) SG76888G (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1007898B1 (en) 1997-08-26 2001-07-25 RUAG Munition Jacketed projectile with a hard core
EP0997700A1 (en) * 1998-10-30 2000-05-03 SM Schweizerische Munitionsunternehmung AG Non-polluting jacketed bullet and manufacturing method therefor
WO2005108908A1 (en) 2004-05-11 2005-11-17 Ruag Ammotec Lead-free projectile
CN1309498C (en) * 2005-06-15 2007-04-11 福建工程学院 Bullet shell multi-station continuous shaping punching process
GB2525889A (en) * 2014-05-07 2015-11-11 Murtaza Abdulhussein Bullet adjustment
DE102019116283A1 (en) 2019-06-14 2020-12-17 Ruag Ammotec Gmbh Projectile, method of making a projectile and ammunition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US546413A (en) * 1895-09-17 brantingham
FR797218A (en) * 1935-01-26 1936-04-23 Chanay & Maitrot Manufacturing process for steel shells
US2301565A (en) * 1941-01-14 1942-11-10 Lenape Hydraulic Pressing & Fo Method of making nosepieces for explosive bodies
US2920374A (en) * 1953-10-28 1960-01-12 Lyon George Albert Method of making projectiles
BE599124A (en) * 1960-01-21 1961-07-17 Heini Nussli Parallel connection for pipes, especially for scaffolding
DE1428692A1 (en) * 1964-11-28 1969-04-30 Karlsruhe Augsburg Iweka Infantry rifle bullet
US3485173A (en) * 1968-02-06 1969-12-23 Us Army Variable centroid projectile
DE1728237B1 (en) * 1968-09-14 1971-11-25 Karlsruhe Augsburg Iweka Propellant and propellant built up with this propellant, especially for cartridges
DE2525230A1 (en) * 1975-06-06 1976-12-23 Dynamit Nobel Ag Continuous hollow blank bullet mfr. - uses co-axial wire with lead core and external sleeve of tombac

Also Published As

Publication number Publication date
SG76888G (en) 1991-01-04
DE3372231D1 (en) 1987-07-30
EP0106411A2 (en) 1984-04-25
EP0106411A3 (en) 1984-09-05

Similar Documents

Publication Publication Date Title
EP1502074B1 (en) Partial fragmentation and deformation bullets having an identical point of impact and proces for the manufacture of such a bullet
EP0853228A1 (en) Projectile and manufacturing method therefor
DE3991343C1 (en) Deformation bullet, ammunition equipped therewith, and method for the production of the bullet
DE19604061C2 (en) Bullet
EP4085229A1 (en) Solid bullet, intermediate product for manufacturing a solid bullet, and method for producing a solid bullet
EP3494357B1 (en) Solid metal bullet, tool system and method for producing solid metal bullets
EP0106411B1 (en) Small arms ammunition, and manufacturing process therefor
EP0049738A2 (en) Armour-piercing projectile having stabilizing fins
DE2422085A1 (en) Practice floor for firearms
CH661978A5 (en) SHELL FOR EXERCISE AMMUNITION.
EP0422477B1 (en) Training projectile for target shooting without explosives with ordonance
CH658717A5 (en) FLOOR, ESPECIALLY FOR EXERCISE PURPOSES.
EP0123266B1 (en) Projectile with sabot
DE211778C (en)
DE1678497B1 (en) Projectile bodies, especially for small-caliber automatic weapons such as automatic firearms
DE3008912A1 (en) METHOD FOR PRODUCING BULLETS AND BULLET MADE THEREFOR
EP2834588A1 (en) Fin-stabilized full-caliber training projectile, and method for producing same
EP3317607A1 (en) Fin-stabilized sub-calibre projectile which can be fired from a rifled barrel and method for the production thereof
DE1165457B (en) Target stand cartridge
CH687788A5 (en) Deformation bullet, ammunition equipped therewith, and to processes for the preparation of the projectile.
DE20317717U1 (en) Low friction projectile comprises front section, cylindrical section with shaft ring guide bands, and rear section
EP3638974B1 (en) Method for the production of a small calibre bullet, small calibre bullet and small calibre ammunition with such a small calibre bullet
EP0997700A1 (en) Non-polluting jacketed bullet and manufacturing method therefor
DE2525230A1 (en) Continuous hollow blank bullet mfr. - uses co-axial wire with lead core and external sleeve of tombac
DE3525356C1 (en) Sub-caliber arrow floor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19850102

17Q First examination report despatched

Effective date: 19860415

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 27999

Country of ref document: AT

Date of ref document: 19870715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3372231

Country of ref document: DE

Date of ref document: 19870730

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
EPTA Lu: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 83201455.9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950929

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19951001

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951002

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951013

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19951017

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19951031

Year of fee payment: 13

Ref country code: BE

Payment date: 19951031

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19951214

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951220

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: SCHWEIZERISCHE EIDGENOSSENSCHAFT, EIDG. MUNITIONSFABRIK THUN DER TRANSFER- SCHWEIZERISCHE EIDGENOSSENSCHAFT , SM SCHWEIZERISCHE MUNITIONSUNTERNEHMUNG DER GRUPPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19961011

Ref country code: GB

Effective date: 19961011

Ref country code: AT

Effective date: 19961011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19961031

Ref country code: CH

Effective date: 19961031

Ref country code: BE

Effective date: 19961031

BERE Be: lapsed

Owner name: SCHWEIZERISCHE EIDGENOSSENSCHAFT VERTRETEN DURCH

Effective date: 19961031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19970501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961011

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19970501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970701

EUG Se: european patent has lapsed

Ref document number: 83201455.9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST