EP3494357B1 - Solid metal bullet, tool system and method for producing solid metal bullets - Google Patents

Solid metal bullet, tool system and method for producing solid metal bullets Download PDF

Info

Publication number
EP3494357B1
EP3494357B1 EP17748727.9A EP17748727A EP3494357B1 EP 3494357 B1 EP3494357 B1 EP 3494357B1 EP 17748727 A EP17748727 A EP 17748727A EP 3494357 B1 EP3494357 B1 EP 3494357B1
Authority
EP
European Patent Office
Prior art keywords
projectile
blank
inner contour
cavity
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17748727.9A
Other languages
German (de)
French (fr)
Other versions
EP3494357A1 (en
Inventor
Florian Spanner
Heinz Riess
Marcus STIER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RWS GmbH
Original Assignee
RUAG Ammotec GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RUAG Ammotec GmbH filed Critical RUAG Ammotec GmbH
Priority to RS20201148A priority Critical patent/RS61040B1/en
Priority to PL17748727T priority patent/PL3494357T3/en
Publication of EP3494357A1 publication Critical patent/EP3494357A1/en
Application granted granted Critical
Publication of EP3494357B1 publication Critical patent/EP3494357B1/en
Priority to HRP20201527TT priority patent/HRP20201527T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/34Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect expanding before or on impact, i.e. of dumdum or mushroom type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/74Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B30/00Projectiles or missiles, not otherwise provided for, characterised by the ammunition class or type, e.g. by the launching apparatus or weapon used
    • F42B30/02Bullets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B8/00Practice or training ammunition
    • F42B8/12Projectiles or missiles

Definitions

  • the invention relates to a full metal bullet for training cartridges, in particular for use on preferably police shooting ranges according to claim 1.
  • the invention also relates to a tool arrangement for producing metallic full bullets for training cartridges according to claim 6.
  • the invention further comprises a method for the production of metallic full projectiles for practice cartridges according to claim 11.
  • projectiles for practice cartridges have the requirements of the "Technical Guideline (TR) cartridge 9 mm x 19, pollutant-reduced" (in particular: as of September 2009) to comply with the proviso that for practice cartridges some requirements made of cartridge in the technical guideline mentioned, among other things regarding the end ballistic effect, do not have to be met.
  • a generic full floor for practice cartridges is known from EP 2 498 045 A1 .
  • the generic full floor consists of an arched ogive on the front and a cylindrical area connected to it.
  • the well-known full floor is equipped with an ogive wall, which delimits an ogive cavity and is formed on the inside with predetermined breaking points in the form of notches and edges.
  • These predetermined breaking points serve as predetermined zones for initiating or promoting material failure. They facilitate the folding of the projectile solid material with the formation of cracks in the outer skin of the ogive if the projectile hits the face of a target.
  • EP 2 133 655 A2 discloses a projectile for firearms.
  • US 5,943,749 A discloses a manufacturing method for a hollow projectile.
  • US 1,892,158 discloses a projectile for short distances.
  • Out US 3,069,748 is a manufacturing process for projectiles.
  • TR Technical Guideline
  • a metallic full floor for practice cartridges is provided in particular for use on preferably police shooting ranges, the full floor comprising an end-face ogive section and a cylinder section for holding the full floor in a cartridge case and defining a floor length in the axial direction.
  • Solid floors differ from partial shell floors and solid jacket floors in that a solid floor is formed in one piece, in particular from a homogeneous material.
  • the full floor is intended in particular for practice cartridges for use in small arms, ie revolvers, submachine guns and / or pistols.
  • a metallic full floor can also be provided for practice cartridges for rifles.
  • the full storey is preferably provided for practice cartridges up to a caliber of 20 mm, in particular up to a caliber of 12 mm.
  • Cartridges usually consist of a bullet, a cartridge case, propellant powder and a primer.
  • the projectile is the object shot down by the weapon.
  • the weight of a projectile can be between 3 g and 20 g, in particular between 5 g and 15 g, preferably between 5.5 g and 9 g, particularly preferably between 6.0 g and 6.3 g , for example 6.1 g, when using a protective vest must be excluded.
  • the bullets of standard cartridges of 9 mm Luger caliber have a muzzle velocity of 340 mm / sec. or more.
  • the material of the full story is preferably lead-free and / or lead-free.
  • the metal of the full floor preferably has copper.
  • the metal of the full story consists of at least 95%, at least 99%, or at least 99.9% copper.
  • the particularly uncoated bullet particularly preferably consists of pure copper (Cu-ETP), preferably with a specific weight of 8.93 g / cm 3 , in particular of CU-ETP1 according to DIN EN1977 with at least 99.9% copper content and less than 100 ppm oxygen .
  • the metal material of the full storey can be brass (ie a mixture of copper and zinc such as tombac).
  • the specific weight of copper is 8.9g / ccm.
  • the specific weight of zinc is 7.2 g / ccm.
  • the specific weight of brass is at least 8.3 g / ccm, the specific weight of tombac being about 8.6 g / ccm.
  • the cylinder section of the full storey preferably adjoins the arcuate section of the ogive.
  • the ogive section arranged at the front in the direction of flight of the full storey can be referred to as the front.
  • the cylinder section of the full floor, which is in the direction of flight of the floor, can be referred to as the foot side or the rear side.
  • the ogive section is arranged in the axial direction in front of the cylinder section of the full storey.
  • the cylinder section preferably has a circular outer contour in cross section.
  • the shape of the cylinder section preferably corresponds to a vertical or straight circular cylinder.
  • a chamfer section can be arranged in order to simplify the insertion of the full projectile into a neck of a cartridge case and / or to form a particularly aerodynamic rear end (which is generally referred to as a "boat tail").
  • the metallic full storey preferably consists of the front-side ogive section and the rear-side cylinder section.
  • An ogive is, in a strictly geometric sense, a shape in three-dimensional space that is created by the rotating body of the intersection of two arcs. Based on the geometrical term, profiles in longitudinal section are similarly shaped, for example of tips of ballistic projectiles, which should have the lowest possible air resistance when moving. In this respect, an ogive can be understood as a streamlined body of revolution that can be pointed or rounded (flattened) on the face.
  • the ogive section has an ogive wall and a rotationally symmetrical ogive cavity delimited circumferentially by the ogive wall.
  • the ogive cavity of the hollow projectile according to the invention allows the projectile to carry out a deformation in the form of a compression upon impact with a target or another resistance.
  • the projectile according to the invention When the projectile according to the invention is compressed, its kinetic energy is quickly converted into deformation energy.
  • the projectile tip deforms essentially only in the axial direction relative to the cylinder section.
  • the ogive cavity is preferably empty, ie only filled with ambient air.
  • An inner contour encompassing the ogive cavity, which is defined by the ogive wall, is preferably formed step-free and / or uninterrupted in the circumferential direction and / or has only rounded edges.
  • An outside of the ogive defined by the ogive wall is preferably formed steplessly in the circumferential direction and / or has a constant wall thickness over the circumference, in particular over the full circumference.
  • the projectile is preferably harder at or near its tip than in the rear area.
  • the tip can have a hardness of between 110 HV0.5 to 200 HV0.5, in particular 120 HV0.5 to 160 HV0.5, preferably 130 HV0.5 to 150 HV0.5.
  • the cylinder section can have a low hardness, for example a hardness between 50 HV0.5 to 160 HV0.5, in particular 75 HV0.5 to 155 HV0.5, preferably 85 HV0.5 to 150 HV0.5.
  • a fully cylindrical, in particular solid, trunk section of the full story extends in the axial direction over less than 45%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, or over 0%, preferably between 40% and 0%, in particular between 20% and 10% or 0%, of the projectile length.
  • the invention relates to a full metal bullet for practice cartridges, in particular for use on preferably police shooting ranges, the full floor comprising an end-face ogive section and a cylinder section for holding the full bullet in a cartridge case.
  • the ogive section and / or the cylinder section can be designed as described above.
  • a rotationally symmetrical compression or folding without spreading the full storey is made free of steps and / or changes in the rotational symmetry of the ogive cavity Wall thickness of the ogive wall in the circumferential direction, guaranteed.
  • the ogive cavity can preferably be bell-shaped in cross section.
  • the ogive cavity has a bottom.
  • the bottom of the ogive cavity is preferably arranged at the rear or far from the projectile end.
  • a shaft extends into the cylinder section according to the second aspect of the invention.
  • the shaft extending into the cylinder section can have a microchannel and / or a deformation cavity.
  • the deformation cavity of the shaft can be at least partially cylindrical and / or at least partially conical with a taper on the end face.
  • the deformation cavity is preferably heart-shaped or ideally conical.
  • a full storey is equipped with an interior which, in addition to the ogive cavity, has a further deformation cavity which extends in the axial direction at the rear, radial impact deformation of the practice cartridge full storey becomes over a large part of the length of the storey or even the entire length of the storey favored.
  • the shaft extending from the bottom of the ogive cavity into the cylinder section can also be referred to as a gap or throat.
  • a throat-like shaft can be realized, for example, by a parabolic funnel-shaped tapering starting from the ogive cavity, which provides a capillary-like microchannel in particular.
  • a capillary-like microchannel preferably has a microscopic opening width, in particular less than 1 mm or less than 1/10 mm.
  • the shaft is narrowed or constricted at least in sections along a capillary-like microchannel or capillary section in such a way that the inner wall of the shaft is shaped into a line-like narrowing.
  • a fusion of the metal material of the full storey transversely to its axial direction, in particular while removing the metal grain boundaries, preferably does not take place along the capillary section.
  • the ogive wall has an ogive wall thickness and the full storey in the cylinder section forms an annular deformation sleeve wall in the axial direction, at least in sections, which has a deformation sleeve wall thickness.
  • the deformation sleeve wall thickness is greater than the ogive wall thickness.
  • the ogive wall preferably extends over at least 50%, preferably over at least 55% and / or over at most 75%, preferably at most 60%, of the storey length.
  • the axial extent of the deformation sleeve wall preferably spans between the bottom of the ogive cavity and, if present, the trunk section of the full storey or the lowermost end or foot or stern of the full storey.
  • the inside of the deformation sleeve wall circumferentially delimits a preferably rotationally symmetrical one Deformation cavity and / or microchannel.
  • the inside of the annular deformation sleeve wall can have a diagonal clear width, preferably span a clear diameter width, which in particular changes in the axial direction. In a microchannel, the clear width can extend diagonally between the opposite inner sides of the deformation sleeve over 10 ⁇ m and 1 ⁇ m, for example between 10 ⁇ m and 500 ⁇ m or about 100 ⁇ m.
  • a microchannel can also have a capillary section with an average clear width of less than 10 ⁇ m or 1 ⁇ m.
  • the tail or foot end of the shaft is preferably shaped like a dome or blind hole at the flat end of the stump.
  • the clear width can be up to several millimeters.
  • an ogive cavity can have a clear width of up to 8 mm, preferably up to 7.5 mm, in particular approximately 7.46 mm.
  • the average deformation sleeve thickness (determined in the radial direction via the height of the deformation sleeve section in the axial direction) can be greater than the average ogive wall thickness (determined in the radial direction via the axial height of the ogive section).
  • the smallest deformation sleeve wall thickness is preferably greater than the largest ogive wall thickness.
  • the particularly large or average ogive wall thickness is preferably less than half of the largest outer radius of the full storey, in particular greater than half of the full storey caliber.
  • the wall sleeve thickness is less than or equal to the radius of the full storey, in particular less than or equal to half the caliber of the full storey.
  • the ogive wall thickness can in particular be less than 1/4 of the largest radius of the full floor, less than 1/8 or less than 1/10 of half the full floor radius.
  • the ogive wall thickness is less than 3 mm, less than 2 mm, less than 1.5 mm, less than 1 mm or less than 0.8 mm.
  • the ogive wall thickness is greater than 0.1 mm, greater than 0.3 mm, greater than 0.5 mm or greater than 1 mm.
  • the mean ogive wall thickness is preferably between 1.0 mm and 1.5 mm thick.
  • the full storey is blunt on the face.
  • a full floor that is blunt on the end can have, for example, a flattened floor end.
  • the opening angle of the obtuse full storey at its frontmost point which can be referred to as the tip, can preferably be greater than 150 °.
  • the opening angle of the obtuse full storey at its tip is preferably between 150 ° and 180 °, in particular approximately 180 °.
  • An opening angle tangent (on the outside of the floor) can be larger a millimeter axially from the top of a blunt full floor than 120 ° and in particular between 120 ° and 140 °, for example at about 130 °.
  • an opening angle tangent (a second location on the outside of the storey) can be greater than 90 °, for example between 90 ° and 110 °, in particular around 100 °.
  • the full floor has an opening at the end that opens into the ogive cavity.
  • a smallest or inner diameter of the opening is larger than the mean or smallest ogive wall thickness and / or is larger than the opening width of a microchannel and / or larger than 1 mm, 2 mm or even 3 mm.
  • the opening width is preferably less than 7 mm, less than 5 mm or less than 4 mm.
  • Solid storeys with a front opening width of approximately 1.3 mm +/- 0.15 mm are particularly preferred. Surprisingly, such a dimension has resulted in particularly good aerodynamics and advantageous mushrooming behavior, in particular for solid copper bullets.
  • the fully cylindrical trunk section extends in the axial direction over less than 3 mm, less than 2 mm, or less than 1 mm.
  • a spherical cap can be left out at the rear end of the full storey, which can be dome-shaped, cone-shaped or frustoconical, for example.
  • the dome is preferably provided coaxially and / or concentrically to the axis of symmetry or axis of rotation A of the full storey.
  • the full material trunk height extends between its apex on the storey end and the rear end of the shaft, which forms the microchannel and / or deformation cavity.
  • the dome is preferably frustoconical or conical with an opening angle between 100 ° and 140 °, preferably about 100 °, and / or a dome depth in the axial direction of at least 0.5 mm or at least 1 mm and at most 2.5 mm, preferably at most 2 mm, especially about 1.5 mm.
  • the spherical cap is rotationally symmetrical.
  • a chamfer preferably a frustoconical chamfer, with an opening angle between 30 ° and 90 °, in particular approximately 60 °, and a chamfer height of less than 2 mm, preferably less than 1 mm, in particular approximately 0.5 mm, can be provided radially on the outside be trained.
  • the calotte volume is less than 15 mm 3 , preferably less than 10 mm 3 , in particular about 9.8 mm 3 .
  • an inner contour encompassing the ogive cavity which is defined in particular by the ogive wall, is completely rounded in the axial direction, preferably formed without steps, and / or has only rounded edges.
  • the inner contour of the ogive cavity runs completely in the axial direction smoothly rounded and / or completely free of jumps, so that preferably there is no pronounced notch effect.
  • the full floor corresponds to the 9 mm Luger caliber.
  • the void volume of the ogive cavity and optionally the front opening and / or a deformation cavity and / or a microchannel can be between 150 mm 3 and 200 mm 3 , preferably between 185 mm 3 and 192 mm 3 , in particular approximately 189 mm 3 .
  • the mass of a full storey according to the invention of 9 mm Luger caliber can be approximately 6.1 g.
  • this corresponds to a .357 Mag. Caliber, and can have an outer diameter of more than 9.12 mm.
  • the void volume of the ogive cavity and optionally the cavity of the front opening and / or the deformation cavity and / or a microchannel can be between 150 mm 3 and 220 mm 3 , in particular around 196 mm 3 .
  • the full floor according to the invention corresponds to the .40 S&W caliber.
  • a full projectile of the caliber .40 S&W according to the invention can have an outer diameter of 10.17 mm.
  • the cavity volume can be between 250 mm 3 and 290 mm 3 , preferably between 260 mm 3 and 280 mm 3 , in particular between 270 mm 3 and 273 mm 3 , for example around 271.5 mm 3 .
  • the full floor corresponds to the .44 Rem caliber. Mag.
  • a full storey according to the invention of caliber .44 Rem. Mag. Can have an outer diameter of 10.97 mm.
  • the cavity volume of the ogive cavity and optionally the cavity of the front storey opening and / or the deformation cavity and / or the microchannel between 320 mm 3 and 360 mm 3 and in particular between 330 mm 3 and 350 mm 3 , preferably between 339 mm 3 and 343 mm 3 , more preferably between 340 mm 3 and 341 mm 3 , in particular approximately 340.5 mm 3 .
  • the full floor corresponds to the .45 ACP caliber.
  • the outer diameter of the projectile can be 11.48 mm.
  • a cavity volume of the ogive cavity and, if appropriate, an opening volume of a front storey opening and / or a deformation cavity and / or a microchannel between 370 mm 3 and 410 mm 3 , preferably between 380 mm 3 and 400 mm 3 , in particular between 388 and 393 mm 3 , in particular between 389 mm 3 and 391 mm 3 , preferably about 390.5 mm 3 .
  • the ogive section has an ogive wall and a rotationally symmetrical ogive cavity that is circumferentially bounded by the ogive wall, in particular in the radial direction, preferably completely.
  • the invention also relates to a tool arrangement according to claim 6.
  • the preform section is movable relative to the base side for molding a projectile blank up to a preform end position in which the preform stamp, the base side and the projectile blank receptacle define a preform cavity for the preformed projectile blank (first stage).
  • the preform press can comprise a drive for pressing the preform section into a projectile blank arranged in the projectile blank receptacle.
  • the bottom side of the preforming station is preferably realized by a rear stamp which is movable in the axial direction relative to the preform stamp and / or to the projectile blank holder.
  • an axial distance between the bottom side of the preform press projectile blank receptacle (the bottom side of the die of the preform station) and the front surface of the preform stamp is less than 45%, in particular less than 40%, less than 30%, less than 20%, less than 10% or less than 5%, a largest Height of the cavity in the axial direction. If the preform section of the preform punch is frustoconical, the greatest height of the cavity can extend between the base of the frustoconical shape of the preform punch and a most distant part of the bottom side of the preform press projectile receptacle, preferably the front upper side of the rear punch.
  • the tool arrangement further comprises an inner contour molding press.
  • the inner contour molding press or inner contour station has a hollow cylindrical, in particular ideally cylindrical, projectile blank receptacle or inner contour shape outer die, which is delimited in the axial direction by a (inner contour) bottom side, in particular a rear punch.
  • the inner contour molding press can comprise the same projectile blank receptacle and / or the same bottom side, preferably the same rear punch, as the preforming press.
  • the inner contour molding press can comprise a different projectile blank receptacle and / or a different bottom side, preferably a different rear punch, compared to the preforming press.
  • the inner contour molding press comprises an inner contour shaping punch, having an inner contour shaping section that extends in the axial direction to a front surface of the inner contour shaping punch.
  • the inner contour molding section is movable relative to the bottom side of the inner contour molding press for shaping the projectile blank up to an inner contour form end position in which the inner contour shaping stamp, the bottom side and the projectile blank receptacle form an inner contour mold cavity for the internally contoured projectile blank ( second stage).
  • the bottom side of the inner contour forming station is preferably realized by a rear stamp which is movable in the axial direction relative to the inner contour forming stamp and / or to the projectile blank holder.
  • the inner contour shaping punch can have an inner contour shaping punch guide section which is designed to complement the shape of the projectile blank receptacle of the inner contour press in the radial direction and which in particular adjoins the inner contour shaping section in the axial direction.
  • the inner contour molding press can have a drive for pressing the inner contour molding section into a projectile blank arranged in the projectile blank receptacle.
  • the drive of the inner contour molding press can be the same or a different drive than that of the preforming press.
  • an axial distance between the bottom and the front surface of the inner contour press is greater than the axial section between the bottom of the preform press and the front surface of the preform punch in the preform end position, in particular in the inner contour end position.
  • the front surface of the inner contour molding die can be formed as a blunt cone tip, in particular with rounded front edge edges.
  • a blunt cone tip can have an opening angle between 140 ° and 180 °, for example between 150 ° and 170 °, in particular approximately 160 °. If an inner contour form stamp with a blunt cone tip and sleeve form section with a substantially cylindrical outer contour (or a rounded front edge) is provided, it can be referred to as a round stamp.
  • the rounded front edge can have a radius of curvature of at least 0.5 mm, at least 1 mm, at least 1.5 mm or at least 2 mm and / or at most 10 mm, at most 5 mm, at most 3 mm or at most 2.5 mm.
  • An ogive radius of curvature near the tip is preferably between 1 mm and 5 mm, preferably between 2 mm and 4 mm, in particular approximately 3.1 mm.
  • an ogive radius of curvature is between 10 mm and 50 mm, preferably between 20 mm and 30 mm, in particular approximately 23.5 mm.
  • the inner contour shaped section can be formed in sections, preferably completely, in the axial direction as a sleeve shaped section with an essentially cylindrical or frustoconical outer contour.
  • An essentially cylindrical outer contour can have a draft angle of less than 1 °, in particular less than 0.5 °.
  • an essentially cylindrical sleeve-shaped section can have a cylinder radius difference of approximately 0.03 mm with a cylinder length of approximately 6 mm.
  • the inner contour molding section in particular adjacent to a possibly provided guide section of the inner contour molding die, for example as described above, can have a truncated cone-shaped transition section which extends in the radial direction from the inner contour molding section to the guide section, the transition section preferably having an opening angle between 60 and 120 °, in particular 90 °.
  • the taper of the preform section is the Preform stamp more pointed than the preferably tapered outer contour (or substantially cylindrical outer contour) of the inner contour molding section, in particular the sleeve molding section of the inner contour molding die. It is clear that a sharper contour has a smaller opening angle than a blunt outer contour.
  • the inner contour shaping punch is shorter and blunt in relation to the preform punch.
  • the preform stamp is preferably frustoconical, in particular with a flat front surface and a rounded front surface edge, and longer in the axial direction than the length of the inner contour mold stamp.
  • the inner contour shaping stamp can preferably be embodied essentially in the form of a full cylinder with a blunt front surface and a rounded front edge.
  • the inner contour stamp is preferably rotationally symmetrical.
  • the form stamp allows the blank to be largely or completely pierced in the axial direction.
  • the inner contour shaping stamp enables a part of the material of the full storey blank to be compressed, forming a shoulder, and the section-wise formation of a sleeve section with a relatively large-volume inner cavity, which can be formed into an ogive cavity with one or more other tools of the tool arrangement is.
  • the tool arrangement further comprises a setting press or setting station which has a hollow cylindrical, in particular ideally cylindrical, metal blank holder or setting die, which is delimited in the axial direction by a bottom side, which is preferably realized by a rear punch is.
  • Die or metal blank receptacle and bottom side (setting rear punch) of the setting press can in turn differ from the projectile blank receptacle and / or the bottom side of the preform press and / or the inner contour molding press (preform and / or inner contour shape rear punch), or the same (s) be.
  • the tool arrangement When the tool arrangement is designed with setting presses, it also has a setting punch which can be moved relative to the bottom side of the setting press for forming a metal blank up to a final setting position in which the setting punch and the projectile blank receptacle have a setting cavity with a predetermined clearance Form width to define a constant outer diameter, in particular the caliber diameter, of the metal blank.
  • the bottom side of the setting station is preferably realized by a rear punch which is movable in the axial direction relative to the setting punch and / or the die.
  • the setting punch comprises a centering knob which is coaxial with the metal blank receptacle and / or the bottom side and protrudes axially into the cavity for introducing a central, coaxial centering recess into the metal blank.
  • the bottom side of the setting press has a particularly relative to the metal blank holder and / or the setting punch coaxial, in the axial direction A protruding into the cavity dome shape for introducing a dome into the blank, which is preferably conical, frustoconical or dome-shaped.
  • the bottom side of the blank receptacle of the setting press can have a circumferential wedge shape radially on the outside for forming a projectile rear chamfer for inserting the projectile into the neck of a cartridge case and / or for forming a so-called "boat tail".
  • a tool arrangement according to the invention further comprises an ogive molding press or ogive molding station which has a hollow cylindrical projectile blank receptacle or ogive die, which in the axial direction has a concave, ogive-shaped base side, preferably a tip stamp, is limited in particular with a blunt front end, and which has a projectile foot or rear stamp for holding and / or centering the foot end (the rear) of the inner contour-shaped projectile blank, which relative to the bottom side for forming the full storey to an ogive form end position is movable, in which the projectile base stamp, the projectile blank receptacle and the bottom side define a cavity which defines a projectile negative with an ogive section and preferably immediately adjacent cylinder section.
  • the invention further relates to a method according to claim 11.
  • a setting tool such as a setting press or setting station
  • a metal blank is provided using a setting tool
  • a metal blank with a predetermined mass for example a mass precisely measured to 1/10 g, 1/100 g or 1/1000 g
  • a setting tool preferably a setting press, in particular as described above, is brought to a predetermined nominal diameter.
  • the metal blank provided is in particular provided with a fully cylindrical shape. If the metal blank is provided using a setting tool, a frusto-conical centering cutout, for example, can be made on the face side of the metal blank as part of the setting step.
  • a setting step When a setting step is carried out, it can be formed on the foot-side end of the metal blank, which in the course of the manufacturing process is converted into a foot-side projectile part which is to be inserted into the neck of a practice cartridge case.
  • a dome and / or an outside bevel or boat-tail shape can be formed, for example, in the setting step, for example on the rear side of the metal blank.
  • the metal blank is formed in a preforming step into a projectile blank (first stage) with a sleeve-shaped section that extends over more than half the size of the axial blank height at the end of the preforming step, in particular the sleeve-shaped section having a preferably continuously tapering inner contour is formed.
  • the inner contour of the sleeve-shaped section of the projectile blank of the first stage can preferably be shaped like a truncated cone and / or rotationally symmetrically. It is clear that the taper tapers towards the foot end of the blank.
  • the thickness of the sleeve wall in the axial direction of the projectile blank of the first stage preferably increases in particular steadily.
  • the metal blank is preferably formed into a projectile blank with a substantially cylindrical outside having a constant diameter, forming an internally sleeve-shaped section with a preferably conically tapering inside contour.
  • a fully cylindrical trunk section can remain on the rear side of the projectile blank, which extends in the axial direction over less than half, less than 40%, less than 30%, less than 20%, less than 10% or less than 5% of the largest axial projectile blank height . If, for example, the projectile blank is formed as described above, the greatest axial projectile blank height extends between the upper ring end and the lower ring end of the projectile blank.
  • a fully cylindrical trunk section of the projectile blank preferably remains after the preforming step.
  • the projectile blank of the first stage may have been completely deformed in the manner of a sleeve in such a way that the projectile blank (first stage), in particular with the formation of an axial passage, was completely penetrated in the axial direction.
  • a completely penetrated projectile blank is (not just in sections but) completely sleeve-shaped. If a spherical cap or the like is or has been formed on the foot or rear, it is clear that this spherical cap has a different inner contour than the preferably continuously tapering inner contour of the sleeve-shaped section formed in the preforming step having.
  • the first stage projectile blank is formed without a remaining fully cylindrical trunk section or with a remaining fully cylindrical trunk section of zero height.
  • the nominal diameter of the outside of the metal blank is preferably kept unchanged in the first stage projectile blank produced by the preforming step.
  • the (preformed) projectile blank (first stage) is shaped into an (internally contoured) projectile blank (second stage) in an inner contour shaping step after the preforming step, in such a way that an end-face or front sleeve section of the projectile blank with a radially outer sleeve wall of substantially constant wall thickness and / or cylindrical inner contour is formed, and that a rear or foot-side sleeve section of the projectile blank is formed with a shoulder projecting radially inward from the sleeve wall, and that one of the shoulder, in particular on its radially inner edge outgoing shaft is formed, which extends into the rear sleeve section of the projectile blank, which shaft forms in particular a microchannel and / or a deformation cavity, the deformation cavity being cylindrical and / or at least sectionally at least in sections partly conical with a taper on the face.
  • the inner contour shaping step can preferably take place with a tapering and / or rotationally symmetrical inner contour shaping stamp, such as a round stamp, preferably in a projectile blank receptacle or die.
  • the diameter of the cylindrical outer surface of the projectile blank is preferably maintained in the inner contour molding step.
  • a distance in the axial direction between the shoulder of the projectile blank second stage and a lowermost end of the internally contour-shaped projectile blank is preferably greater than the axial height of the fully cylindrical one that may be present at the end of the preforming step Trunk section of the projectile blank.
  • the opposite shoulder surfaces are preferably in contact with one another at the end of a microchannel.
  • the projectile blank of the second stage can be formed in the inner contour molding step with the formation of a capillary-like microchannel with an internal width of less than 10 ⁇ m or 1 ⁇ m.
  • an hourglass-shaped constriction is preferably formed between the front-end sleeve section and the deformation cavity of the projectile blank, which may be at the rear.
  • the shaft extending rearward from the shoulder can be reshaped in such a way that a cavity is formed which is at least partially dissolved in the course of the inner contour shaping step, in particular with the formation of a microchannel, in that the inner surface of the shaft is close, preferably to to a section-wise or two-dimensional contact.
  • the projectile blank (second stage) is formed in the inner contour molding step in such a way that the deformation cavity forms a waist-shaped constriction on the end face.
  • a microchannel is formed in particular between the deformation cavity and the shoulder, in which the inner wall surface of the sleeve section is brought together in a particularly touching manner.
  • a distance in the axial direction between the shoulder and the foot of the projectile blank (second stage) can be greater than the axial height of the fully cylindrical trunk section of the projectile blank (first stage) which may be present at the end of the preforming step.
  • the method comprises an ogive molding step.
  • the projectile blank in particular the projectile blank of the second stage, is shaped in such a way that the end-side sleeve wall forms an ogive-shaped outer surface, at least in sections.
  • an end opening can be maintained, which preferably opens into an ogive cavity defined circumferentially by the sleeve wall.
  • the ogive cavity can preferably be defined on the face side by the shoulder.
  • the ogive molding step can be carried out, for example, in that the projectile blank of the first or second stage is pressed into an ogive molding tool with an ogive-shaped inner contour by means of a rear punch, which holds the projectile blank on the rear side, so that the front sleeve wall, which is caused by the preforming step and, if appropriate, the inner contour molding step is defined, is compressed radially inwards.
  • an ogive cavity is preferably formed, which is surrounded by the sleeve wall of the full story.
  • the projectile blank (first or second stage) is preferably formed into a full projectile, in particular as described above.
  • the ogive cavity formed in the ogive molding step is preferably formed completely edge-free in the axial direction and / or with rounded edges and / or a rounded inner contour.
  • the ogive cavity can be made substantially bell-shaped in the ogive molding step.
  • a non-cutting inner contour shaping step can take place, for example, using a preferably tapered, in particular rotationally symmetrical inner contour shaping punch, such as a round punch, in a projectile blank receptacle or die.
  • the method according to the invention for producing a full metal bullet for exercise cartridges further comprises one or more intermediate and / or post-treatment steps, such as coating steps.
  • a coating is applied to the outer and / or inner surface, at least in sections, in particular completely.
  • a coating is preferably applied with a coating thickness of less than 500 ⁇ m, less than 100 ⁇ m, less than 10 ⁇ m or less than 3 ⁇ m or 1 ⁇ m.
  • a coating step can include, for example, galvanic coating of the full floor.
  • the method according to the invention for producing a metallic full projectile for practice cartridges can in particular be used to produce a metallic full projectile according to the first and / or second aspect of the invention.
  • the method according to the invention for producing a metallic full projectile for exercise cartridges can preferably be carried out using a tool arrangement according to the invention for producing metallic full storeys for exercise cartridges.
  • a metallic full floor according to the invention (in particular according to the first and / or second aspect of the invention) can be manufactured according to one or more steps of the manufacturing method according to the invention.
  • the invention also relates to a projectile which was produced using a method according to the invention for producing a metallic full projectile for practice cartridges as described above.
  • a metallic full floor according to the invention can preferably be manufactured with a tool arrangement according to the invention.
  • the tool arrangement according to the invention is preferably designed to generate a full floor according to the invention in accordance with the first and / or second aspect of the invention.
  • the tool arrangement according to the invention can be designed to carry out a manufacturing method according to the invention.
  • the invention also relates to a cartridge with one, in particular exactly one, full floor according to the invention.
  • the invention further relates to a handgun, preferably a handgun, such as a pistol or a revolver, or a submachine gun, which comprises at least five practice cartridges with a metal bullet according to the invention.
  • the handgun or the full projectile is preferably designed for cartridges with a caliber of at most 20 mm, in particular at most 12 mm.
  • Figure 1a shows a plan view of a full floor 1 and Figure 1b a sectional view according to section line II.
  • the full floor 1 comprises an end-face ogive section 3 and a bottom-side cylinder section 5.
  • the full floor 1 is made in one piece from a homogeneous material.
  • the material of the full floor 1 is preferably copper.
  • the surface of the projectile 1 can be provided with a thin coating.
  • the projectile 1 has an ogive-like, rotationally symmetrical outer contour 34 which is pierced by a circular opening 11 on the end face 13 of the projectile 1.
  • the opening 11 with the opening diameter do is provided concentrically and preferably rotationally symmetrically with respect to the axis of rotation A of the projectile 1.
  • the ogive wall 31 extends in a dome-like manner with an ogive-shaped outer contour 34.
  • the outer contour 34 describes in the axial direction A, starting from the projectile tip 13, a continuously rounded ogive shape.
  • the projectile 1 has a radius of curvature of approximately 3.1 mm.
  • the radius of curvature of the outer contour 34 is approximately 23.5 mm.
  • the opening angle of the outer contour 34 with respect to the axis of rotation A is initially obtuse (near the projectile tip 13), so that in particular as a result of the front opening 11, a obtuse projectile tip 13 is formed with an opening angle of 150 ° to 180 °, preferably approximately 180 °.
  • the opening angle of the outer contour 34 of the ogive section 3 preferably increases continuously.
  • the opening angle based on a tangent of the outer contour 34 at an axial distance of approximately 1 mm from the blunt tip 13 of the floor 1 is between 120 ° and 140 °, in particular approximately 130 °.
  • the tangential opening angle is between 110 ° and 90 °, in particular approximately 100 °.
  • the ogive-shaped outer contour 34 of the ogive section 3 runs in such a way that after about 8 mm to 11 mm, preferably between 9 mm and 10 mm, in particular at approximately 9.6 mm, the tangent oriented in the axial direction A on the outer contour 34 runs essentially parallel to the axis of rotation A of the projectile 1. From this point, the outer contour 34 extends in the cylinder section 5 of the projectile 1. In the cylinder section 5, the outer contour 34 of the projectile 1 runs essentially ideally in a cylindrical manner.
  • the outer contour 34 of the projectile 1 is arranged essentially continuously parallel to the axis of rotation A of the projectile 1.
  • the cylinder section 5 defines the largest diameter Dz, which can be referred to as the bullet diameter or the caliber diameter.
  • the outer diameter Dz of a bullet for a 9 mm Luger caliber training cartridge can measure 9.02 mm.
  • the cylinder section 5 of the projectile 1 is intended to be inserted at least partially in the axial direction A into the neck (not shown) of a cartridge case (not shown).
  • the cylinder section extends in the axial direction of the projectile 1 over 5 mm to 10 mm, preferably between 6 mm and 9 mm, in particular between 7 mm and 8 mm, preferably between 7.2 mm and 7.8 mm, particularly preferably it is approximately 7.5 mm.
  • the projectile 1 has a flat foot section or foot that extends transversely, in particular at right angles to the axis of rotation A.
  • a spherical cap 73 can be introduced into the foot 71 of the projectile 1, which is preferably coaxial and concentric with the rotation axis A.
  • the spherical cap 73 is preferably conical and tapers on the end face.
  • a spherical taper 73 may alternatively be dome-shaped or frustoconical, for example.
  • the calotte 73 preferably has a depth of 1.5 mm in the axial direction A.
  • the rear edge 75 between the flat rear 71 and the cylindrical outer contour 34 in the region of the cylinder section 5 of the projectile 1 is preferably realized by a bevel-like cone section 75.
  • the cone section 75 can for example extend 1 mm in the axial direction A and have an opening angle of preferably approximately 60 °.
  • a cone section 75 can also be formed as a longer and / or more pointed so-called "boat-tail" section.
  • the projectile 1 has a bell-shaped, rotationally symmetrical ogive cavity 33, which is completely surrounded in the radial direction R by the ogive wall 31. At the face end, the ogive cavity 33 opens into the opening 11 of the projectile 1.
  • the narrowest clear width of the opening 11 defines an opening diameter do, which is between 1 mm and 5 mm, preferably about 3 mm, in size.
  • the inner wall 15 of the opening 11 surrounds the opening 11 in a ring shape.
  • the inner wall 15 preferably forms a radial one in the circumferential direction and / or axially stepless ring edge. In particular, the inner wall 15 of the opening 11 can merge into the outer contour 34 of the ogive section 3 without edges and / or completely rounded.
  • the inner wall 15 of the opening 11 is uninterrupted in the circumferential direction.
  • the inner wall 15 is preferably free of axially extending notches and / or steps.
  • the tip 13 of the projectile 1 is preferably formed by an essentially smooth annular transition from the inner wall 15 to the outer contour 34.
  • the opening 11 opens into the ogive cavity 33 in the axial direction A.
  • the transition from the opening 11 to the ogive cavity 33 can preferably be completely rounded.
  • a blunt ring edge is formed between the ogive cavity 33 and the opening 11 with an obtuse opening angle greater than 135 °.
  • the inner contour 32 of the ogive wall 31 is preferably completely rotationally symmetrical and in particular continuously rounded in the circumferential direction.
  • the inner contour 32, which surrounds the ogive cavity 33 has no steps, jumps, edges or projections.
  • the ogive wall 31 is circumferentially preferably completely free of axial grooves, projections, notches or the like.
  • the bottom 35 of the ogive cavity 33 is formed by shoulders 35, which protrude inwards from the ogive wall 31 in the radial direction.
  • the curves of the inner contour 32 preferably merge into the floor 35 without steps and / or without edges, preferably completely rounded.
  • the curves of the inner contour 32 along the ogive wall 31 are preferably formed with radii of curvature that are at least 0.5 mm and up to 5 mm in size.
  • the inner contour 32 of the ogive wall 31 preferably has radii of curvature which are at least 0.5, at least 0.75 or at least 1 mm in size.
  • the wall thickness of the ogive wall 31 in the radial direction R is preferably between 0.3 mm and 3 mm.
  • the wall thickness of the ogive wall 31 can be between 0.5 mm and 2 mm.
  • the smallest wall thickness in the radial direction of the ogive wall 31 is preferably more than 0.5 mm, preferably between 1.0 mm and 1.5 mm.
  • the wall thickness can be greater than 1 mm across the wall.
  • a full storey 1 according to the invention can have a cavity which comprises the ogive cavity 33 and the opening 11, which extends completely in the axial direction A at least over the ogive section 3.
  • the inwardly projecting shoulder 35 which defines the bottom of the ogive cavity 33, and which preferably delimits the ogive cavity 33 on the foot side in particular completely in the axial direction A, can have an opening or opening 37 in the center.
  • the height of the ogive section 3 in the axial direction A has the reference symbol lo.
  • the mouth 37 is preferably concentric and / or coaxial with the axial direction A. Starting from the mouth 37, a shaft 55 extends into the cylinder section 5 of the floor 1 in the axial direction A on the foot side of the ogive cavity 33.
  • the shaft 55 begins at the foot of the ogive cavity 33.
  • the shaft 55 can extend into the ogive cavity with a throat-like opening or mouth 37 33 open.
  • the in Figure 1b Shaft 55 shown has a microchannel 57 and a deformation cavity 53.
  • the diagonally opposite inner edge edge sections collide.
  • a capillary section can be formed in the area of the microchannel 57, in which a channel extends in the axial direction A, starting from the ogive cavity 33 on the storey side, which has a clear width of less than 10 ⁇ m or less than 1 ⁇ m.
  • the microchannel 57 has a clear width which is preferably significantly smaller than the opening diameter do of the opening 11 at the tip 13 of the projectile 1.
  • the clear width of the microchannel 57 is preferably less than 2 mm, in particular less than 1 mm.
  • the shaft mouth 37 can, for example, form a kind of funnel-shaped transition region between the shaft 55 and the ogive cavity 33.
  • the bottom 35 of the ogive cavity 33 preferably merges into the mouth 37 rounded, in particular step-free and / or edge-free.
  • the mouth 37 preferably merges into the further sections, for example the microchannel 57 and / or the deformation cavity 53, of the shaft 55.
  • the shaft 55 has a deformation cavity 53 which widens essentially conically in the rear direction.
  • the deformation cavity 53 has an essentially flat rear end in the axial direction A, preferably a flat end which extends transversely, in particular perpendicularly, to the axial direction A in the radial direction R.
  • the deformation cavity 53 is wedge-shaped, in particular conical, and tapers.
  • the shaft 55 is at least in sections or in the axial direction rotationally symmetrical with respect to the projectile axis A. In the radial direction R, the shaft 55 is surrounded by a deformation sleeve wall 51 of the projectile 1.
  • the wall thickness of the deformation sleeve wall 51 is greater than the wall thickness of the ogive wall 31. In particular, the smallest wall thickness of the deformation sleeve wall 51 is greater than the greatest radial wall thickness of the ogive wall 31.
  • the wall thickness of the deformation sleeve wall 51 can be between half and 1 ⁇ 4 of the cylinder diameter (or: caliber diameter) Dz.
  • the wall thickness of the deformation sleeve wall 51 is preferably greater than 2/3, greater than 3 ⁇ 4 or even greater than 90% of half (caliber) cylinder diameter Dz.
  • the wall thickness of the ogive wall in the axial region of the ogive cavity 33 is preferably smaller in the middle than 1 ⁇ 4 of the (caliber) cylinder diameter Dz.
  • the axial height l H of the deformation sleeve wall 51 which surrounds the shaft 55, extends in the axial direction between 5 and 10 mm, preferably between 6 and 9 mm, in particular between 7 and 8 mm, preferably starting from the shoulder bottom 35 of the ogive cavity 33
  • the axial height of the deformation cavity 53 is greater than the length of the microchannel section 57.
  • the axial height of the deformation cavity 53 can be at least twice the axial height of the microchannel 57.
  • the cylinder section 5 extends from the foot or rear 71 of the projectile to the ogive section 3 over 3 mm to 10 mm (height lz), preferably between 4 mm and 8 mm, in particular over about 6 mm.
  • the calotte preferably has a rear outer diameter of 4 to 6 mm, in particular 5 mm.
  • the edge between the rear 71 and the cylindrical outer contour 34 can be completely rounded in the region of the cylinder section 5, in particular with a radius of curvature between 0.3 and 1.5 mm, preferably between 0.4 and 1 mm. Since in the cylinder section 5 there is a deformation cavity 53 which widens at the rear, and optionally a calotte 73, it can be achieved that the center of gravity of the projectile 1 shifts in the axial direction A in the direction of the end face of the projectile 1.
  • the deformation cavity 53 and optionally the spherical cap 73 serve or serve in this respect as a mass balance relative to the ogive cavity 33 provided on the end face.
  • a projectile for projectile cartridges according to the invention can be designed to achieve similar ballistic properties, such as weight, possibly center of gravity, and / or the feeling of shooting, corresponding to practice cartridges or insert cartridges customary for authorities, for example the 9x19 ACTION 4 ammunition.
  • the full storey 1 shown has a solid, fully cylindrical storey trunk 7 or trunk section, in which the storey is designed in the axial direction A in the form of a solid, in particular void-free, full cylinder.
  • the trunk 7 has, in particular in the middle, coaxial to the projectile axis A, no cavity, in particular no cavity that extends axially in the form of a thin capillary channel with the formation of inner edges.
  • the fully cylindrical stem 7 preferably has an ideally cylindrical outside.
  • the trunk 7 can be frustoconical at least in sections on the outside.
  • the trunk cross section 7 is circular.
  • the height of the trunk 7 between the rear 71 or a calotte 73 formed in the rear 71 and the rear end of the deformation cavity 53 is less than 5 mm, preferably less than 3 mm, in particular less than 2 mm or less than 1 mm.
  • the projectile can be completely penetrated in the axial direction without a trunk. Such floors are described in more detail below.
  • the Figures 2 to 6 show different alternative designs of full floors for practice cartridges according to the invention.
  • the in the Figures 2 to 6 full floors shown largely correspond to that in Figure 1b illustrated full floor.
  • the full floors of the Figures 2 to 6 differ from the full floor 1 according to Figure 1b by the type, shape and size of the shaft extending from the ogive cavity into the cylinder section of the projectile.
  • the full floors of the Figures 1b to 6 have practically the same outer contour, in particular the same dimensions in the axial direction A and / or radial direction R.
  • the following is used for the Figures 2 to 6 the same or similar reference numerals are used for similar or identical parts of the full floor according to the invention.
  • Figure 2 shows a full floor 1.2, which is according to the full floor 1 Figure 1b essentially differs in that the inner walls of the shaft 55.2 are brought together in the axial direction A over a greater length than the axial height of the deformation cavity 53.2.
  • the axial height of the microchannel section 57.2 is greater than the axial height of the deformation cavity 53.2, in particular at least twice as large.
  • the shaft 55.2 has a throat-like opening 37.2 which widens in a funnel shape from the microchannel 57.2 to the bottom 35.2 of the ogive cavity 33.
  • the projectile 1.2 has a trunk 7.2. The axial height of the trunk 7.2 is greater than the axial height of the deformation cavity 53.2.
  • a deformation floor 1.2 according to Figure 2 can arise, for example, in that a deformation storey 1, as in figure 1b is shown to be manufactured, but more metal material is provided for manufacture.
  • the excess material compared to the shape of the full storey 1 is tolerated in the full storey 1.2 in that the opposite inner side sections of the shaft 55.2 are pushed closer to one another in the radial direction R.
  • Figure 3 shows a full floor 1.3 with a tubular shaft 55.3.
  • the shaft 55.3 of the full storey 1.3 forms a deformation tube 58.3 which extends in the axial direction A coaxially to the axis of rotation A of the full storey 1.3 and has an essentially constant clear width.
  • the deformation tube 58.3 can have a constriction in the middle in the axial direction.
  • the shaft 55.3 has a deformation cavity 53.3 which extends essentially over the entire length of the shaft 55.3 up to its mouth 37.3.
  • the deformation tube 58.3 or the microchannel of the full storey 1.3 can be viewed as a sectionally cylindrical deformation cavity 53.3 which merges into the ogive cavity 33 at the mouth 37.3.
  • the deformation sleeve 51.3 of the full storey 1.3 has a cylindrical outside and an almost cylindrical, waisted inside, which defines the deformation tube 58.3.
  • the greatest clear width of the deformation tube 58.3 is smaller than the clear width of the front opening 11, in particular narrower than half, preferably narrower than 1/4 of the clear width.
  • the wall thickness in the radial direction R of the deformation sleeve 51.3 is greater than the average wall thickness of the O-given sleeve 31.3.
  • Figure 4 shows a full floor 1.4 for a practice cartridge, in which the shaft 55.4 is formed in the axial direction A with the formation of a trunk 7.4 as long as the shaft 55.3 of the full floor 1.3 according to Figure 3 .
  • the shaft 55.4 is narrowed along its entire axial length to a microchannel 57.4 which preferably extends in a capillary-like manner from the mouth 37.4 into the cylinder section 5 of the full storey 1.4.
  • the clear width of the microchannel 57.4 is preferably less than 1/10, in particular less than 1/100, of the clear width of the front opening 11 of the full story 1.4.
  • the shoulders 35.4 of the full storey 1.4 are brought together so that the mouth 37.4 of the shaft 55.4 is narrowed at points.
  • the full floor 1.4 is formed with virtually complete dissolution of the deformation cavity. This can be seen as a further narrowing of the shaft 55.4 compared to the shaft 55.2 of the full floor 1.2 or the shaft 55 of the full floor 1.
  • the full storey 1.4 has an increased full material volume, since the cylinder section 5 of the full storey 1.4, despite the formation of a deformation sleeve section 51.4, has practically the same mass as the full storey known from the prior art (which, however, does not have any Deformation sleeve 51.4).
  • the full floor 1.5 which in Figure 5 is shown, has a tubular shaft 55.5 which has a clear width which is almost constant in the axial direction and which extends completely through the cylinder section 5.
  • the continuous deformation tube 58.5 of the full storey 1.5 has the result that the cylinder section 5 is completely implemented as a deformation sleeve 51.5.
  • the deformation tube 58.5 can be viewed as a deformation cavity 53.5 or shaft 55.5, which extends essentially cylindrically from the mouth 37.5 to the calotte 73 of the full storey 1.5. It is clear that a shaft 55.5 penetrating completely into the floor can also extend to the rear 71 of floor 1.5 if no calotte 73 is provided on the rear side of floor 1.5 (not shown).
  • the floor 1.5 can be described as a completely tubular full floor. It has a continuous axial channel, which is composed of the front opening 11, the ogive cavity 33 and the deformation tube 58.5.
  • the smallest clear width of this axial channel corresponds to the smallest clear width of the deformation tube 58.5.
  • the smallest clear width of the deformation tube 58.5 or the microchannel of the full storey 1.5 defines a diameter smaller than that of the front opening.
  • the smallest clear width of the deformation tube 58.5 is preferably less than 2 mm, in particular less than 1 mm, particularly preferably less than 0.5 mm.
  • the greatest clear width of the deformation tube 58.5 is preferably realized at its transition to the ogive cavity (the mouth 37.5) and / or the opening on the calotte side or the rear side and preferably measures less than 2 mm, in particular less than 1 mm.
  • the radial difference between the smallest clear width and the largest clear width of the deformation tube 58.5 penetrating the cylinder section 5 is preferably less than 0.5 mm, preferably less than 200 ⁇ m, in particular less than 100 ⁇ m.
  • the shaft 55.6 which completely penetrates the cylinder section 5 in the axial direction A, tapers in sections to form a microchannel 57.6.
  • the microchannel 57.6 can preferably be formed in a capillary-like manner with a clear width of less than 10 ⁇ m, preferably less than 1 ⁇ m.
  • the capillary-like section of the microchannel 57.6 preferably extends over at least half, preferably at least 2/3, in particular at least 3 ⁇ 4 of the axial length of the Shaft 55.6.
  • the shaft 55.6 can be widened at the end, at the mouth 37.6, and / or at the rear, at the mouth to the calotte 37 or the projectile tail 71, to form a tube-like or tube-like microchannel 57.6. Similar to that in Figure 4
  • the full floor 1.4 shown has the full floor 1.6 according to Figure 6 practically the same mass as the solid bullet for exercise cartridges known from the prior art (which, however, has no deformation sleeve 51.6 or the like).
  • Figure 7 shows a schematic sectional view of a full storey 1 'according to the invention after its impact on a target or a bulletproof vest, such as a ballistic vest of protection class I.
  • the full storey 1' deformed by the impact is both in the area of the ogive section 3 'and in the area of the cylinder section 5 'significantly compressed.
  • the shaft 55 ' which extends into the cylinder section 5' of the full storey 1 ', is widened by the impact of the storey 1' on the target or the like with plastic deformation.
  • the plastic deformation takes place in the form of an upsetting and over a significantly increased axial length in the axial direction A of the full storey 1 ', so that in the full storey according to the invention, its kinetic energy in the case of an impact with a resistance in a relatively greater efficiency in plastic deformation energy is converted than with conventional bullets.
  • a resistance in particular a soft target, such as SK I
  • the ogive sleeve wall 31 preferably folds radially outwards on impact.
  • a radially outermost ring kink 31 ' can form during folding.
  • the bullet does not mushroom while the tip of the bullet migrates, in particular beyond the radial caliber diameter, in the radial direction to the outside.
  • the full floors described above according to the preferred embodiments of the Figures 1 to 7 concern bullets for practice cartridges according to the caliber 9 mm Luger, which is particularly common in Germany, also known as 9 mm Para or 9 x 19 (mm). It is clear to the person skilled in the art that he can also generate a corresponding floor geometry for a full floor according to the invention for other calibers.
  • the person skilled in the art knows how to scale the projectile length l D and / or the (caliber) projectile diameter Dz in order to arrive at a corresponding full projectile of another caliber according to the invention, for example the .357 Mag. Caliber, the caliber. 40 S&W, caliber .44 Rem. Mag. Or the .45 ACP caliber.
  • Figure 8 shows a setting press 100, which can be part of a tool arrangement according to the invention.
  • the setting press 100 has, as essential components, a metal blank receptacle 105X, a rear stamp with a bottom side 107x and a setting stamp 115x.
  • the setting punch 115x preferably has a cylindrical outer diameter which essentially corresponds to the inner diameter of the metal blank receptacle 105x.
  • the inner diameter of the metal blank receptacle 105x is preferably dimensioned in accordance with the desired caliber diameter of the projectile to be produced.
  • Figure 8 shows a setting press 100 in a position in which the setting punch 115 is arranged in its operationally most widely inserted position with respect to the bottom side 107X or the metal blank receptacle 105x (final setting position).
  • a cavity is formed between the front side 113x of the setting die 115x, the cylindrical inside of the metal blank receptacle 105x and the bottom side 107X, in which a metal blank 1x is located.
  • the in Figure 8 The metal blank 1x shown has a centering punch, which is introduced through a centering projection of the setting press 100 on the end face 13x of the metal blank 1x.
  • the fully cylindrical metal blank 1x On the rear side 71x of the metal blank 1x opposite its front side 13x, the fully cylindrical metal blank 1x has a dome-shaped indentation in the center and concentrically through a correspondingly shaped, conical dome-shaped nose 173x on the bottom side 107x, i.e. the front side of the rear stamp.
  • the metal blank 1x Radially on the outside, the metal blank 1x has a phase-like truncated cone section 75x on its rear side 71x, which is arranged in the edge region between the rear 71x and the cylindrical peripheral side 5x of the metal blank 1x.
  • the phase-side truncated cone section 75x is defined by corresponding tapering in the transition area between the rear punch and the cylindrical inner wall of the setting die 105x.
  • an essentially cylindrical metal blank (not shown) is provided, which has been cut to length from a copper wire, for example.
  • the cutting can be done by cutting, for example by sawing or milling, or without cutting, for example by punching or cutting.
  • the cut metal blank is then placed in the metal blank holder 105x. Then there is a relative movement of the setting punch 115x relative to the bottom side 107X until the cavity between the setting punch 115x, the die or metal blank receptacle 105x and the bottom side 107x to that in FIG Figure 8 shown final setting position is reduced.
  • the bottom side 107x of the press is formed by the front upper side of a rear stamp.
  • the metal blank is shaped into the in the setting press Figure 8 represented metal blank 1x by press forming, i.e. cold forming.
  • the setting of the metal blank which is used for forming a projectile, in particular in a setting press 100, is an optional step of the manufacturing method according to the invention.
  • a metal blank can also be provided in a preform press or for a preforming step without a previous setting step, immediately after being cut to length from a metal wire, such as a copper wire.
  • Figure 9a shows a preform press 101 of a tool arrangement according to the invention.
  • the Figures 9b and 9c show projectile blanks 1a, 1a '(first stage), which were manufactured in a preform press.
  • the preform press 101 has, as essential components, a hollow cylindrical projectile blank receptacle 105a and a bottom side 107a, which delimits the projectile blank receptacle 105a in the axial direction A, and a preform punch 111 with a preform section 112 tapering in the shape of a truncated cone in the axial direction to a front surface 113.
  • the preform punch 111 has a cylindrical one Guide section 115, which is shaped to complement the cylindrical inner diameter of the projectile blank receptacle 105a in order to guide the preform stamp during the preform pressing process.
  • the bottom surface 107a is formed as part of a rear stamp.
  • the ejection stamp or rear stamp defines, preferably together with the lower end section of the preforming die 105a, the geometry of the rear 71 (optionally with a spherical cap 73) of the projectile blank 1a, 1a '(first stage).
  • Figure 9a shows the preform press 101 with the preform punch 111 in the operational end position (preform end position), in which a preform cavity between the preform punch, the projectile blank receptacle 105a and the bottom side 107a for defining the inner and / or outer contour of the projectile blank 1a (first Level) is defined.
  • the preform section 112 of the preform punch 111 is in the present case frustoconical and rotationally symmetrical.
  • an axial distance h s is formed.
  • the bottom 107a has a spherical cap-shaped nose which extends conically in the axial direction, starting from a flat, ring-shaped foot surface, into the cavity.
  • the preform axial distance h s or the preform trunk height is measured between the tip of the calotte molding nose 171a of the rear die and the front surface 113 of the preform die 111.
  • the preform trunk height h s would be between the flat foot-shaped section 171a of the rear punch and the front surface 113 of the preform punch 111 extend.
  • the preform punch 111 has a tapered preform section 112 which opens into a front surface 113.
  • the front surface 113 can be very narrow.
  • the preform section 112 according to Figure 9a has the shape of a truncated cone which is rotationally symmetrical to the axis A. Other rotationally symmetrical tapered shapes, for example a parabolic shape or a shape rounded in sections, are conceivable.
  • the base of the preform section 112 has the same outer diameter as the guide section 115 of the preform punch 111. In the preform end position, the Figure 9a shows, a greatest height of the cavity h Ra is formed between the base of the preform section 112 and the rear surface 171a of the bottom side 107a.
  • a stem height corresponding to the axial distance hs is less than 45%, preferably less than 40%, in particular less than 25%, more preferably less than 10%, of the cavity height h Ra .
  • the length of the preform section 112 in the axial direction A, starting from the front surface 113 of the preform punch 111, is between 5 mm and 25 mm, preferably between 8 mm and 17 mm, in particular between 10 mm and 15 mm, particularly preferably between 13.5 mm and 14 mm.
  • the diameter of the front surfaces is preferably between 1 mm and 3 mm, in particular approximately 2 mm.
  • the tool arrangement according to the invention for the setting press 100 and the preform press 101 can use the same projectile blank receptacle 105a or metal blank receptacle 105x (same die) and / or the same bottom side 107a or 107x (same rear punch).
  • the projectile blank receptacle 105a or 105b (the die) and / or the bottom surface 107a or 107b (the rear punch) of the preforming press 101 and the inner contour molding press 103 can be the same.
  • the setting press 100, preforming press 101, the inner contour forming press 103 and / or the ogive forming press 200 can be realized partially or completely different from one another by an individual setting station, preforming station, inner contour forming station and / or ogive forming station.
  • the metal blank located in the preform press 101 by pressing the punch 111 in the projectile blank receptacle 105a produces the projectile blank first stage 1a, as in FIG Figure 9b shown.
  • a trunk height l s remains between the stump end 113a of the angular truncated inner contour 32 and the rear end 71a or the dome recess 73 formed therein.
  • the trunk height l s extending in the axial direction A essentially corresponds to the preform axial distance h s Figure 9a , whereby metal material settling phenomena of the projectile blank 1a have to be taken into account.
  • the projectile blank 1a is formed with a fully cylindrical trunk section 7a.
  • the projectile blank 1a has a solid, fully circular cross section transverse to the axial direction A.
  • the trunk section 7a of the projectile blank 1a is formed on the foot or rear side (away from the forehead 13a) of the projectile blank 1a.
  • the outer contour 34a of the projectile blank 1a is essentially ideally cylindrical and preferably has an outer diameter which corresponds to the projectile cylinder diameter Dz.
  • the projectile diameter Dz is preferably generated in the metal or projectile blank before it is provided in the molding press 101, and the outer diameter of the projectile remains in the preform press 101 (and, if appropriate, the inner contour molding press 103 and / or the ogive form press 200). constant at least in sections.
  • the projectile outer diameter remains constant after the metal or projectile blank has been provided in the preform press until the end of the production process.
  • the wall thickness of the sleeve section 3a of the projectile blank 1a preferably increases continuously, in particular continuously, from the forehead 13a of the projectile blank 1a to the rear 71a thereof.
  • the (average) wall thickness of the sleeve wall 31a in the radial direction R is smaller than the (average) wall thickness of the sleeve wall 31a in the cylinder section 5a.
  • the frustoconical recess 55a in the projectile blank 1a has an inner contour 32a which essentially corresponds to the outer contour of the preform punch 111 (the preform portion 112 and the front surface 113) thereof.
  • the cavity recess 55a of the projectile blank 1a will have a different inner contour which is formed to complement the respective tapering preform punch.
  • Figure 9c shows an alternative embodiment of a projectile blank 1a '(first stage), different inner contour stump ends 113a, 113a', 113a "being shown.
  • the projectile blank 1a' is completely penetrated in the axial direction A, so that the projectile blank 1a 'is completely sleeve-shaped.
  • the puncture opening 55a ' merges into the cap nose 73a'.
  • a suitably adapted preform press with a frustoconical dome nose must be used to form such a shape.
  • the inner contour 32a 'of the sleeve wall 31a' takes in the in Figure 9c
  • the projectile blank 1a ' shown, preferably continuously in particular up to the point (113a') at which the shaft opening 55a 'of the projectile blank 1a' merges into the spherical recess 73a '.
  • the completely penetrated projectile blank 1a 'shown is not a fully cylindrical projectile blank trunk.
  • the projectile blank 1a is formed free from a projectile trunk or with a projectile trunk of zero height. Even with a completely penetrated projectile blank 1a, preform punches other than frustoconical shapes can be used.
  • Figure 9c also shows in dashed lines another way of forming a projectile blank with one compared to that in the Figures 9a and 9b Bullet blank shown 1a enlarged trunk with a trunk height l s " .
  • Figure 10a shows an inner contour molding press 103 and Figure 10b one with the in Figure 10a shown inner contour molding press 103 manufactured blank 1b (second stage).
  • the one in FIG Figure 10a shown inner contour molding press with essentially rotationally symmetrical tools for forming rotationally symmetrical full projectiles for practice cartridges.
  • the main components of the inner contour forming press 103 include the inner contour forming die 121, the bottom side 107b arranged axially opposite the inner contour forming die 121 and the hollow cylindrical projectile blank receptacle 105b.
  • the inner contour shaping die 121 delimits a cavity for the projectile blank 1b on the face side and the bottom side 107b or the face side 107b of the rear die on the foot side.
  • the cavity for the projectile blank 1b is delimited on the outside in the radial direction R by the ideal hollow cylindrical die 105b.
  • the inner contour forming die 121 is pressed into the projectile blank 1a previously preformed in the preform press 103 until the projectile blank 1b of the second stage is shaped, as in FIGS Figures 10a and 10b for example.
  • the inner contour shaping punch shown has an inner contour shaping section 122, which in sections in the axial direction A is a cylindrical sleeve shaping section 133 is formed.
  • the cylindrical wall shape and the wall thickness of the front sleeve wall 31b are defined with the cylindrical sleeve shape section 133 of the inner contour molding die 121 and the inside of the inner contour shape outer die 105b opposite the sleeve shape section 133 in the radial direction R. It is clear that the sleeve molding section 133 can be formed with a slight draft, preferably less than 1 °.
  • the inner contour molding section 122 adjacent to a guide section 127 of the inner contour molding die 121 has a truncated cone-shaped transition section 128 which extends in the radial direction from the inner contour molding section 122 to the guide section 127.
  • the inner contour form punch 121 has a guide section 127 which extends in the axial direction immediately after the form section 122 far from the front end 123 and which is preferably essentially complementary in shape to the hollow cylindrical inside of the projectile blank receptacle 105b.
  • the guide section 127 of the inner contour forming die 121 can serve to securely guide the forming die in the inner contour forming die 105b, in particular during the relative movement of the die 121 relative to the bottom side 107b.
  • a preferably frustoconical transition section 128 extends in the axial direction A and in the radial direction R between the inner contour shaped section 122 or its sleeve shaped section 133 and the guide section 127 of the inner contour forming die 121. It should be understood that the transition section 128 in the axial direction directly into the guide section 127 and merges with the inner contour molding portion 122.
  • the maximum axial height of the cavity (h Rb ) in the inner contour shape extends from the front end of the inner contour stamp guide section 127, which is formed by the outer ring edge of the transition section 128, opposite the rear surface 171b, the bottom side 107 of the rear stamp. End position.
  • the inner contour shape end position there is an axial distance h r between the front surface 123 of the inner contour forming die 121 and the front end of the bottom side 107b in the axial direction A, which can be referred to as the inner contour remaining distance.
  • the remaining distance h r is greater than the preform axial distance hs.
  • the inner contour shape remaining distance h r is preferably at least 1.2 times, at least 1.5 times or at least twice as large as the preform axial distance hs.
  • the inner contour shape remaining distance h r can be more than 10 times, more than 100 times or even more than 1000 times greater than the preform axial distance h s .
  • the axial size of the inner contour molding section 122 is as shown in FIGS Figures 10a and 10b is less than the axial length of the preform section 112.
  • the axial length of the preform section 112 can be at least 1.2 times, at least 1.5 times, or at least twice as long as the axial length of the inner contour molding section 122.
  • the shaped section 122 in the axial direction A is preferably not less than 10%, 20%, 30% or 50% of the axial length of the preform section 112.
  • the projectile blank 1b is shaped such that it forms a sleeve-shaped front section 3b and a rear-side or rear cylinder section 5b in the axial direction A.
  • the end cavity 33b in the projectile blank 1b is essentially complementary to the shape of the inner contour molding section 122 of the inner contour molding press 103.
  • the shaft 55b extends in the manner of a microchannel up to a remaining trunk height h s .
  • a full-cylindrical projectile blank trunk 7b below the channel 55b there is a full-cylindrical projectile blank trunk 7b.
  • the projectile blank 1b has a calotte recess 73b at the foot end 71b, which defines the lower end of the projectile blank trunk 7b and the trunk height.
  • the outer contour 34b of the projectile blank 1b of the second stage is essentially fully cylindrical and has essentially the same outer diameter in the cylinder section 5b as in the front thin-walled section 3b, which preferably corresponds to the projectile (caliber) diameter D z .
  • the projectile blank of the second stage (1b) essentially has the finished shaft (55b) shape, which, like the previous one, has Figures 1 to 6 described, can differentiate depending on the storey.
  • a projectile blank (not shown) of the second stage can of course also be realized without a stem.
  • the formation of the trunk 7b of the projectile blank second stage is due to the preforming step in the preform press 101. When the preform punch completely penetrates the metal or projectile blank (1a ') of the first stage, the projectile blank made from this preformed projectile blank also has no trunk.
  • a front projectile blank section 3b is formed with thin walls, preferably with a constant wall thickness, in particular at least in sections in the form of a cylindrical sleeve.
  • the metal material of the full storey or projectile blank displaced in this inner contour shaping by the inner contour shaping die 121 becomes axial direction A during the inner contour shaping step toward the foot or rear (rear) cylinder section 5b of the projectile blank (second stage) 1b postponed.
  • the conical shaft 55a formed by the preform punch 111 up to the blunt end 113 on the bottom of the inner contour 32a is deformed by the inner contour shaping punch 121 during the inner contour shaping step.
  • the cone channel 55a is reshaped by partial widening to form a wide cylindrical cavity 33b near the forehead 13b of the internally contour-shaped projectile blank 1b.
  • the metal material of the projectile blank 1b is compressed inward in the axial direction A and in the radial direction R by the inner contour shaping punch 121 during the shaping of the cone channel 55a, so that in the axial direction A the floor shoulders delimiting the cavity 35b with the central opening 37b and the shaft 55 extending from the opening 37b in the axial direction A into the cylinder section 5b of the projectile blank 1b.
  • the deformation sleeve 51b surrounding the chute 55b provides a manufacturing tolerance, the one that is present in the cone chute 55a and then possibly present (not shown in FIG Figure 10b shown)
  • Deformation cavity formed internal cavities can accommodate displaced material during the inner contour molding step. In this way, a precisely fitting outer contour 34b of the projectile blank 1b can be ensured without post-processing, for example by calibration or milling.
  • FIG 11 shows the ogive mold press 200.
  • the main component of the ogive mold press 200 comprises a rear punch 207 and a projectile receptacle 205 with a projectile tip form stamp 213 for inserting the preformed and / or inner contour-shaped projectile blank. This is held by the rear stamp 207 or at least centered and inserted into a stationary part of the ogive molding press 200, which essentially consists of the projectile receptacle 205 and the projectile tip stamp 213.
  • the projectile tip stamp 213, together with the projectile receptacle 205, defines the arcuate outer contour 203 for the ogive.
  • the ogive die or storey receptacle 205 is hollow-cylindrical with an ogive-shaped inner contour.
  • the ogive inner contour 203 of the projectile receptacle 205 preferably merges continuously, in particular without jumps and / or edges, into the ogive-shaped surface of the bottom side 213 of the tip stamp or forehead stamp.
  • the metal material of the front sleeve section 23 is deformed in an ogive-like manner, so that the projectile 2 is formed from the projectile blank.
  • the Figure 11 represents, the ogive-shaped projectile 2 was made in sections from the projectile blank.
  • the floor 2 can then be reworked, for example, by leveling.
  • the cylinder section 25 of the projectile 2 is preferably not deformed during the ogive molding step, so that it preferably completely retains its outer diameter, in particular in accordance with the (caliber) projectile diameter D z .
  • the pressing tools or presses (100, 101, 103, 200) can be equipped with mechanical limit switches and / or force-dependent limit switches and / or path-dependent limit switches for defining the relative position of the base side to the respective punch in the respective end position. Recordings and dimensioning of tools can be different due to caliber, system and / or construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Toys (AREA)
  • Laminated Bodies (AREA)

Description

Die Erfindung betrifft ein metallisches Vollgeschoss für Übungspatronen insbesondere zur Benutzung auf vorzugsweise polizeilichen Schießständen gemäß Anspruch 1. Die Erfindung betrifft auch eine Werkzeug-Anordnung zum Herstellen von metallischen Vollgeschossen für Übungspatronen gemäß Anspruch 6.The invention relates to a full metal bullet for training cartridges, in particular for use on preferably police shooting ranges according to claim 1. The invention also relates to a tool arrangement for producing metallic full bullets for training cartridges according to claim 6.

Die Erfindung umfasst ferner ein Verfahren zum Herstellen von metallischen Vollgeschossen für Übungspatronen gemäß Anspruch 11. Zur Verwendung auf polizeilichen Schießständen haben Geschosse für Übungspatronen den Anforderungen der "Technische Richtlinie (TR) Patrone 9 mm x 19, schadstoffreduziert" (insbesondere: Stand September 2009) zu entsprechen, unter der Maßgabe, dass für Übungspatronen einige in der genannten technischen Richtlinie an Einsatzpatronen gestellten Forderungen unter anderem hinsichtlich der endballistischen Wirkung, nicht erfüllt werden brauchen.The invention further comprises a method for the production of metallic full projectiles for practice cartridges according to claim 11. For use on police shooting ranges, projectiles for practice cartridges have the requirements of the "Technical Guideline (TR) cartridge 9 mm x 19, pollutant-reduced" (in particular: as of September 2009) to comply with the proviso that for practice cartridges some requirements made of cartridge in the technical guideline mentioned, among other things regarding the end ballistic effect, do not have to be met.

Ein gattungsgemäßes Vollgeschoss für Übungspatronen ist bekannt von EP 2 498 045 A1 . Das gattungsgemäße Vollgeschoss besteht aus einer stirnseitigen, bogenförmigen Ogive und daran anschließendem zylindrischen Bereich. Im Bereich der bogenförmigen Ogive ist das bekannte Vollgeschoss mit einer Ogivenwand ausgestattet, die einen Ogiven-Hohlraum umfänglich begrenzt und innenseitig mit Sollbruchstellen in Form von Kerben und Kanten gebildet ist. Diese Sollbruchstellen dienen als vorbestimmte Zonen zum Einleiten bzw. Begünstigen von Materialversagen. Sie erleichtern das Falten des Geschoss-Vollmaterials unter Bildung von Rissen in der Außenhaut der Ogive, wenn das Geschoss stirnseitig auf ein Ziel auftritt. Beim Auftreffen des Geschosses gemäß EP 2 498 045 A1 auf sein Ziel soll es sich pilzförmig deformieren ("aufpilzen"). Beim Verformen des Geschosses wird dessen kinetische Energie in Verformungsenergie umgewandelt. Die Umwandlung von kinetischer Energie in Verformungsenergie soll bei Übungspatronen-Geschossen möglichst schnell erfolgen, um zu verhindern, dass dem Geschoss eine ausreichende Menge kinetischer Energie verbleibt, um insbesondere Schutzwesten, beispielsweise polizeiliche Schutzwesten, zu durchschlagen. Bei dem bekannten Vollgeschoss für Übungspatronen hat sich als nachteilig herausgestellt, dass die Risswirkung der Sollbruchstellen dazu führen kann, dass das Geschoss beim Aufprall auf das Ziel oder eine harte Oberfläche, wie beispielsweise die Wand eines Schießstands, splittert. Das Splittern eines Übungsgeschosses kann für übende Schützen gefährliche Querschlagsplitter zur Folge haben.A generic full floor for practice cartridges is known from EP 2 498 045 A1 . The generic full floor consists of an arched ogive on the front and a cylindrical area connected to it. In the area of the arched ogive, the well-known full floor is equipped with an ogive wall, which delimits an ogive cavity and is formed on the inside with predetermined breaking points in the form of notches and edges. These predetermined breaking points serve as predetermined zones for initiating or promoting material failure. They facilitate the folding of the projectile solid material with the formation of cracks in the outer skin of the ogive if the projectile hits the face of a target. When hitting the bullet according to EP 2 498 045 A1 it should deform mushroom-shaped ("mushroom") on its target. When the projectile is deformed, its kinetic energy is converted into deformation energy. The conversion of kinetic energy into deformation energy should take place as quickly as possible in the case of practice cartridge bullets in order to prevent the bullet from having a sufficient amount of kinetic energy to penetrate, in particular, protective vests, for example police protective vests. In the known full bullet for practice cartridges, it has been found to be disadvantageous that the cracking effect of the predetermined breaking points can lead to the bullet splintering when it hits the target or a hard surface, such as the wall of a shooting range. The splintering of a practice bullet can result in dangerous cross-impact splinters for practicing shooters.

EP 2 133 655 A2 offenbart ein Projektil für Schusswaffen. US 5,943,749 A offenbart ein Herstellungsverfahren für ein hohles Projektil. US 1,892,158 offenbart ein Projektil für kurze Distanzen. Aus US 3,069,748 geht ein Herstellungsverfahren für Projektile hervor. EP 2 133 655 A2 discloses a projectile for firearms. US 5,943,749 A discloses a manufacturing method for a hollow projectile. US 1,892,158 discloses a projectile for short distances. Out US 3,069,748 is a manufacturing process for projectiles.

Es ist eine Aufgabe der Erfindung, ein metallisches Vollgeschoss für Übungspatronen bereitzustellen, das die Nachteile des Stands der Technik überwindet, insbesondere unter Einhaltung der "Technischen Richtlinie (TR) Patrone 9 mm x 19, schadstoffreduziert", und bei dem das Splittern des Vollgeschosses beim Aufprall auf eine harte Oberfläche vermieden wird.It is an object of the invention to provide a metallic bullet for practice cartridges which overcomes the disadvantages of the prior art, in particular in compliance with the "Technical Guideline (TR) cartridge 9 mm x 19, pollutant-reduced", and in which the fragmentation of the bullet when Impact on a hard surface is avoided.

Diese Aufgabe wird gelöst durch die Gegenstände der unabhängigen Ansprüche.This object is achieved by the subject matter of the independent claims.

Demnach ist ein metallisches Vollgeschoss für Übungspatronen insbesondere zur Benutzung auf vorzugsweise polizeilichen Schießständen vorgesehen, wobei das Vollgeschoss einen stirnseitigen Ogivenabschnitt und einen Zylinderabschnitt zum Halten des Vollgeschosses in einer Patronenhülse umfasst und in Axialrichtung eine Geschosslänge definiert. Vollgeschosse unterscheiden sich von Teilmantelgeschossen und Vollmantelgeschossen dadurch, dass ein Vollgeschoss einstückig insbesondere aus einem homogenen Material gebildet ist. Das Vollgeschoss ist insbesondere für Übungspatronen zur Verwendung in Handfeuerwaffen, also Revolvern, Maschinenpistolen und/oder Pistolen vorgesehen. Ein metallisches Vollgeschoss kann auch für Übungspatronen für Gewehre vorgesehen sein. Vorzugsweise ist das Vollgeschoss für Übungspatronen bis zu einem Kaliber von 20 mm, insbesondere bis zu einem Kaliber von 12 mm, vorgesehen. Patronen bestehen in üblicher Weise aus einem Geschoss, einer Patronenhülse, Treibladungspulver und einem Anzündhütchen. Das Geschoss ist das von der Waffe abgeschossene Objekt. Das Gewicht eines Geschosses kann bei einem Patronen-Kaliber von 9 mm x 19 (Kaliber Luger oder Para) zwischen 3g und 20g, insbesondere zwischen 5g und 15g, vorzugsweise zwischen 5,5g und 9g, besonders bevorzugt zwischen 6,0g und 6,3g, beispielsweise 6,1g, betragen, bei dessen Verwendung das Durchschlagen einer Schutzweste auszuschließen ist. Bedingt durch ihr Gewicht und ihre Form erreichen die Geschosse von behördenüblichen Patronen des Kalibers 9 mm Luger Mündungsgeschwindigkeiten von 340 mm/sec. oder mehr. Das Material des Vollgeschosses ist vorzugsweise bleifrei und/oder bleilegierungsfrei. Das Metall des Vollgeschosses weist vorzugsweise Kupfer auf. Insbesondere besteht das Metall des Vollgeschosses zu wenigstens 95%, wenigstens 99%, oder zu wenigstens 99,9% aus Kupfer. Besonders bevorzugt besteht das insbesondere unbeschichtete Geschoss aus Reinkupfer (Cu-ETP), vorzugsweise mit einem spezifischen Gewicht von 8,93 g/cm3, insbesondere aus CU-ETP1 nach DIN EN1977 mit mindestens 99,9% Kupferanteil und weniger als 100 ppm Sauerstoff. Gemäß weniger bevorzugten Ausführungen kann das Metallmaterial des Vollgeschosses Messing sein (also eine Mischung aus Kupfer und Zink wie Tombak). Das spezifische Gewicht von Kupfer liegt bei 8,9g/ccm. Das spezifische Gewicht von Zink liegt bei 7,2 g/ccm. Das spezifische Gewicht von Messing beträgt wenigstens 8,3g/ccm, wobei das spezifische Gewicht von Tombak bei etwa 8,6g/ccm liegt.Accordingly, a metallic full floor for practice cartridges is provided in particular for use on preferably police shooting ranges, the full floor comprising an end-face ogive section and a cylinder section for holding the full floor in a cartridge case and defining a floor length in the axial direction. Solid floors differ from partial shell floors and solid jacket floors in that a solid floor is formed in one piece, in particular from a homogeneous material. The full floor is intended in particular for practice cartridges for use in small arms, ie revolvers, submachine guns and / or pistols. A metallic full floor can also be provided for practice cartridges for rifles. The full storey is preferably provided for practice cartridges up to a caliber of 20 mm, in particular up to a caliber of 12 mm. Cartridges usually consist of a bullet, a cartridge case, propellant powder and a primer. The projectile is the object shot down by the weapon. With a cartridge caliber of 9 mm x 19 (Luger or Para caliber), the weight of a projectile can be between 3 g and 20 g, in particular between 5 g and 15 g, preferably between 5.5 g and 9 g, particularly preferably between 6.0 g and 6.3 g , for example 6.1 g, when using a protective vest must be excluded. Due to their weight and shape, the bullets of standard cartridges of 9 mm Luger caliber have a muzzle velocity of 340 mm / sec. or more. The material of the full story is preferably lead-free and / or lead-free. The metal of the full floor preferably has copper. In particular, the metal of the full story consists of at least 95%, at least 99%, or at least 99.9% copper. The particularly uncoated bullet particularly preferably consists of pure copper (Cu-ETP), preferably with a specific weight of 8.93 g / cm 3 , in particular of CU-ETP1 according to DIN EN1977 with at least 99.9% copper content and less than 100 ppm oxygen . According to less preferred embodiments, the metal material of the full storey can be brass (ie a mixture of copper and zinc such as tombac). The specific weight of copper is 8.9g / ccm. The specific weight of zinc is 7.2 g / ccm. The specific weight of brass is at least 8.3 g / ccm, the specific weight of tombac being about 8.6 g / ccm.

Erfindungsgemäß schließt an den insbesondere bogenförmigen Ogivenabschnitt vorzugsweise unmittelbar der Zylinderabschnitt des Vollgeschosses an. Der in Flugrichtung des Vollgeschosses vorne angeordnete Ogivenabschnitt kann als stirnseitig bezeichnet werden. Der in Flugrichtung des Geschosses hintere Zylinderabschnitt des Vollgeschosses kann als fußseitig oder heckseitig bezeichnet sein. Der Ogivenabschnitt ist in Axialrichtung vor dem Zylinderabschnitt des Vollgeschosses angeordnet. Der Zylinderabschnitt weist vorzugsweise im Querschnitt eine kreisförmige Außenkontur auf. Die Form des Zylinderabschnitts entspricht vorzugweise einem senkrechten bzw. geraden Kreiszylinder. Am heckseitigen Ende des Zylinderabschnitts kann ein Fasenabschnitt angeordnet sein, um das Einführen des Vollgeschosses in einen Hals einer Patronenhülse zu vereinfachen und/oder um ein besonders aerodynamisches Heckende auszubilden (das im Allgemeinen als "boat-tail" bezeichnet wird). Bevorzugt besteht das metallische Vollgeschoss aus dem stirnseitigen Ogivenabschnitt und dem heckseitigen Zylinderabschnitt.According to the invention, the cylinder section of the full storey preferably adjoins the arcuate section of the ogive. The ogive section arranged at the front in the direction of flight of the full storey can be referred to as the front. The cylinder section of the full floor, which is in the direction of flight of the floor, can be referred to as the foot side or the rear side. The ogive section is arranged in the axial direction in front of the cylinder section of the full storey. The cylinder section preferably has a circular outer contour in cross section. The shape of the cylinder section preferably corresponds to a vertical or straight circular cylinder. At the rear end of the cylinder section, a chamfer section can be arranged in order to simplify the insertion of the full projectile into a neck of a cartridge case and / or to form a particularly aerodynamic rear end (which is generally referred to as a "boat tail"). The metallic full storey preferably consists of the front-side ogive section and the rear-side cylinder section.

Eine Ogive ist im streng geometrischen Sinn eine Form im dreidimensionalen Raum, die durch den Rotationskörper des Schnitts zweier Kreisbögen entsteht. An den geometrischen Begriff angelehnt bezeichnet man im Längsschnitt ähnlich geformte Profile beispielsweise von Spitzen ballistischer Geschosse, welche bei ihrer Fortbewegung einen möglichst geringen Luftwiderstand aufweisen sollen. Als Ogive kann insofern ein stromlinienförmiger Rotationskörper verstanden werden, der stirnseitig zugespitzt oder abgerundet (abgeflacht) sein kann.An ogive is, in a strictly geometric sense, a shape in three-dimensional space that is created by the rotating body of the intersection of two arcs. Based on the geometrical term, profiles in longitudinal section are similarly shaped, for example of tips of ballistic projectiles, which should have the lowest possible air resistance when moving. In this respect, an ogive can be understood as a streamlined body of revolution that can be pointed or rounded (flattened) on the face.

Der Ogivenabschnitt weist eine Ogivenwand und einen von der Ogivenwand umfänglich begrenzten rotationssymmetrischen Ogivenhohlraum auf. Der Ogivenhohlraum des erfindungsgemäßen Hohlgeschosses erlaubt es dem Geschoss beim Aufprall auf ein Ziel oder einen anderen Widerstand eine Deformation in Form eines Zusammenstauchens zu vollführen. Beim Zusammenstauchen des erfindungsgemäßen Geschosses wird dessen kinetische Energie schnell in Verformungsenergie umgewandelt. Beim Zusammenstauchen des Geschosses verformt sich die Geschossspitze vorzugsweise relativ zum Zylinderabschnitt im Wesentlichen nur in Axialrichtung. Insbesondere erfolgt bei senkrechtem Aufprall des Geschosses auf einen flachen Widerstand vorzugsweise keine Deformation der Geschossspitze in Radialrichtung über den Durchmesser des unverformten Zylinderabschnitts hinweg. Der Ogivenhohlraum ist vorzugsweise leer, d.h. nur mit Umgebungsluft gefüllt. Eine den Ogivenhohlraum umgreifende Innenkontur, die durch die Ogivenwand definiert ist, ist vorzugsweise in Umfangsrichtung stufenfrei und/oder unterbrechungsfrei gebildet und/oder weist ausschließlich gerundete Kanten auf. Eine durch die Ogivenwand definierte Ogivenaußenseite ist vorzugsweise in Umfangsrichtung stufenfrei gebildet und/oder weist umfänglich, insbesondere vollumfänglich, eine konstante Wandstärke auf.The ogive section has an ogive wall and a rotationally symmetrical ogive cavity delimited circumferentially by the ogive wall. The ogive cavity of the hollow projectile according to the invention allows the projectile to carry out a deformation in the form of a compression upon impact with a target or another resistance. When the projectile according to the invention is compressed, its kinetic energy is quickly converted into deformation energy. When the projectile is compressed, the projectile tip deforms essentially only in the axial direction relative to the cylinder section. In particular, in the event of a vertical impact of the projectile against a flat resistance, there is preferably no deformation of the projectile tip in the radial direction over the diameter of the undeformed cylinder section. The ogive cavity is preferably empty, ie only filled with ambient air. An inner contour encompassing the ogive cavity, which is defined by the ogive wall, is preferably formed step-free and / or uninterrupted in the circumferential direction and / or has only rounded edges. An outside of the ogive defined by the ogive wall is preferably formed steplessly in the circumferential direction and / or has a constant wall thickness over the circumference, in particular over the full circumference.

Vorzugsweise ist das Geschoss an bzw. nahe seiner Spitze härter als im heckwärtigen Bereich. Die Spitze kann beispielsweise eine Härte zwischen 110 HV0,5 bis 200 HV0,5, insbesondere 120 HV0,5 bis 160 HV0,5, vorzugsweise 130 HV0,5 bis 150 HV0,5 aufweisen. Der Zylinderabschnitt kann eine geringer Härte aufweisen, beispielsweise eine Härte zwischen 50 HV0,5 bis 160 HV0,5, insbesondere 75 HV0,5 bis 155 HV0,5, vorzugsweise 85 HV0,5 bis 150 HV0,5 aufweisen.The projectile is preferably harder at or near its tip than in the rear area. The tip can have a hardness of between 110 HV0.5 to 200 HV0.5, in particular 120 HV0.5 to 160 HV0.5, preferably 130 HV0.5 to 150 HV0.5. The cylinder section can have a low hardness, for example a hardness between 50 HV0.5 to 160 HV0.5, in particular 75 HV0.5 to 155 HV0.5, preferably 85 HV0.5 to 150 HV0.5.

Gemäß der Erfindung erstreckt sich ein vollzylindrischer, insbesondere also massiver, Stammabschnitt des Vollgeschosses in Axialrichtung über weniger als 45%, weniger als 40%, weniger als 30%, weniger als 20%, weniger als 10%, weniger als 5%, oder über 0%, vorzugsweise zwischen 40% und 0%, insbesondere zwischen 20% und 10% oder 0%, der Geschosslänge. Gegenüber dem von EP 2 498 045 A1 bekannten Vollgeschoss, bei dem ein Ogivenhohlraum im Bereich der stirnseitigen, bogenförmigen Ogive sich nur im Spitzenbereich des Geschosses befindet, sodass hinter dem Ogivenhohlraum einer langer, massiver Stammabschnitt gebildet ist, hat es sich überraschenderweise als vorteilhaft erwiesen, ein Vollgeschoss für Übungspatronen mit einem deutlich verkürzten Stammabschnitt oder unter vollständigem Verzicht auf einen Stammabschnitt auszubilden: Überraschenderweise ist dadurch die Stabilität des Geschosses nicht derart reduziert worden, dass die Gefahr einer splitterartigen Geschoss-Zerlegung eintritt. Auch wird die Selbstladefunktion üblicher halbautomatischer Handfeuerwaffen nicht beeinträchtigt. Mit der erfindungsgemäßen Reduktion der axialen Höhe eines vollzylindrischen Stammabschnitts wird dessen Stauch-Neigung deutlich verstärkt, sodass beim Aufprall des Geschosses dessen kinetische Energie überaus schnell und wirksam in Verformungsenergie umgewandelt werden kann. Die Sicherheit des übenden Schützen und anderer Personen auf dem Schießstand ist dadurch erheblich verbessert.According to the invention, a fully cylindrical, in particular solid, trunk section of the full story extends in the axial direction over less than 45%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, or over 0%, preferably between 40% and 0%, in particular between 20% and 10% or 0%, of the projectile length. Compared to that of EP 2 498 045 A1 known full floor, in which an ogive cavity in the area of the front, arched ogive is only in the tip area of the floor, so that a long, solid trunk section is formed behind the ogive cavity, it has surprisingly proven advantageous to have a full floor for practice cartridges with a significantly shortened To form a trunk section or to dispense with a trunk section completely: Surprisingly, the stability of the projectile has not been reduced to such an extent that there is a risk of splinter-like projectile disassembly. The self-loading function of conventional semi-automatic handguns is not affected. With the reduction according to the invention of the axial height of a fully cylindrical trunk section, its tendency to compress is significantly increased, so that when the projectile impacts, its kinetic energy can be converted very quickly and effectively into deformation energy. This significantly improves the safety of the practicing shooter and other people on the shooting range.

Gemäß der Erfindung, der mit dem oben genannten kombiniert werden kann, betrifft die Erfindung ein metallisches Vollgeschoss für Übungspatronen insbesondere zur Benutzung auf vorzugsweise polizeilichen Schießständen, wobei das Vollgeschoss einen stirnseitigen Ogivenabschnitt und einen Zylinderabschnitt zum Halten des Vollgeschosses in einer Patronenhülse umfasst. Der Ogivenabschnitt und/oder der Zylinderabschnitt können wie oben beschrieben ausgeführt sein. Anders als etwa bei Jagdgeschossen, bei denen mit dem Aufpilzen ein Kronblatt-förmiges Aufspreizen des Geschosses einhergehen soll, kann es bei Übungspatronen erwünscht sein, dass zur Vermeidung von Splitterneigung ein im Wesentlichen symmetrisches Zusammenstauchen oder Falten Radial nach innen ohne Kronblatt-förmiges Aufspreizen einhergehen soll. Ein rotationssymmetrisches Zusammenstauchen oder Falten ohne Aufspreizen des Vollgeschosses wird durch die Rotationssymmetrie des Ogivenhohlraums, insbesondere frei von Stufen und/oder Änderungen der Wandstärke der Ogivenwand in Umfangsrichtung, gewährleistet. Der Ogivenhohlraum kann im Querschnitt vorzugsweise glockenförmig sein.According to the invention, which can be combined with the above, the invention relates to a full metal bullet for practice cartridges, in particular for use on preferably police shooting ranges, the full floor comprising an end-face ogive section and a cylinder section for holding the full bullet in a cartridge case. The ogive section and / or the cylinder section can be designed as described above. In contrast to hunting bullets, for example, where mushrooming is to be accompanied by a petal-like spread of the projectile, it may be desirable for practice cartridges that, to avoid splintering tendency, an essentially symmetrical compression or folding radially inward without a petal-like spreading should occur . A rotationally symmetrical compression or folding without spreading the full storey is made free of steps and / or changes in the rotational symmetry of the ogive cavity Wall thickness of the ogive wall in the circumferential direction, guaranteed. The ogive cavity can preferably be bell-shaped in cross section.

Gemäß der Erfindung weist der Ogivenhohlraum einen Boden auf. Der Boden des Ogivenhohlraums ist vorzugsweise heckseitig bzw. fern der Geschoss-Stirnseite angeordnet. Ausgehend von dem Boden des Ogivenhohlraums erstreckt sich gemäß dem zweiten Erfindungsaspekt ein Schacht in den Zylinderabschnitt. Der sich in den Zylinderabschnitt erstreckende Schacht kann einen Mikrokanal und/oder einen Deformationshohlraum aufweisen. Der Deformationshohlraum des Schachts kann zumindest abschnittsweise zylindrisch und/oder zumindest abschnittsweise kegelförmig mit stirnseitiger Verjüngung geformt sein. Vorzugsweise ist der Deformationshohlraum herzförmig oder ideal-konusförmig.According to the invention, the ogive cavity has a bottom. The bottom of the ogive cavity is preferably arranged at the rear or far from the projectile end. Starting from the bottom of the ogive cavity, a shaft extends into the cylinder section according to the second aspect of the invention. The shaft extending into the cylinder section can have a microchannel and / or a deformation cavity. The deformation cavity of the shaft can be at least partially cylindrical and / or at least partially conical with a taper on the end face. The deformation cavity is preferably heart-shaped or ideally conical.

Indem gemäß der Erfindung ein Vollgeschoss mit einem Innenraum ausgestattet ist, der neben dem Ogivenhohlraum einen weiteren sich in Axialrichtung heckwärts erstreckenden Deformationshohlraum aufweist, wird eine radiale Aufprall-Deformation des Übungspatronen-Vollgeschosses über einen Großteil der Länge des Geschosses oder sogar die gesamte Länge des Geschosses begünstigt. Der sich von dem Boden des Ogivenhohlraums in den Zylinderabschnitt erstreckende Schacht kann auch als Spalt oder Schlund bezeichnet werden. Ein schlundartiger Schacht kann beispielsweise durch eine Parabel-trichterförmige Verjüngung ausgehend von dem Ogivenhohlraum realisiert sein, die einen insbesondere kapillarartigen Mikrokanal bereitstellt. Ein kapillarartiger Mikrokanal weist vorzugsweise eine mikroskopische Öffnungsweite, insbesondere kleiner 1 mm oder kleiner 1/10 mm, auf. Entlang eines kapillarartigen Mikrokanals oder Kapillarabschnitts ist der Schacht zumindest abschnittsweise derart verengt bzw. eingeschnürt, dass die SchachtInnenwand zu einer linienartigen Verengung geformt ist. Eine Verschmelzung des Metallmaterials des Vollgeschosses quer zu dessen Axialrichtung, insbesondere unter Aufhebung der Metall-Korngrenzen, findet entlang des Kapillarabschnitts vorzugweise nicht statt.Since, according to the invention, a full storey is equipped with an interior which, in addition to the ogive cavity, has a further deformation cavity which extends in the axial direction at the rear, radial impact deformation of the practice cartridge full storey becomes over a large part of the length of the storey or even the entire length of the storey favored. The shaft extending from the bottom of the ogive cavity into the cylinder section can also be referred to as a gap or throat. A throat-like shaft can be realized, for example, by a parabolic funnel-shaped tapering starting from the ogive cavity, which provides a capillary-like microchannel in particular. A capillary-like microchannel preferably has a microscopic opening width, in particular less than 1 mm or less than 1/10 mm. The shaft is narrowed or constricted at least in sections along a capillary-like microchannel or capillary section in such a way that the inner wall of the shaft is shaped into a line-like narrowing. A fusion of the metal material of the full storey transversely to its axial direction, in particular while removing the metal grain boundaries, preferably does not take place along the capillary section.

Gemäß einer bevorzugten Ausführung der Erfindung weist die Ogivenwand eine OgivenWandstärke auf und das Vollgeschoss bildet im Zylinderabschnitt in Axialrichtung zumindest abschnittsweise eine ringförmige Deformationshülsenwand, die eine Deformationshülsen-Wandstärke aufweist. Dabei ist die Deformationshülsen-Wandstärke größer als die Ogivenwandstärke. Vorzugsweise erstreckt sich die Ogivenwand über zumindest 50%, vorzugsweise über zumindest 55% und/oder über höchstens 75%, vorzugsweise höchstens 60%, der Geschosslänge. Die Axialerstreckung der Deformationshülsenwand spannt sich vorzugsweise zwischen dem Boden des Ogivenhohlraums und, sofern vorhanden, dem Stammabschnitt des Vollgeschosses oder dem untersten Ende bzw. Fuß oder Heck des Vollgeschosses auf. Die Innenseite der Deformationshülsenwand begrenzt umfänglich einen vorzugsweise rotationssymmetrischen Deformationshohlraum und/oder Mikrokanal. Die Innenseite der ringförmigen Deformationshülsenwand kann eine diagonale lichte Weite aufweisen, vorzugsweise eine lichte Durchmesserweite aufspannen, die insbesondere sich in Axialrichtung ändert. In einem Mikrokanal kann sich die lichte Weite diagonal zwischen den gegenüberliegenden Deformationshülseninnenseiten über 10 µm und 1 µm, beispielsweise zwischen 10 µm und 500 µm oder etwa über 100 µm erstrecken. Ein Mikrokanal kann auch einen Kapillarabschnitt mit einer durchschnittlichen lichten Weite von weniger als 10 µm oder 1 µm aufweisen. Das heck- bzw. fußseitige Schachtende ist vorzugsweise am flachen Stumpf-Ende domförmig oder sacklochartig geformt.According to a preferred embodiment of the invention, the ogive wall has an ogive wall thickness and the full storey in the cylinder section forms an annular deformation sleeve wall in the axial direction, at least in sections, which has a deformation sleeve wall thickness. The deformation sleeve wall thickness is greater than the ogive wall thickness. The ogive wall preferably extends over at least 50%, preferably over at least 55% and / or over at most 75%, preferably at most 60%, of the storey length. The axial extent of the deformation sleeve wall preferably spans between the bottom of the ogive cavity and, if present, the trunk section of the full storey or the lowermost end or foot or stern of the full storey. The inside of the deformation sleeve wall circumferentially delimits a preferably rotationally symmetrical one Deformation cavity and / or microchannel. The inside of the annular deformation sleeve wall can have a diagonal clear width, preferably span a clear diameter width, which in particular changes in the axial direction. In a microchannel, the clear width can extend diagonally between the opposite inner sides of the deformation sleeve over 10 µm and 1 µm, for example between 10 µm and 500 µm or about 100 µm. A microchannel can also have a capillary section with an average clear width of less than 10 μm or 1 μm. The tail or foot end of the shaft is preferably shaped like a dome or blind hole at the flat end of the stump.

In dem Ogivenhohlraum kann die lichte Weite bis zu mehrere Millimeter betragen. Beispielsweise kann bei einem erfindungsgemäßen Vollgeschoss vom Kaliber 9 mm Luger ein Ogivenhohlraum eine lichte Weite bis zu 8 mm, vorzugsweise bis zu 7,5 mm, insbesondere etwa 7,46 mm, betragen.In the ogive cavity, the clear width can be up to several millimeters. For example, in the case of a full storey according to the invention of 9 mm Luger caliber, an ogive cavity can have a clear width of up to 8 mm, preferably up to 7.5 mm, in particular approximately 7.46 mm.

Insbesondere kann die mittlere Deformationshülsen-Stärke (ermittelt in Radialrichtung über die Höhe des Deformationshülsenabschnitts in Axialrichtung) größer sein als die mittlere Ogivenwandstärke (ermittelt in Radialrichtung über die axiale Höhe des Ogivenabschnitts). Vorzugsweise ist die kleinste Deformationshülsen-Wandstärke größer als die größte Ogivenwandstärke. Vorzugsweise ist die insbesondere größte oder mittlere Ogivenwandstärke kleiner als die Hälfte des größten Außenradius des Vollgeschosses, insbesondere größer als die Hälfte des Vollgeschoss-Kalibers. Alternativ oder zusätzlich ist die Defomationshülsen-Wandstärke kleiner oder gleich dem Radius des Vollgeschosses, insbesondere kleiner oder gleich dem halben Kaliber des Vollgeschosses. Die Ogivenwandstärke kann insbesondere kleiner als 1/4 des größten Radius des Vollgeschosses, kleiner als 1/8 oder kleiner als 1/10 des halben Vollgeschoss-Radius sein. Insbesondere ist die Ogivenwandstärke kleiner als 3 mm, kleiner als 2 mm, kleiner als 1,5 mm, kleiner als 1 mm oder kleiner als 0,8 mm. Insbesondere ist die Ogivenwandstärke größer als 0,1 mm, größer als 0,3 mm, größer als 0,5 mm oder größer als 1 mm. Vorzugsweise ist die mittlere Ogivenwandstärke zwischen 1,0 mm und 1,5 mm dick.In particular, the average deformation sleeve thickness (determined in the radial direction via the height of the deformation sleeve section in the axial direction) can be greater than the average ogive wall thickness (determined in the radial direction via the axial height of the ogive section). The smallest deformation sleeve wall thickness is preferably greater than the largest ogive wall thickness. The particularly large or average ogive wall thickness is preferably less than half of the largest outer radius of the full storey, in particular greater than half of the full storey caliber. Alternatively or additionally, the wall sleeve thickness is less than or equal to the radius of the full storey, in particular less than or equal to half the caliber of the full storey. The ogive wall thickness can in particular be less than 1/4 of the largest radius of the full floor, less than 1/8 or less than 1/10 of half the full floor radius. In particular, the ogive wall thickness is less than 3 mm, less than 2 mm, less than 1.5 mm, less than 1 mm or less than 0.8 mm. In particular, the ogive wall thickness is greater than 0.1 mm, greater than 0.3 mm, greater than 0.5 mm or greater than 1 mm. The mean ogive wall thickness is preferably between 1.0 mm and 1.5 mm thick.

Gemäß einer bevorzugten Ausführung der Erfindung ist das Vollgeschoss stirnseitig stumpf. Ein stirnseitig stumpfes Vollgeschoss kann beispielsweise eine abgeflachte Geschossstirn aufweisen. Vorzugsweise kann der Öffnungswinkel des stumpfen Vollgeschosses an dessen stirnseitig vorderster Stelle, die als Spitze bezeichnet sein kann, größer als 150° sein. Der Öffnungswinkel des stumpfen Vollgeschosses an dessen Spitze liegt vorzugsweise zwischen 150° und 180°, insbesondere bei etwa 180°. Einen Millimeter axial von der Spitze eines stumpfen Vollgeschosses entfernt kann eine Öffnungswinkeltangente (der Geschossaußenseite) größer als 120° sein und insbesondere zwischen 120° und 140°, beispielsweise bei etwa 130°, liegen. In einem Abstand von 2 mm in Axialrichtung von der stumpfen Spitze eines Vollgeschosses kann eine Öffnungswinkeltangente (einer zweiten Stelle der Geschossaußenseite) größer als 90° sein, beispielsweise zwischen 90° und 110° liegen, insbesondere bei etwa 100°.According to a preferred embodiment of the invention, the full storey is blunt on the face. A full floor that is blunt on the end can have, for example, a flattened floor end. The opening angle of the obtuse full storey at its frontmost point, which can be referred to as the tip, can preferably be greater than 150 °. The opening angle of the obtuse full storey at its tip is preferably between 150 ° and 180 °, in particular approximately 180 °. An opening angle tangent (on the outside of the floor) can be larger a millimeter axially from the top of a blunt full floor than 120 ° and in particular between 120 ° and 140 °, for example at about 130 °. At a distance of 2 mm in the axial direction from the blunt tip of a full storey, an opening angle tangent (a second location on the outside of the storey) can be greater than 90 °, for example between 90 ° and 110 °, in particular around 100 °.

Bei einer bevorzugten Ausführung der Erfindung weist das Vollgeschoss eine stirnseitige Öffnung auf, die in den Ogivenhohlraum mündet. Ein kleinster bzw. innerer Durchmesser der Öffnung ist größer als die mittlere oder kleinste Ogivenwandstärke und/oder ist größer als die Öffnungsweite eines Mikrokanals und/oder größer als 1 mm, 2 mm oder sogar 3 mm. Vorzugsweise ist die Öffnungsweite kleiner als 7 mm, kleiner als 5 mm oder kleiner als 4 mm. Besonders bevorzugt sind Vollgeschosse mit einer stirnseitigen Öffnungsweite von etwa 1,3 mm +/- 0,15 mm. Überraschenderweise hat sich bei einer solchen Abmessung eine besonders gute Aerodynamik und ein vorteilhaftes Aufpilzverhalten insbesondere für Vollkupfergeschosse ergeben.In a preferred embodiment of the invention, the full floor has an opening at the end that opens into the ogive cavity. A smallest or inner diameter of the opening is larger than the mean or smallest ogive wall thickness and / or is larger than the opening width of a microchannel and / or larger than 1 mm, 2 mm or even 3 mm. The opening width is preferably less than 7 mm, less than 5 mm or less than 4 mm. Solid storeys with a front opening width of approximately 1.3 mm +/- 0.15 mm are particularly preferred. Surprisingly, such a dimension has resulted in particularly good aerodynamics and advantageous mushrooming behavior, in particular for solid copper bullets.

Bei einer bevorzugten Ausführung der Erfindung erstreckt sich der vollzylindrische Stammabschnitt in Axialrichtung über weniger als 3 mm, weniger als 2 mm, oder weniger als 1 mm. Alternativ oder zusätzlich kann am Heckende des Vollgeschosses eine Kalotte ausgespart sein, die beispielsweise domförmig, konusförmig oder kegelstumpfförmig sein kann. Die Kalotte ist vorzugsweise koaxial und/oder konzentrisch zu der Symmetrieachse bzw. Rotationsachse A des Vollgeschosses vorgesehen. Die Vollmaterial-Stammhöhe erstreckt sich bei Vorhandensein einer Kalotte zwischen deren Geschoss-stirnseitigem Apex und dem heckseitigen Ende des Schachts, der den Mikrokanal und/oder Deformationshohlraum bildet. Vorzugsweise ist die Kalotte kegelstumpfförmig oder kegelförmig mit einem Öffnungswinkel zwischen 100° und 140°, vorzugsweise etwa 100°, und/oder eine Kalotten-Tiefe in Axialrichtung von wenigstens 0,5 mm oder wenigstens 1 mm und höchstens 2,5 mm, vorzugsweise höchstens 2 mm, insbesondere etwa 1,5 mm. Insbesondere ist die Kalotte rotationssymmetrisch. Am Heckende des Zylinderabschnitts kann radialaußenseitig eine Fase, vorzugsweise eine kegelstumpfförmige Fase, mit einem Öffnungswinkel zwischen 30° und 90°, insbesondere etwa 60°, und einer Fasenhöhe von weniger als 2 mm, vorzugsweise weniger als 1 mm, insbesondere etwa 0,5 mm ausgebildet sein. Das Kalottenvolumen beträgt weniger als 15 mm3, vorzugsweise weniger als 10 mm3, insbesondere etwa 9,8 mm3.In a preferred embodiment of the invention, the fully cylindrical trunk section extends in the axial direction over less than 3 mm, less than 2 mm, or less than 1 mm. Alternatively or additionally, a spherical cap can be left out at the rear end of the full storey, which can be dome-shaped, cone-shaped or frustoconical, for example. The dome is preferably provided coaxially and / or concentrically to the axis of symmetry or axis of rotation A of the full storey. In the presence of a spherical cap, the full material trunk height extends between its apex on the storey end and the rear end of the shaft, which forms the microchannel and / or deformation cavity. The dome is preferably frustoconical or conical with an opening angle between 100 ° and 140 °, preferably about 100 °, and / or a dome depth in the axial direction of at least 0.5 mm or at least 1 mm and at most 2.5 mm, preferably at most 2 mm, especially about 1.5 mm. In particular, the spherical cap is rotationally symmetrical. At the rear end of the cylinder section, a chamfer, preferably a frustoconical chamfer, with an opening angle between 30 ° and 90 °, in particular approximately 60 °, and a chamfer height of less than 2 mm, preferably less than 1 mm, in particular approximately 0.5 mm, can be provided radially on the outside be trained. The calotte volume is less than 15 mm 3 , preferably less than 10 mm 3 , in particular about 9.8 mm 3 .

Gemäß einer bevorzugten Ausführung der Erfindung ist eine den Ogivenhohlraum umfangende Innenkontur, die insbesondere durch die Ogivenwand definiert ist, in Axialrichtung vollständig gerundet, vorzugsweise stufenfrei gebildet und/oder weist ausschließlich gerundete Kanten auf. Die Innenkontur des Ogivenhohlraums verläuft in Axialrichtung vollständig stufenfrei und/oder vollständig sprungfrei gerundet, sodass vorzugsweise keine ausgeprägte Kerbwirkung entsteht.According to a preferred embodiment of the invention, an inner contour encompassing the ogive cavity, which is defined in particular by the ogive wall, is completely rounded in the axial direction, preferably formed without steps, and / or has only rounded edges. The inner contour of the ogive cavity runs completely in the axial direction smoothly rounded and / or completely free of jumps, so that preferably there is no pronounced notch effect.

Gemäß einer bevorzugten Ausführung entspricht das Vollgeschoss dem Kaliber 9 mm Luger. Bei einem Geschoss-Außendurchmesser von 9,02 mm bei einem als Kaliber 9 mm Luger gebildeten Vollgeschoss kann das Hohlraumvolumen des Ogivenhohlraums sowie gegebenenfalls der stirnseitigen Öffnung und/oder einem Deformationshohlraum und/oder einem Mikrokanal zwischen 150 mm3 und 200 mm3, vorzugsweise zwischen 185 mm3 und 192 mm3, insbesondere bei etwa 189 mm3, liegen. Die Masse eines erfindungsgemäßen Vollgeschosses vom Kaliber 9 mm Luger kann etwa 6,1g betragen.According to a preferred embodiment, the full floor corresponds to the 9 mm Luger caliber. With a projectile outer diameter of 9.02 mm in the case of a full projectile formed as a 9 mm Luger caliber, the void volume of the ogive cavity and optionally the front opening and / or a deformation cavity and / or a microchannel can be between 150 mm 3 and 200 mm 3 , preferably between 185 mm 3 and 192 mm 3 , in particular approximately 189 mm 3 . The mass of a full storey according to the invention of 9 mm Luger caliber can be approximately 6.1 g.

Bei einer bevorzugten Ausführung eines erfindungsgemäßen Vollgeschosses entspricht dies einem von Kaliber .357 Mag., und kann einen Außendurchmesser von mehr als 9,12 mm aufweisen. Bei einem erfindungsgemäßen Vollgeschoss mit Kaliber .357 Mag. kann das Hohlraumvolumen des Ogivenhohlraums sowie gegebenenfalls des Hohlraums der stirnseitigen Öffnung und/oder dem Deformationshohlraum und/oder einem Mikrokanal zwischen 150 mm3 und 220 mm3, insbesondere bei etwa 196 mm3 liegen.In a preferred embodiment of a full floor according to the invention, this corresponds to a .357 Mag. Caliber, and can have an outer diameter of more than 9.12 mm. In the case of a full storey according to the invention with a .357 Mag. Caliber, the void volume of the ogive cavity and optionally the cavity of the front opening and / or the deformation cavity and / or a microchannel can be between 150 mm 3 and 220 mm 3 , in particular around 196 mm 3 .

Bei einer bevorzugten Ausführung entspricht das erfindungsgemäße Vollgeschoss dem Kaliber .40 S&W. Ein erfindungsgemäßes Vollgeschoss vom Kaliber .40 S&W kann einen Außendurchmesser von 10,17 mm aufweisen. Bei einem erfindungsgemäßen Vollgeschoss vom Kaliber .40 S&W kann das Hohlraumvolumen zwischen 250 mm3 und 290 mm3, vorzugsweise zwischen 260 mm3 und 280 mm3, insbesondere zwischen 270 mm3 und 273 mm3, beispielsweise bei etwa 271,5 mm3 liegen.In a preferred embodiment, the full floor according to the invention corresponds to the .40 S&W caliber. A full projectile of the caliber .40 S&W according to the invention can have an outer diameter of 10.17 mm. In the case of a full storey of the .40 S&W caliber according to the invention, the cavity volume can be between 250 mm 3 and 290 mm 3 , preferably between 260 mm 3 and 280 mm 3 , in particular between 270 mm 3 and 273 mm 3 , for example around 271.5 mm 3 .

Bei einer bevorzugten Ausführung der Erfindung entspricht das Vollgeschoss dem Kaliber .44 Rem. Mag. Ein erfindungsgemäßes Vollgeschoss vom Kaliber .44 Rem. Mag. kann einen Außendurchmesser von 10,97 mm aufweisen. Bei einem erfindungsgemäßen Vollgeschoss vom Kaliber .44 Rem. Mag. kann das Hohlraumvolumen des Ogivenhohlraums sowie gegebenenfalls dem Hohlraum der stirnseitigen Geschossöffnung und/oder dem Deformationshohlraum und/oder dem Mikrokanal zwischen 320 mm3 und 360 mm3 und insbesondere zwischen 330 mm3 und 350 mm3, vorzugsweise zwischen 339 mm3 und 343 mm3, weiter bevorzugt zwischen 340 mm3 und 341 mm3, insbesondere bei etwa 340,5 mm3 liegen.In a preferred embodiment of the invention, the full floor corresponds to the .44 Rem caliber. Mag. A full storey according to the invention of caliber .44 Rem. Mag. Can have an outer diameter of 10.97 mm. In a full storey according to the invention of caliber .44 Rem. Mag. Can the cavity volume of the ogive cavity and optionally the cavity of the front storey opening and / or the deformation cavity and / or the microchannel between 320 mm 3 and 360 mm 3 and in particular between 330 mm 3 and 350 mm 3 , preferably between 339 mm 3 and 343 mm 3 , more preferably between 340 mm 3 and 341 mm 3 , in particular approximately 340.5 mm 3 .

Bei einer bevorzugten Ausführung der Erfindung entspricht das Vollgeschoss dem Kaliber .45 ACP. Bei einem erfindungsgemäßen Geschoss vom Kaliber.45 ACP kann der Geschoss-Außendurchmesser 11,48 mm betragen. Bei einem erfindungsgemäßen Vollgeschoss vom Kaliber .45 ACP kann ein Hohlraumvolumen des Ogivenhohlraums sowie gegebenenfalls einem Öffnungsvolumen einer stirnseitigen Geschossöffnung und/oder einer Deformationshohlraum und/oder einem Mikrokanal zwischen 370 mm3 und 410 mm3 betragen, vorzugsweise zwischen 380 mm3 und 400 mm3, insbesondere zwischen 388 und 393 mm3, insbesondere zwischen 389 mm3 und 391 mm3, vorzugsweise etwa 390,5 mm3.In a preferred embodiment of the invention, the full floor corresponds to the .45 ACP caliber. In the case of a projectile of caliber 45 ACP according to the invention, the outer diameter of the projectile can be 11.48 mm. In the case of a full storey of the .45 ACP caliber according to the invention, a cavity volume of the ogive cavity and, if appropriate, an opening volume of a front storey opening and / or a deformation cavity and / or a microchannel between 370 mm 3 and 410 mm 3 , preferably between 380 mm 3 and 400 mm 3 , in particular between 388 and 393 mm 3 , in particular between 389 mm 3 and 391 mm 3 , preferably about 390.5 mm 3 .

Bei dem erfindungsgemäßen metallischen Vollgeschoss für Übungspatronen weist der Ogivenabschnitt eine Ogivenwand und einen von der Ogivenwand umfänglich insbesondere in Radialrichtung, vorzugsweise vollumfänglich begrenzten rotationssymmetrischen Ogivenhohlraum auf.In the metallic full projectile cartridge for exercise cartridges according to the invention, the ogive section has an ogive wall and a rotationally symmetrical ogive cavity that is circumferentially bounded by the ogive wall, in particular in the radial direction, preferably completely.

Die Erfindung betrifft auch eine Werkzeug-Anordnung, gemäß Anspruch 6.The invention also relates to a tool arrangement according to claim 6.

Erfindungsgemäß ist der Vorformabschnitt relativ zu der Bodenseite zum Formen eines Geschossrohlings bis zu einer Vorform-Endstellung beweglich, in der der Vorformstempel, die Bodenseite und die Geschossrohlingaufnahme eine Vorform-Kavität für den vorgeformten Geschossrohling (erster Stufe) definiert. Die Vorformpresse kann einen Antrieb zum Pressen des Vorformabschnitts in einen in der Geschossrohlingaufnahme angeordneten Geschossrohling umfassen. Die Bodenseite der Vorformstation ist bevorzugt durch einen Heckstempel realisiert, der relativ zum Vorformstempel und/oder zur Geschossrohlingaufnahme in Axialrichtung beweglich ist.According to the invention, the preform section is movable relative to the base side for molding a projectile blank up to a preform end position in which the preform stamp, the base side and the projectile blank receptacle define a preform cavity for the preformed projectile blank (first stage). The preform press can comprise a drive for pressing the preform section into a projectile blank arranged in the projectile blank receptacle. The bottom side of the preforming station is preferably realized by a rear stamp which is movable in the axial direction relative to the preform stamp and / or to the projectile blank holder.

Erfindungsgemäß ist in der Vorformendstellung ein Axialabstand zwischen der Bodenseite der Vorformpressen-Geschossrohlingaufnahme (der Bodenseite der Matrize der Vorformstation) und der Frontfläche des Vorformstempels geringer als 45%, insbesondere geringer als 40%, geringer als 30%, geringer als 20%, geringer als 10% oder geringer als 5%, einer größten Höhe der Kavität in Axialrichtung. Wenn der Vorformabschnitt des Vorformstempels kegelstumpfförmig ist, kann sich die größte Höhe der Kavität zwischen der Basis der Kegelstumpfform des Vorformstempels und einem hiervon weitest entfernten Teil der Bodenseite der Vorformpressen-Geschossrohlingaufnahme, vorzugsweise der stirnseitigen Oberseite des Heckstempels, erstrecken.According to the invention, in the preform end position, an axial distance between the bottom side of the preform press projectile blank receptacle (the bottom side of the die of the preform station) and the front surface of the preform stamp is less than 45%, in particular less than 40%, less than 30%, less than 20%, less than 10% or less than 5%, a largest Height of the cavity in the axial direction. If the preform section of the preform punch is frustoconical, the greatest height of the cavity can extend between the base of the frustoconical shape of the preform punch and a most distant part of the bottom side of the preform press projectile receptacle, preferably the front upper side of the rear punch.

Gemäß einer bevorzugten Ausführung einer erfindungsgemäßen Werkzeug-Anordnung umfasst die Werkzeug-Anordnung ferner eine Innenkontur-Formpresse. Die Innenkontur-Formpresse bzw. Innenkontur-Station hat eine hohlzylindrische, insbesondere idealzylindrische, Geschossrohlingaufnahme bzw. Innenkonturform-Außenmatrize, die in Axialrichtung durch eine (Innenkontur-) Bodenseite, insbesondere einen Heckstempel, begrenzt ist. Die Innenkontur-Formpresse kann dieselbe Geschossrohlingaufnahme und/oder dieselbe Bodenseite, vorzugsweise denselben Heckstempel, umfassen, wie die Vorformpresse. Die Innenkontur-Formpresse kann gegenüber der Vorformpresse eine andere Geschossrohlingaufnahme und/oder eine andere Bodenseite, vorzugsweise einen anderen Heckstempel, umfassen. Die Innenkontur-Formpresse umfasst einen Innenkontur-Formstempel, aufweisend einen sich in Axialrichtung zu einer Frontfläche des Innenkontur-Formstempels erstreckenden Innenkontur-Formabschnitt. Der Innenkontur-Formabschnitt ist relativ zu der Bodenseite der Innenkontur-Formpresse zum Formen des Geschossrohlings bis zu einer Innenkontur-Form-Endstellung beweglich, in der der Innenkontur-Formstempel, die Bodenseite und die Geschossrohlingaufnahme eine Innenkontur-Form-Kavität für den innenkonturgeformten Geschossrohling (zweiter Stufe) definieren. Die Bodenseite der Innenkontur-Formstation ist bevorzugt durch einen Heckstempel realisiert, der relativ zum Innenkontur-Formstempel und/oder zur Geschossrohlingaufnahme in Axialrichtung beweglich ist.According to a preferred embodiment of a tool arrangement according to the invention, the tool arrangement further comprises an inner contour molding press. The inner contour molding press or inner contour station has a hollow cylindrical, in particular ideally cylindrical, projectile blank receptacle or inner contour shape outer die, which is delimited in the axial direction by a (inner contour) bottom side, in particular a rear punch. The inner contour molding press can comprise the same projectile blank receptacle and / or the same bottom side, preferably the same rear punch, as the preforming press. The inner contour molding press can comprise a different projectile blank receptacle and / or a different bottom side, preferably a different rear punch, compared to the preforming press. The inner contour molding press comprises an inner contour shaping punch, having an inner contour shaping section that extends in the axial direction to a front surface of the inner contour shaping punch. The inner contour molding section is movable relative to the bottom side of the inner contour molding press for shaping the projectile blank up to an inner contour form end position in which the inner contour shaping stamp, the bottom side and the projectile blank receptacle form an inner contour mold cavity for the internally contoured projectile blank ( second stage). The bottom side of the inner contour forming station is preferably realized by a rear stamp which is movable in the axial direction relative to the inner contour forming stamp and / or to the projectile blank holder.

Der Innenkontur-Formstempel kann einen Innenkontur-Formstempel-Führungsabschnitt aufweisen, der in Radialrichtung formkomplementär zu der Geschossrohlingaufnahme der Innenkontur-Presse ausgebildet ist, und der insbesondere sich in Axialrichtung die den Innenkontur-Formabschnitt anschließt. Die Innenkontur-Formpresse kann einen Antrieb zum Pressen des Innenkontur-Formabschnitts in einen in der Geschossrohlingaufnahme angeordneten Geschossrohling aufweisen. Der Antrieb der Innenkontur-Formpresse kann derselbe oder ein anderer Antrieb sein als der der Vorformpresse.The inner contour shaping punch can have an inner contour shaping punch guide section which is designed to complement the shape of the projectile blank receptacle of the inner contour press in the radial direction and which in particular adjoins the inner contour shaping section in the axial direction. The inner contour molding press can have a drive for pressing the inner contour molding section into a projectile blank arranged in the projectile blank receptacle. The drive of the inner contour molding press can be the same or a different drive than that of the preforming press.

Gemäß der bevorzugten Ausführung der erfindungsgemäßen Werkzeug-Anordnung ist insbesondere in der Innenkontur-Form-Endstellung ein Axialabstand zwischen dem Boden und der Frontfläche der Innenkontur-Presse größer als der Axialabschnitt zwischen dem Boden der Vorformpresse und der Frontfläche des Vorformstempels in der Vorform-Endstellung. Das Verwenden voneinander unterschiedlicher Vorformpress- und Innenkontur-Press-Werkzeuge gestattet es, einen Geschossrohling in einen Vorformschritt spanlos, insbesondere durch Kaltumformung zumindest abschnittsweise oder vollständig hülsenförmig durch Ein- oder Durchstanzen umzuformen, und in einem Innenkonturformschritt eine vordefinierte Innenkontur in den Geschossrohling einzubringen. Durch die Verwendung unterschiedlicher Werkzeuge lassen sich gewünschte Innenkonturen besonders präzise, insbesondere unter Einbringen gewünschter Vorspannung, herstellen.According to the preferred embodiment of the tool arrangement according to the invention, an axial distance between the bottom and the front surface of the inner contour press is greater than the axial section between the bottom of the preform press and the front surface of the preform punch in the preform end position, in particular in the inner contour end position. The use of different preform pressing and inner contour pressing tools allows a projectile blank to be formed into a preforming step without cutting, in particular by cold forming at least in sections or completely in the form of a sleeve by punching or punching, and to introduce a predefined internal contour into the projectile blank in an internal contouring step. By using different tools, the desired inner contours can be produced particularly precisely, in particular by introducing the desired preload.

Gemäß einer bevorzugten Weiterbildung einer erfindungsgemäßen Pressen-Anordnung kann die Frontfläche des Innenkontur-Formstempels als stumpfe Konusspitze, insbesondere mit abgerundeten Frontrandkanten, gebildet sein. Eine stumpfe Konusspitze kann einen Öffnungswinkel zwischen 140° und 180°, beispielsweise zwischen 150° und 170°, insbesondere etwa 160° aufweisen. Wenn ein Innenkontur-Formstempel mit stumpfer Konusspitze und Hülsenformabschnitt mit im Wesentlichen zylindrischer Außenkontur (oder einer abgerundete Frontrandkante) vorgesehen ist, kann er als Rundstempel bezeichnet sein. Die abgerundete Frontrandkante kann einen Rundungsradius von wenigstens 0,5 mm, wenigstens 1 mm, wenigstens 1,5 mm oder wenigstens 2 mm und/oder höchstens 10 mm, höchstens 5 mm, höchstens 3 mm oder höchstens 2,5 mm aufweisen. Vorzugsweise beträgt ein Ogiven-Krümmungsradius nahe der Spitze zwischen 1 mm und 5 mm, vorzugsweise zwischen 2 mm und 4 mm, insbesondere etwa 3,1 mm. Nahe dem Zylinderabschnitt beträgt ein Ogiven-Krümmungsradius zwischen 10 mm und 50 mm, vorzugsweise zwischen 20 mm und 30 mm, insbesondere etwa 23,5 mm.According to a preferred development of a press arrangement according to the invention, the front surface of the inner contour molding die can be formed as a blunt cone tip, in particular with rounded front edge edges. A blunt cone tip can have an opening angle between 140 ° and 180 °, for example between 150 ° and 170 °, in particular approximately 160 °. If an inner contour form stamp with a blunt cone tip and sleeve form section with a substantially cylindrical outer contour (or a rounded front edge) is provided, it can be referred to as a round stamp. The rounded front edge can have a radius of curvature of at least 0.5 mm, at least 1 mm, at least 1.5 mm or at least 2 mm and / or at most 10 mm, at most 5 mm, at most 3 mm or at most 2.5 mm. An ogive radius of curvature near the tip is preferably between 1 mm and 5 mm, preferably between 2 mm and 4 mm, in particular approximately 3.1 mm. Near the cylinder section, an ogive radius of curvature is between 10 mm and 50 mm, preferably between 20 mm and 30 mm, in particular approximately 23.5 mm.

Gemäß einer bevorzugten Weiterbildung einer erfindungsgemäßen Werkzeug-Anordnung kann der Innenkontur-Formabschnitt in Axialrichtung abschnittsweise, vorzugsweise vollständig, als Hülsenformabschnitt mit im Wesentlichen zylindrischer oder kegelstumpfförmiger Außenkontur gebildet sein. Eine im Wesentlichen zylindrische Außenkontur kann eine Entformungsschräge von weniger als 1°, insbesondere weniger als 0,5°, aufweisen. Beispielsweise kann ein im Wesentlichen zylindrischer Hülsenformabschnitt eine Zylinder-Radiusdifferenz von etwa 0,03 mm bei einer Zylinder-Länge von etwa 6 mm aufweisen. Der Innenkontur-Formabschnitt kann, insbesondere angrenzend zu einem eventuell vorgesehenen Führungsabschnitt des Innenkontur-Formstempels, beispielsweise wie oben beschrieben, einen kegelstumpfförmigen Übergangsabschnitt aufweisen, der sich in Radialrichtung von dem Innenkontur-Formabschnitt zu dem Führungsabschnitt erstreckt, wobei der Übergangsabschnitt vorzugsweise einen Öffnungswinkel zwischen 60 und 120°, insbesondere 90° aufweist.According to a preferred development of a tool arrangement according to the invention, the inner contour shaped section can be formed in sections, preferably completely, in the axial direction as a sleeve shaped section with an essentially cylindrical or frustoconical outer contour. An essentially cylindrical outer contour can have a draft angle of less than 1 °, in particular less than 0.5 °. For example, an essentially cylindrical sleeve-shaped section can have a cylinder radius difference of approximately 0.03 mm with a cylinder length of approximately 6 mm. The inner contour molding section, in particular adjacent to a possibly provided guide section of the inner contour molding die, for example as described above, can have a truncated cone-shaped transition section which extends in the radial direction from the inner contour molding section to the guide section, the transition section preferably having an opening angle between 60 and 120 °, in particular 90 °.

Bei einer bevorzugten Weiterbildung der erfindungsgemäßen Werkzeug-Anordnung, die mit der bzw. den vorherigen kombinierbar ist, ist die Verjüngung des Vorform-Abschnitts des Vorform-Stempels spitzer als die vorzugsweise sich verjüngende Außenkontur (oder im Wesentlichen zylindrische Außenkontur) des Innenkontur-Formabschnitts, insbesondere des Hülsenformabschnitts des Innenkontur-Formstempels. Es sei klar, dass eine spitzere Kontur einen kleineren Öffnungswinkel als eine stumpfere Außenkontur aufweist. Gemäß dieser bevorzugten Weiterbildung der erfindungsgemäßen Werkzeug-Anordnung ist der Innenkontur-Formstempel im Verhältnis zu dem Vorform-Stempel kürzer und stumpfer. Bevorzugt ist der Vorformstempel kegelstumpfförmig, insbesondere mit flacher Fronfläche und abgerundeter Frontflächen-Randkante, und länger in Axialrichtung als die Länge des Innenkontur-Formstempels. Der Innenkontur-Formstempel kann vorzugsweise im Wesentlichen vollzylinderförmig mit stumpfer Frontfläche und abgerundeter Frontrandkante ausgebildet sein. Vorzugsweise ist der Innenkontur-Stempel rotationssymmetrisch. Der Formformstempel erlaubt ein weitgehendes oder vollständiges Durchstechen des Geschossrohlings in Axialrichtung. Der Innenkontur-Formstempel ermöglicht ein Zusammenstauchen eines Teils des Materials des Vollgeschoss-Rohlings unter Ausbildung einer Schulter und das abschnittsweise Bilden eines Hülsenabschnitts mit relativ großvolumigem Innenhohlraum, welcher mit einem oder mehreren weiteren Werkzeug(en) der Werkzeug-Anordnung zu einem Ogiven-Hohlraum umformbar ist.In a preferred development of the tool arrangement according to the invention, which can be combined with the previous one (s), the taper of the preform section is the Preform stamp more pointed than the preferably tapered outer contour (or substantially cylindrical outer contour) of the inner contour molding section, in particular the sleeve molding section of the inner contour molding die. It is clear that a sharper contour has a smaller opening angle than a blunt outer contour. According to this preferred development of the tool arrangement according to the invention, the inner contour shaping punch is shorter and blunt in relation to the preform punch. The preform stamp is preferably frustoconical, in particular with a flat front surface and a rounded front surface edge, and longer in the axial direction than the length of the inner contour mold stamp. The inner contour shaping stamp can preferably be embodied essentially in the form of a full cylinder with a blunt front surface and a rounded front edge. The inner contour stamp is preferably rotationally symmetrical. The form stamp allows the blank to be largely or completely pierced in the axial direction. The inner contour shaping stamp enables a part of the material of the full storey blank to be compressed, forming a shoulder, and the section-wise formation of a sleeve section with a relatively large-volume inner cavity, which can be formed into an ogive cavity with one or more other tools of the tool arrangement is.

Gemäß einer bevorzugten Ausführung einer erfindungsgemäßen Werkzeug-Anordnung umfasst die Werkzeug-Anordnung ferner eine Setzpresse bzw. Setzstation, die eine hohlzylindrische, insbesondere idealzylindrische, Metallrohlingaufnahme bzw. Setzmatrize aufweist, die in Axialrichtung durch eine Bodenseite, die vorzugsweise durch einen Heckstempel realisiert ist, begrenzt ist. Matrize bzw. Metallrohlingaufnahme und Bodenseite (Setz-Heckstempel) der Setzpresse können sich wiederum gegenüber der Geschossrohlingaufnahme und/oder der Bodenseite der Vorformpresse und/oder der Innenkontur-Formpresse (Vorform- und/oder Innenkonturform-Heckstempel) unterscheiden, oder dieselbe(n) sein. Bei der Ausführung der Werkzeug-Anordnung mit Setzpressen weist diese ferner einen Setzstempel auf, der relativ zu der Bodenseite der Setzpresse zum Formen eines Metallrohlings bis zu einer Setz-Endstellung beweglich ist, in der der Setzstempel und die Geschossrohlingaufnahme eine Setz-Kavität mit vorbestimmter lichter Weite zum Definieren eines konstanten Außendurchmessers, insbesondere des Kaliber-Durchmessers, des Metallrohlings bilden. Die Bodenseite der Setzstation ist bevorzugt durch einen Heckstempel realisiert, der relativ zum Setzstempel und/oder zur Matrize in Axialrichtung beweglich ist.According to a preferred embodiment of a tool arrangement according to the invention, the tool arrangement further comprises a setting press or setting station which has a hollow cylindrical, in particular ideally cylindrical, metal blank holder or setting die, which is delimited in the axial direction by a bottom side, which is preferably realized by a rear punch is. Die or metal blank receptacle and bottom side (setting rear punch) of the setting press can in turn differ from the projectile blank receptacle and / or the bottom side of the preform press and / or the inner contour molding press (preform and / or inner contour shape rear punch), or the same (s) be. When the tool arrangement is designed with setting presses, it also has a setting punch which can be moved relative to the bottom side of the setting press for forming a metal blank up to a final setting position in which the setting punch and the projectile blank receptacle have a setting cavity with a predetermined clearance Form width to define a constant outer diameter, in particular the caliber diameter, of the metal blank. The bottom side of the setting station is preferably realized by a rear punch which is movable in the axial direction relative to the setting punch and / or the die.

Vorzugsweise umfasst der Setzstempel einen zur der Metallrohlingaufnahme und/oder der Bodenseite koaxialen, in Axialrichtung in die Kavität vorstehenden Zentriernoppen zum Einbringen einer zentralen, koaxialen Zentrieraussparung in den Metallrohling. Alternativ oder zusätzlich weist die Bodenseite der Setzpresse eine insbesondere relativ zu der Metallrohlingaufnahme und/oder dem Setzstempel koaxiale, in Axialrichtung A in die Kavität vorstehende Kalotten-Form zum Einbringen einer Kalotte in den Rohling auf, die vorzugsweise kegelförmig, kegelstumpfförmig oder domförmig ist.Preferably, the setting punch comprises a centering knob which is coaxial with the metal blank receptacle and / or the bottom side and protrudes axially into the cavity for introducing a central, coaxial centering recess into the metal blank. As an alternative or in addition, the bottom side of the setting press has a particularly relative to the metal blank holder and / or the setting punch coaxial, in the axial direction A protruding into the cavity dome shape for introducing a dome into the blank, which is preferably conical, frustoconical or dome-shaped.

Zusätzlich oder alternativ kann die Bodenseite der Rohlingaufnahme der Setzpresse radial außenseitig eine umlaufende Keilform zum Bilden einer Geschossheck-Fase zum Einsetzen des Geschosses in den Hals einer Patronenhülse und/oder zum Bilden eines sogenannten "boat-tail" aufweisen.Additionally or alternatively, the bottom side of the blank receptacle of the setting press can have a circumferential wedge shape radially on the outside for forming a projectile rear chamfer for inserting the projectile into the neck of a cartridge case and / or for forming a so-called "boat tail".

Gemäß einer bevorzugten Ausführung, die mit den vorherigen kombinierbar ist, umfasst eine erfindungsgemäße Werkzeug-Anordnung ferner eine Ogiven-Formpresse bzw. Ogivenformstation, die eine hohlzylindrische Geschossrohlingaufnahme bzw. Ogivenmatrize aufweist, die in Axialrichtung durch eine konkave, ogivenförmige Bodenseite, vorzugsweise einen Spitzenstempel, insbesondere mit stumpfen Stirnende begrenzt ist, und die einen Geschossfuß- bzw. -heckstempel zum Halten und/oder Zentrieren des Fußendes (des Hecks) des Innenkontur-geformten Geschossrohlings aufweist, der relativ zu der Bodenseite zum Formen des Vollgeschosses bis zu einer Ogivenform-Endstellung beweglich ist, in der der Geschossfußstempel, die Geschossrohlingaufnahme und die Bodenseite eine Kavität definieren, die ein Geschossnegativ mit einem Ogivenabschnitt und daran vorzugsweise unmittelbar angrenzenden Zylinderabschnitt definiert.According to a preferred embodiment, which can be combined with the previous ones, a tool arrangement according to the invention further comprises an ogive molding press or ogive molding station which has a hollow cylindrical projectile blank receptacle or ogive die, which in the axial direction has a concave, ogive-shaped base side, preferably a tip stamp, is limited in particular with a blunt front end, and which has a projectile foot or rear stamp for holding and / or centering the foot end (the rear) of the inner contour-shaped projectile blank, which relative to the bottom side for forming the full storey to an ogive form end position is movable, in which the projectile base stamp, the projectile blank receptacle and the bottom side define a cavity which defines a projectile negative with an ogive section and preferably immediately adjacent cylinder section.

Die Erfindung betrifft ferner ein Verfahren gemäß Anspruch 11.The invention further relates to a method according to claim 11.

Alternativ oder zusätzlich kann zum Bereitstellen des Metallrohlings ein Setzwerkzeug, wie eine Setzpresse bzw. Setzstation, verwendet werden. Beim Bereitstellen eines Metallrohlings unter Verwendung eines Setzwerkzeugs kann beispielsweise ein Metallrohling mit vorbestimmter Masse, beispielsweise auf 1/10 g, 1/100 g oder 1/1000 g genau bemessener Masse, bereitgestellt werden, welcher in einem an diesen Konfektionierschritt anschließenden Setz-schritt mit einem Setzwerkzeug, vorzugsweise einer Setzpresse, insbesondere wie oben beschrieben, auf einen vorbestimmten Nenndurchmesser gebracht wird. Der bereitgestellte Metallrohling wird insbesondere mit vollzylindrischer Gestalt bereitgestellt. Wenn der Metallrohling unter Verwendung eines Setzwerkzeugs bereitgestellt wird, kann als Teil des Setz-schritts eine beispielsweise kegelstumpfförmige Zentrier-Aussparung stirnseitig in den Metallrohling eingebracht werden. Beim Durchführen eines Setz-Schritts kann an dem fußseitigen Ende des Metallrohlings, welcher im Verlauf des Herstellungsverfahrens zu einem fußseitigen Geschossteil umgebildet wird, welches in den Hals einer Übungs-Patronenhülse einzusetzen ist, gebildet werden. Beim Bereitstellen des Metallrohlings kann insbesondere in dem Setz-Schritt beispielsweise heckseitig an dem Metallrohling eine Kalotte und/oder eine außenseitige Fase bzw. boat-tail-Form geformt werden.Alternatively or additionally, a setting tool, such as a setting press or setting station, can be used to provide the metal blank. When a metal blank is provided using a setting tool, for example a metal blank with a predetermined mass, for example a mass precisely measured to 1/10 g, 1/100 g or 1/1000 g, can be provided, which in a setting step subsequent to this assembly step a setting tool, preferably a setting press, in particular as described above, is brought to a predetermined nominal diameter. The metal blank provided is in particular provided with a fully cylindrical shape. If the metal blank is provided using a setting tool, a frusto-conical centering cutout, for example, can be made on the face side of the metal blank as part of the setting step. When a setting step is carried out, it can be formed on the foot-side end of the metal blank, which in the course of the manufacturing process is converted into a foot-side projectile part which is to be inserted into the neck of a practice cartridge case. When the metal blank is made available, a dome and / or an outside bevel or boat-tail shape can be formed, for example, in the setting step, for example on the rear side of the metal blank.

Erfindungsgemäß wird der Metallrohling in einem Vorformschritt zu einem Geschossrohling (erster Stufe) mit einem hülsenförmigen Abschnitt umgeformt, der sich zum Abschluss des Vorformschritts über mehr als die Hälfte der Größe der axialen Rohlinghöhe erstreckt, wobei insbesondere der hülsenförmige Abschnitt mit einer sich vorzugsweise stetig verjüngenden Innenkontur geformt wird. Die Innenkontur des hülsenförmigen Abschnitts des Geschossrohlings erster Stufe kann vorzugsweise kegelstupfförmig und/oder rotationssymmetrisch geformt sein. Es sei klar, dass die Verjüngung sich in Richtung des fußseitigen Endes des Geschossrohlings zuspitzt. Vorzugsweise nimmt die Dicke der Hülsenwand in Axialrichtung des Geschossrohlings erster Stufe insbesondere stetig zu. In dem Vorformschritt wird der Metallrohling vorzugsweise zu einem Geschossrohling mit im Wesentlichen zylindrischer Außenseite konstanten Durchmessers unter Ausbildung eines innenseitig hülsenförmigen Abschnitts mit einer sich vorzugsweise konisch verjüngenden Innenkontur geformt.According to the invention, the metal blank is formed in a preforming step into a projectile blank (first stage) with a sleeve-shaped section that extends over more than half the size of the axial blank height at the end of the preforming step, in particular the sleeve-shaped section having a preferably continuously tapering inner contour is formed. The inner contour of the sleeve-shaped section of the projectile blank of the first stage can preferably be shaped like a truncated cone and / or rotationally symmetrically. It is clear that the taper tapers towards the foot end of the blank. The thickness of the sleeve wall in the axial direction of the projectile blank of the first stage preferably increases in particular steadily. In the preforming step, the metal blank is preferably formed into a projectile blank with a substantially cylindrical outside having a constant diameter, forming an internally sleeve-shaped section with a preferably conically tapering inside contour.

Beim Vorformschritt kann ein vollzylindrischer Stammabschnitt heckseitig des Geschossrohlings verbleiben, der sich in Axialrichtung über weniger als die Hälfte, weniger als 40%, weniger als 30%, weniger als 20%, weniger als 10% oder weniger als 5% der größten axialen Geschossrohlinghöhe erstreckt. Wenn der Geschossrohling beispielsweise wie oben beschrieben umgeformt wird, erstreckt sich die größte axiale Geschossrohlinghöhe zwischen dem oberen Ringende und dem unteren Ringende des Geschossrohlings. Vorzugsweise verbleibt ein vollzylindrischer Stammabschnitt des Geschossrohlings nach dem Vorformschritt. Alternativ kann bei dem Vorformschritt der Geschossrohling erster Stufe derart vollständig hülsenförmig umgeformt worden sein, dass der Geschossrohling (erster Stufe), insbesondere unter Bildung eines Axialdurchgangs, vollständig in Axialrichtung durchdrungen wurde. Ein vollständig durchdrungener Geschossrohling ist (nicht bloß abschnittsweise sondern) vollständig hülsenförmig. Falls am Fuß bzw. Heck eine Kalotte oder dergleichen ausgebildet wird oder wurde, sei klar, dass diese Kalotte eine andere Innenkontur als die sich vorzugsweise stetig verjüngende Innenkontur des in dem Vorformschritt gebildeten hülsenförmigen Abschnitts aufweist. Bei der vollständig durchdrungenen alternativen Ausgestaltung wird der Geschossrohling erster Stufe ohne verbleibenden vollzylindrischen Stammabschnitt, beziehungsweise mit einem verbleibenden vollzylindrischen Stammabschnitt der Höhe Null geformt. Vorzugsweise wird bei dem Vorformschritt der Nenndurchmesser der Außenseite des Metallrohlings in dem durch den Vorformschritt erzeugten Geschossrohlings erster Stufe insbesondere unverändert beibehalten.During the preforming step, a fully cylindrical trunk section can remain on the rear side of the projectile blank, which extends in the axial direction over less than half, less than 40%, less than 30%, less than 20%, less than 10% or less than 5% of the largest axial projectile blank height . If, for example, the projectile blank is formed as described above, the greatest axial projectile blank height extends between the upper ring end and the lower ring end of the projectile blank. A fully cylindrical trunk section of the projectile blank preferably remains after the preforming step. Alternatively, in the preforming step, the projectile blank of the first stage may have been completely deformed in the manner of a sleeve in such a way that the projectile blank (first stage), in particular with the formation of an axial passage, was completely penetrated in the axial direction. A completely penetrated projectile blank is (not just in sections but) completely sleeve-shaped. If a spherical cap or the like is or has been formed on the foot or rear, it is clear that this spherical cap has a different inner contour than the preferably continuously tapering inner contour of the sleeve-shaped section formed in the preforming step having. In the completely penetrated alternative embodiment, the first stage projectile blank is formed without a remaining fully cylindrical trunk section or with a remaining fully cylindrical trunk section of zero height. In the preforming step, the nominal diameter of the outside of the metal blank is preferably kept unchanged in the first stage projectile blank produced by the preforming step.

Bei einer bevorzugten Ausführung eines erfindungsgemäßen Verfahrens wird der (vorgeformte) Geschossrohling (erster Stufe) nach dem Vorformschritt in einem Innenkonturformschritt zu einem (innenkonturgeformten) Geschossrohling (zweiter Stufe) umgeformt, und zwar derart, dass ein stirnseitiger bzw. vorderer Hülsenabschnitt des Geschossrohlings mit einer radial außenseitigen Hülsenwand im Wesentlichen konstanter Wandstärke und/oder zylindrischer Innenkontur gebildet wird, und dass ein hinterer bzw. fußseitiger Hülsenabschnitt des Geschossrohlings mit einer von der Hülsenwand radial nach innen ragenden Schulter gebildet wird, und dass ein von der Schulter insbesondere an deren radial innenseitigen Rand ausgehender Schacht gebildet wird, der sich in den hinteren Hülsenabschnitt des Geschossrohlings erstreckt, welcher Schacht insbesondere einen Mikrokanal und/oder einen Deformationshohlraum formt, wobei der Deformationshohlraum zumindest abschnittsweise zylindrisch und/oder zumindest abschnittsweise kegelförmig mit stirnseitiger Verjüngung geformt wird.In a preferred embodiment of a method according to the invention, the (preformed) projectile blank (first stage) is shaped into an (internally contoured) projectile blank (second stage) in an inner contour shaping step after the preforming step, in such a way that an end-face or front sleeve section of the projectile blank with a radially outer sleeve wall of substantially constant wall thickness and / or cylindrical inner contour is formed, and that a rear or foot-side sleeve section of the projectile blank is formed with a shoulder projecting radially inward from the sleeve wall, and that one of the shoulder, in particular on its radially inner edge outgoing shaft is formed, which extends into the rear sleeve section of the projectile blank, which shaft forms in particular a microchannel and / or a deformation cavity, the deformation cavity being cylindrical and / or at least sectionally at least in sections partly conical with a taper on the face.

Der Innenkonturformschritt kann vorzugsweise mit einem sich insbesondere verjüngenden und/oder rotationssymmetrischen Innenkontur-Formstempel, wie einem Rundstempel, vorzugsweise in einer Geschossrohlingaufnahme oder Matrize erfolgen. Vorzugsweise wird bei dem Innenkontur-Formschritt der Durchmesser der zylindrischen Außenfläche des Geschossrohlings beibehalten.The inner contour shaping step can preferably take place with a tapering and / or rotationally symmetrical inner contour shaping stamp, such as a round stamp, preferably in a projectile blank receptacle or die. The diameter of the cylindrical outer surface of the projectile blank is preferably maintained in the inner contour molding step.

Zum Abschluss des Innenkontur-Formschritts ist vorzugsweise ein Abstand in Axialrichtung zwischen der Schulter des Geschossrohlings zweiter Stufe und einem untersten Ende des innenkonturgeformten Geschossrohlings, das auch als Heck oder Fuß bezeichnet sein kann, größer als die axiale Höhe des zum Abschluss des Vorformschritts gegebenenfalls vorhandenen vollzylindrischen Stammabschnitts des Geschossrohlings. Vorzugsweise liegen am stirnseitigen Ende eines Mikrokanals die gegenüberliegenden Schulterflächen berührend aneinander. Der Geschossrohling zweiter Stufe kann bei dem Innenkontur-Formschritt unter Ausbildung eines kapillarartigen Mikrokanals mit lichter Weite von weniger als 10 µm oder 1 µm ausgebildet werden. Zwischen dem stirnseitigem Hülsenabschnitt und dem gegebenenfalls heckseitig vorhandenen Deformationshohlraum des Geschossrohlings wird bei dem Innenkontur-Formschritt vorzugsweise eine sanduhrförmige Einschnürung gebildet. Während des Innenkontur-Formschritts kann der sich von der Schulter heckwärts erstreckende Schacht derart umgeformt werden, dass ein Hohlraum gebildet wird, der im Verlauf des Innenkontur-Formschritts zumindest teilweise aufgelöst wird, insbesondere unter Bildung eines Mikrokanals, indem die Innenfläche des Schachts nahe, vorzugsweise bis zu einem abschnittsweisen oder flächigen Kontakt, aneinander geführt wird.At the end of the inner contour shaping step, a distance in the axial direction between the shoulder of the projectile blank second stage and a lowermost end of the internally contour-shaped projectile blank, which can also be referred to as the rear or foot, is preferably greater than the axial height of the fully cylindrical one that may be present at the end of the preforming step Trunk section of the projectile blank. The opposite shoulder surfaces are preferably in contact with one another at the end of a microchannel. The projectile blank of the second stage can be formed in the inner contour molding step with the formation of a capillary-like microchannel with an internal width of less than 10 μm or 1 μm. In the inner contour molding step, an hourglass-shaped constriction is preferably formed between the front-end sleeve section and the deformation cavity of the projectile blank, which may be at the rear. While of the inner contour shaping step, the shaft extending rearward from the shoulder can be reshaped in such a way that a cavity is formed which is at least partially dissolved in the course of the inner contour shaping step, in particular with the formation of a microchannel, in that the inner surface of the shaft is close, preferably to to a section-wise or two-dimensional contact.

Gemäß einer bevorzugten Weiterbildung der Erfindung wird in dem Innenkontur-Formschritt der Geschossrohling (zweiter Stufe) derart umgeformt, dass der Deformationshohlraum stirnseitig eine taillenförmige Einschnürung ausbildet. Bei Ausbildung der taillenförmigen Einschnürung wird insbesondere zwischen dem Deformationshohlraum und der Schulter ein Mikrokanal ausgebildet, in dem die Innenwandfläche des Hülsenabschnitts flächig insbesondere berührend zusammengeführt wird.According to a preferred development of the invention, the projectile blank (second stage) is formed in the inner contour molding step in such a way that the deformation cavity forms a waist-shaped constriction on the end face. When the waist-shaped constriction is formed, a microchannel is formed in particular between the deformation cavity and the shoulder, in which the inner wall surface of the sleeve section is brought together in a particularly touching manner.

Alternativ oder zusätzlich kann gemäß einer bevorzugten Weiterbildung der Erfindung ein Abstand in Axialrichtung zwischen der Schulter und dem Fuß des Geschossrohlings (zweiter Stufe) größer werden als die axiale Höhe des zum Abschluss des Vorformschritts gegebenenfalls vorhandenen vollzylindrischen Stammabschnitts des Geschossrohlings (erster Stufe).Alternatively or additionally, according to a preferred development of the invention, a distance in the axial direction between the shoulder and the foot of the projectile blank (second stage) can be greater than the axial height of the fully cylindrical trunk section of the projectile blank (first stage) which may be present at the end of the preforming step.

Gemäß einer bevorzugten Ausführung der Erfindung umfasst das Verfahren einen Ogivenformschritt. In einem Ogivenformschritt, der nach dem Vorformschritt und insbesondere nach dem Innenkontur-Formschritt erfolgen kann, wird der Geschossrohling, insbesondere der Geschossrohling zweiter Stufe, derart umgeformt, dass die stirnseitige Hülsenwand eine zumindest abschnittsweise ogivenförmige Außenfläche bildet. Dabei kann insbesondere eine stirnseitige Öffnung aufrechterhalten werden, die vorzugsweise in eine von der Hülsenwand umfänglich definierten Ogivenhohlraum mündet. Vorzugsweise kann der Ogivenhohlraum stirnseitig von der Schulter definiert sein. Der Ogiven-Formschritt kann beispielsweise dadurch erfolgen, dass der Geschossrohling erster oder zweiter Stufe mithilfe eines Heckstempels, der heckseitig den Geschossrohling hält, in ein Ogivenformwerkzeug mit ogivenförmiger Innenkontur gepresst wird, sodass die stirnseitige Hülsenwand, die durch den Vorformschritt sowie gegebenenfalls den Innenkontur-Formschritt definiert ist, radial nach innen gestaucht wird. Bei dem Ogiven-Formschritt wird vorzugsweise ein Ogivenhohlraum geformt, der von der Hülsenwand des Vollgeschoss umgeben ist. Vorzugsweise wird in dem Ogiven-Formschritt der Geschossrohling (erster oder zweiter Stufe) zu einem Vollgeschoss insbesondere wie oben beschrieben umgeformt. Der in dem Ogiven-Formschritt gebildete Ogivenhohlraum wird vorzugsweise in Axialrichtung vollständig kantenfrei und/oder mit abgerundeten Kanten und/oder gerundeter Innenkontur geformt. Beispielsweise kann der Ogivenhohlraum in dem Ogiven-Formschritt im Wesentlichen glockenförmig ausgebildet werden.According to a preferred embodiment of the invention, the method comprises an ogive molding step. In an ogive molding step, which can take place after the preforming step and in particular after the inner contour molding step, the projectile blank, in particular the projectile blank of the second stage, is shaped in such a way that the end-side sleeve wall forms an ogive-shaped outer surface, at least in sections. In particular, an end opening can be maintained, which preferably opens into an ogive cavity defined circumferentially by the sleeve wall. The ogive cavity can preferably be defined on the face side by the shoulder. The ogive molding step can be carried out, for example, in that the projectile blank of the first or second stage is pressed into an ogive molding tool with an ogive-shaped inner contour by means of a rear punch, which holds the projectile blank on the rear side, so that the front sleeve wall, which is caused by the preforming step and, if appropriate, the inner contour molding step is defined, is compressed radially inwards. In the ogive molding step, an ogive cavity is preferably formed, which is surrounded by the sleeve wall of the full story. In the ogive molding step, the projectile blank (first or second stage) is preferably formed into a full projectile, in particular as described above. The ogive cavity formed in the ogive molding step is preferably formed completely edge-free in the axial direction and / or with rounded edges and / or a rounded inner contour. For example, the ogive cavity can be made substantially bell-shaped in the ogive molding step.

Gemäß einer bevorzugten Ausführung des erfindungsgemäßen Verfahrens, das mit den Ausführungen bzw. Weiterbildungen des Verfahrens wie oben beschrieben kombinierbar ist, erfolgt der Vorformschritt, der Innenkontur-Formschritt und/oder Ogiven-Formschritt, sowie gegebenenfalls der Ablängschritt und/oder der eventuell durchzuführende Setz-Schritt spanlos, insbesondere durch Kaltumformen, vorzugsweise durch Pressen. Ein spanloser Innenkontur-Formschritt kann beispielsweise unter Verwendung eines vorzugsweise sich verjüngenden, insbesondere rotationssymmetrischen Innenkontur-Formstempels, wie einem Rundstempel, in einer Geschossrohlingaufnahme oder Matrize erfolgen.According to a preferred embodiment of the method according to the invention, which can be combined with the embodiments or further developments of the method as described above, the preforming step, the inner contour molding step and / or ogive molding step, and optionally the cutting step and / or the setting step that may be carried out Step without cutting, in particular by cold forming, preferably by pressing. A non-cutting inner contour shaping step can take place, for example, using a preferably tapered, in particular rotationally symmetrical inner contour shaping punch, such as a round punch, in a projectile blank receptacle or die.

Gemäß einer bevorzugten Ausführungsform umfasst das erfindungsgemäße Verfahren zum Herstellen eines metallischen Vollgeschosses für Übungspatronen ferner eine oder mehrere Zwischen- und/oder Nachbehandlungsschritte, wie Beschichtungsschritte. In einem oder mehreren Beschichtungsschritten wird auf die äußere und/oder innere Oberfläche zumindest abschnittsweise, insbesondere vollständig, eine Beschichtung aufgetragen. Eine Beschichtung wird vorzugsweise mit einer Beschichtungsdicke von weniger als 500 µm, weniger als 100 µm, weniger als 10 µm oder weniger als 3 µm oder 1 µm Dicke aufgetragen. Ein Beschichtungsschritt kann beispielsweise eine galvanische Beschichtung des Vollgeschosses umfassen.According to a preferred embodiment, the method according to the invention for producing a full metal bullet for exercise cartridges further comprises one or more intermediate and / or post-treatment steps, such as coating steps. In one or more coating steps, a coating is applied to the outer and / or inner surface, at least in sections, in particular completely. A coating is preferably applied with a coating thickness of less than 500 μm, less than 100 μm, less than 10 μm or less than 3 μm or 1 μm. A coating step can include, for example, galvanic coating of the full floor.

Das erfindungsgemäße Verfahren zum Herstellen eines metallischen Vollgeschosses für Übungspatronen kann insbesondere dazu verwendet werden, ein erfindungsgemäßes metallisches Vollgeschoss gemäß dem ersten und/oder zweiten Aspekt der Erfindung zu erzeugen. Das erfindungsgemäße Verfahren zum Herstellen eines metallischen Vollgeschosses für Übungspatronen kann vorzugsweise unter Verwendung einer erfindungsgemäßen Werkzeug-Anordnung zum Herstellen von metallischen Vollgeschossen für Übungspatronen durchgeführt werden. Es sei klar, dass ein erfindungsgemäßes metallisches Vollgeschoss (insbesondere gemäß dem ersten und/oder zweiten Erfindungsaspekt) gemäß einem oder mehreren Schritten des erfindungsgemäßen Herstellungsverfahrens gefertigt sein kann. Die Erfindung betrifft auch ein Geschoss, das mit einem erfindungsgemäßen Verfahren zum Herstellen eines metallischen Vollgeschosses für Übungspatronen wie oben beschrieben hergestellt wurde. Ein erfindungsgemäßes metallisches Vollgeschoss kann vorzugsweise mit einer erfindungsgemäßen Werkzeug-Anordnung gefertigt sein.The method according to the invention for producing a metallic full projectile for practice cartridges can in particular be used to produce a metallic full projectile according to the first and / or second aspect of the invention. The method according to the invention for producing a metallic full projectile for exercise cartridges can preferably be carried out using a tool arrangement according to the invention for producing metallic full storeys for exercise cartridges. It is clear that a metallic full floor according to the invention (in particular according to the first and / or second aspect of the invention) can be manufactured according to one or more steps of the manufacturing method according to the invention. The invention also relates to a projectile which was produced using a method according to the invention for producing a metallic full projectile for practice cartridges as described above. A metallic full floor according to the invention can preferably be manufactured with a tool arrangement according to the invention.

Vorzugsweise ist die erfindungsgemäße Werkzeug-Anordnung dazu ausgestaltet, ein erfindungsgemäßes Vollgeschoss gemäß dem ersten und/oder zweiten Erfindungsaspekts zu erzeugen. Insbesondere kann die erfindungsgemäße Werkzeug-Anordnung zum Durchführen eines erfindungsgemäßen Herstellungsverfahrens ausgestaltet sein.The tool arrangement according to the invention is preferably designed to generate a full floor according to the invention in accordance with the first and / or second aspect of the invention. In particular, the tool arrangement according to the invention can be designed to carry out a manufacturing method according to the invention.

Die Erfindung betrifft auch eine Patrone mit einem, insbesondere genau einem, erfindungsgemäßen Vollgeschoss. Ferner betrifft die Erfindung eine Handfeuerwaffe, vorzugsweise eine Kurzwaffe, wie eine Pistole oder ein Revolver, oder eine Maschinenpistole, die wenigstens fünf Übungspatronen mit erfindungsgemäßem metallischem Vollgeschoss umfasst. Vorzugsweise ist die Handfeuerwaffe bzw. des Vollgeschosses für Patronen mit einem Kaliber von höchsten 20 mm, insbesondere höchstens 12mm, ausgelegt. Insbesondere kann die Patrone bzw. Handfeuerwaffe für das Kaliber 9 mm Luger, .357 Mag., .40S&W, .44 Rem. Mag. oder .45 ACP ausgelegt sein.The invention also relates to a cartridge with one, in particular exactly one, full floor according to the invention. The invention further relates to a handgun, preferably a handgun, such as a pistol or a revolver, or a submachine gun, which comprises at least five practice cartridges with a metal bullet according to the invention. The handgun or the full projectile is preferably designed for cartridges with a caliber of at most 20 mm, in particular at most 12 mm. In particular, the cartridge or handgun for the caliber 9 mm Luger, .357 Mag., .40S & W, .44 Rem. Mag. Or .45 ACP.

Weitere Eigenschaften, Vorteile und Merkmale der Erfindung werden durch die folgende Beschreibung bevorzugter Ausführungen anhand der beiliegenden Zeichnungen erläutert, in denen zeigen:

Fig. 1a
eine Draufsicht auf ein erfindungsgemäßes Vollgeschoss gemäß einer ersten Ausführung;
Fig. 1b
eine Schnittansicht gemäß der Schnittlinie I.-I. eines erfindungsgemäßen Vollgeschosses gemäß Figur 1a;
Fig. 2
eine Schnittansicht eines anderen erfindungsgemäßen Vollgeschosses;
Fig. 3
eine Schnittansicht eines anderen erfindungsgemäßen Vollgeschosses;
Fig. 4
eine Schnittansicht eines anderen erfindungsgemäßen Vollgeschosses;
Fig. 5
eine Schnittansicht eines anderen erfindungsgemäßen Vollgeschosses;
Fig. 6
eine Schnittansicht eines anderen erfindungsgemäßen Vollgeschosses;
Fig. 7
eine schematische Schnittansicht eines benutzten erfindungsgemäßen Vollgeschosses;
Fig. 8
eine Setzpresse einer Werkzeug-Anordnung;
Fig. 9a
eine Vorform-Presse einer erfindungsgemäßen Werkzeug-Anordnung;
Fig. 9b
ein vorgeformter Geschossrohling;
Fig. 9c
ein anderer vorgeformter Geschossrohling;
Fig. 10a
eine Innenkontur-Formpresse;
Fig. 10b
ein innenkonturgeformter Geschossrohling; und
Fig. 11
eine Ogiven-Formpresse.
Further properties, advantages and features of the invention are explained by the following description of preferred embodiments with reference to the accompanying drawings, in which:
Fig. 1a
a plan view of a full floor according to the invention according to a first embodiment;
Fig. 1b
a sectional view according to section line I.-I. of a full floor according to the invention Figure 1a ;
Fig. 2
a sectional view of another full floor according to the invention;
Fig. 3
a sectional view of another full floor according to the invention;
Fig. 4
a sectional view of another full floor according to the invention;
Fig. 5
a sectional view of another full floor according to the invention;
Fig. 6
a sectional view of another full floor according to the invention;
Fig. 7
a schematic sectional view of a used full floor according to the invention;
Fig. 8
a setting press of a tool arrangement;
Fig. 9a
a preform press of a tool arrangement according to the invention;
Fig. 9b
a preformed projectile blank;
Fig. 9c
another preformed bullet blank;
Fig. 10a
an inner contour molding press;
Fig. 10b
an internally contour-shaped projectile blank; and
Fig. 11
an ogive molding press.

Figur 1a zeigt eine Draufsicht auf ein Vollgeschoss 1 und Figur 1b eine Schnittansicht gemäß der Schnittlinie I-I. Das Vollgeschoss 1 umfasst einen stirnseitigen Ogivenabschnitt 3 und einen fußseitigen Zylinderabschnitt 5. Wie in der Schnittdarstellung gemäß Figur 1b gut zu erkennen ist, ist das Vollgeschoss 1 einstückig aus einem homogenen Material gefertigt. Das Material des Vollgeschosses 1 ist vorzugsweise Kupfer. Die Oberfläche des Geschosses 1 kann mit einer dünnen Beschichtung versehen sein. In dem Ogivenabschnitt 3 hat das Geschoss 1 eine ogivenartig gebogene, rotationssymmetrische Außenkontur 34, die an der Stirnseite 13 des Geschosses 1 von einer kreisförmigen Öffnung 11 durchbrochen ist. An der Spitze bzw. Stirn 13 des Geschosses 1 ist zur Rotationsachse A des Geschosses 1 konzentrisch und vorzugsweise rotationssymmetrisch die Öffnung 11 mit dem Öffnungsdurchmesser do vorgesehen. Ausgehend von der Geschossspitze 13 erstreckt sich kuppelartig die Ogivenwand 31 mit ogivenförmiger Außenkontur 34. Die Außenkontur 34 beschreibt in Axialrichtung A ausgehend von der Geschossspitze 13 eine sich kontinuierlich gerundet aufweitende Ogivenform. Nahe der Spitze 3 hat das Geschoss 1 einen Rundungsradius von etwa 3,1 mm. Nahe dem Zylinderabschnitt liegt der Rundungsradius der Außenkontur 34 bei etwa 23,5 mm. Figure 1a shows a plan view of a full floor 1 and Figure 1b a sectional view according to section line II. The full floor 1 comprises an end-face ogive section 3 and a bottom-side cylinder section 5. As in the section view according to FIG Figure 1b is clearly visible, the full floor 1 is made in one piece from a homogeneous material. The material of the full floor 1 is preferably copper. The surface of the projectile 1 can be provided with a thin coating. In the ogive section 3, the projectile 1 has an ogive-like, rotationally symmetrical outer contour 34 which is pierced by a circular opening 11 on the end face 13 of the projectile 1. At the tip or forehead 13 of the projectile 1, the opening 11 with the opening diameter do is provided concentrically and preferably rotationally symmetrically with respect to the axis of rotation A of the projectile 1. Starting from the projectile tip 13, the ogive wall 31 extends in a dome-like manner with an ogive-shaped outer contour 34. The outer contour 34 describes in the axial direction A, starting from the projectile tip 13, a continuously rounded ogive shape. Near the tip 3, the projectile 1 has a radius of curvature of approximately 3.1 mm. Near the cylinder section, the radius of curvature of the outer contour 34 is approximately 23.5 mm.

Der Öffnungswinkel der Außenkontur 34 hinsichtlich der Rotationsachse A ist zunächst (nahe der Geschossspitze 13) stumpf, sodass insbesondere infolge der stirnseitigen Öffnung 11, eine stumpfe Geschossspitze 13 mit einem Öffnungswinkel von 150° bis 180°, vorzugsweise etwa 180° gebildet ist. Ausgehend von der stumpfen Spitze 13 des Geschosses 1 nimmt der Öffnungswinkel der Außenkontur 34 des Ogivenabschnitts 3 vorzugsweise kontinuierlich zu.The opening angle of the outer contour 34 with respect to the axis of rotation A is initially obtuse (near the projectile tip 13), so that in particular as a result of the front opening 11, a obtuse projectile tip 13 is formed with an opening angle of 150 ° to 180 °, preferably approximately 180 °. Starting from the blunt tip 13 of the projectile 1, the opening angle of the outer contour 34 of the ogive section 3 preferably increases continuously.

Bei dem Figur 1 dargestellten Vollgeschoss 1 liegt der Öffnungswinkel bezogen auf eine Tangente der Außenkontur 34 in einem axialen Abstand von etwa 1 mm zu der stumpfen Spitze 13 des Geschosses 1 zwischen 120° und 140°, insbesondere bei etwa 130°.In which Figure 1 Full floor 1 shown, the opening angle based on a tangent of the outer contour 34 at an axial distance of approximately 1 mm from the blunt tip 13 of the floor 1 is between 120 ° and 140 °, in particular approximately 130 °.

In einem Abstand von etwa 2 mm in Axialrichtung A zu der stumpfen Spitze 13 des Geschosses 1 beträgt der tangentiale Öffnungswinkel zwischen 110° und 90°, insbesondere etwa 100°. Bei dem in Figur 1 dargestellten Vollgeschoss 1 verläuft die ogivenförmige Außenkontur 34 des Ogivenabschnitts 3 derart, dass nach etwa 8 mm bis 11 mm, vorzugsweise zwischen 9 mm und 10 mm, insbesondere bei etwa 9,6 mm, die in Axialrichtung A orientierte Tangente an der Außenkontur 34 im Wesentlichen parallel zu der Rotationsachse A des Geschosses 1 verläuft. Ab dieser Stelle erstreckt sich die Außenkontur 34 in dem Zylinderabschnitt 5 des Geschosses 1. In dem Zylinderabschnitt 5 verläuft die Außenkontur 34 des Geschosses 1 im Wesentlichen idealzylindrisch. Im Zylinderabschnitt 5 ist die Außenkontur 34 des Geschosses 1 im Wesentlichen durchgehend parallel zu der Rotationsachse A des Geschosses 1 angeordnet. Der Zylinderabschnitt 5 definiert den größten Durchmesser Dz, der als Geschossdurchmesser oder Kaliber-Durchmesser bezeichnet sein kann. Der Außendurchmesser Dz eines Geschosses für eine Übungspatrone vom Kaliber 9 mm Luger kann 9,02 mm messen. Der Zylinderabschnitt 5 des Geschosses 1 ist dazu vorgesehen zumindest teilweise in Axialrichtung A in den (nicht dargestellten) Hals einer (nicht dargestellten) Patronenhülse eingeführt zu werden.At a distance of approximately 2 mm in the axial direction A from the blunt tip 13 of the projectile 1, the tangential opening angle is between 110 ° and 90 °, in particular approximately 100 °. At the in Figure 1 Full floor 1 shown, the ogive-shaped outer contour 34 of the ogive section 3 runs in such a way that after about 8 mm to 11 mm, preferably between 9 mm and 10 mm, in particular at approximately 9.6 mm, the tangent oriented in the axial direction A on the outer contour 34 runs essentially parallel to the axis of rotation A of the projectile 1. From this point, the outer contour 34 extends in the cylinder section 5 of the projectile 1. In the cylinder section 5, the outer contour 34 of the projectile 1 runs essentially ideally in a cylindrical manner. In the cylinder section 5, the outer contour 34 of the projectile 1 is arranged essentially continuously parallel to the axis of rotation A of the projectile 1. The cylinder section 5 defines the largest diameter Dz, which can be referred to as the bullet diameter or the caliber diameter. The outer diameter Dz of a bullet for a 9 mm Luger caliber training cartridge can measure 9.02 mm. The cylinder section 5 of the projectile 1 is intended to be inserted at least partially in the axial direction A into the neck (not shown) of a cartridge case (not shown).

Der Zylinderabschnitt erstreckt sich in Axialrichtung des Geschosses 1 über 5 mm bis 10 mm, vorzugsweise zwischen 6 mm und 9 mm, insbesondere zwischen 7 mm und 8 mm, bevorzugt zwischen 7,2 mm und 7,8 mm, besonders bevorzugt liegt sie bei etwa 7,5 mm.The cylinder section extends in the axial direction of the projectile 1 over 5 mm to 10 mm, preferably between 6 mm and 9 mm, in particular between 7 mm and 8 mm, preferably between 7.2 mm and 7.8 mm, particularly preferably it is approximately 7.5 mm.

An dem von der Spitze bzw. Stirnseite 13 entfernten Ende 71 des Geschosses 1 hat das Geschoss 1 einen flachen, sich quer, insbesondere rechtwinklig zu der Rotationsachse A erstreckenden Fußabschnitt oder Fuß. In den Fuß 71 des Geschosses 1 kann eine Kalotte 73 eingebracht sein, die vorzugsweise zu der Rotationsache A koaxial und konzentrisch ist. Die Kalotte 73 ist vorzugsweise konusförmig und verjüngt sich stirnseitig. Eine sich stirnseitig verjüngende Kalotte 73 kann alternativ beispielsweise domförmig oder kegelstumpfförmig sein. Die Kalotte 73 hat vorzugsweise in Axialrichtung A eine Tiefe von 1,5 mm.At the end 71 of the projectile 1 remote from the tip or end face 13, the projectile 1 has a flat foot section or foot that extends transversely, in particular at right angles to the axis of rotation A. A spherical cap 73 can be introduced into the foot 71 of the projectile 1, which is preferably coaxial and concentric with the rotation axis A. The spherical cap 73 is preferably conical and tapers on the end face. A spherical taper 73 may alternatively be dome-shaped or frustoconical, for example. The calotte 73 preferably has a depth of 1.5 mm in the axial direction A.

Die Heckseiten-Randkante 75 zwischen dem flachen Heck 71 und der zylindrischen Außenkontur 34 im Bereich des Zylinderabschnitts 5 des Geschosses 1 ist vorzugsweise durch einen fasenartigen Konusabschnitt 75 realisiert. Der Konusabschnitt 75 kann sich beispielsweise 1 mm in Axialrichtung A erstrecken und einen Öffnungswinkel von vorzugsweise etwa 60° aufweisen. Ein Konusabschnitt 75 kann auch als längerer und/oder spitzerer sogenannter "boat-tail" Abschnitt gebildet sein.The rear edge 75 between the flat rear 71 and the cylindrical outer contour 34 in the region of the cylinder section 5 of the projectile 1 is preferably realized by a bevel-like cone section 75. The cone section 75 can for example extend 1 mm in the axial direction A and have an opening angle of preferably approximately 60 °. A cone section 75 can also be formed as a longer and / or more pointed so-called "boat-tail" section.

Das Geschoss 1 weist einen glockenförmigen, rotationssymmetrischen Ogivenhohlraum 33 auf, der vollumfänglich in Radialrichtung R von der Ogivenwand 31 umgeben ist. Stirnseitig mündet der Ogivenhohlraum 33 in die Öffnung 11 des Geschosses 1. Die schmalste lichte Weite der Öffnung 11 definiert einen Öffnungsdurchmesser do, der zwischen 1 mm und 5 mm, vorzugsweise etwa 3 mm, groß ist. Die Innenwand 15 der Öffnung 11 umgibt die Öffnung 11 ringförmig. Vorzugsweise bildet die Innenwand 15 einen in Umfangsrichtung radial und/oder axial stufenfreien Ringrand. Insbesondere kann die Innenwand 15 der Öffnung 11 kantenfrei und/oder vollständig gerundet übergehen in die Außenkontur 34 des Ogivenabschnitts 3. Wie in der in Figur 1a gezeigten Draufsicht auf das Geschoss 1 gut zu erkennen, ist die Innenwand 15 der Öffnung 11 in Umfangsrichtung unterbrechungsfrei. Die Innenwand 15 ist vorzugsweise frei von sich axial erstreckenden Kerben und/oder Stufen. Die Spitze 13 des Geschosses 1 ist vorzugsweise durch einen im Wesentlichen glatten ringförmigen Übergang von der Innenwand 15 zu der Außenkontur 34 gebildet.The projectile 1 has a bell-shaped, rotationally symmetrical ogive cavity 33, which is completely surrounded in the radial direction R by the ogive wall 31. At the face end, the ogive cavity 33 opens into the opening 11 of the projectile 1. The narrowest clear width of the opening 11 defines an opening diameter do, which is between 1 mm and 5 mm, preferably about 3 mm, in size. The inner wall 15 of the opening 11 surrounds the opening 11 in a ring shape. The inner wall 15 preferably forms a radial one in the circumferential direction and / or axially stepless ring edge. In particular, the inner wall 15 of the opening 11 can merge into the outer contour 34 of the ogive section 3 without edges and / or completely rounded. As in FIG Figure 1a The top view of the projectile 1 shown clearly can be seen, the inner wall 15 of the opening 11 is uninterrupted in the circumferential direction. The inner wall 15 is preferably free of axially extending notches and / or steps. The tip 13 of the projectile 1 is preferably formed by an essentially smooth annular transition from the inner wall 15 to the outer contour 34.

In Axialrichtung A mündet die Öffnung 11 in den Ogivenhohlraum 33. Der Übergang von der Öffnung 11 zu dem Ogivenhohlraum 33 kann vorzugsweise vollständig abgerundet sein. Bei der dargestellten Ausführung eines Geschosses gemäß Figur 1b ist zwischen dem Ogivenhohlraum 33 und der Öffnung 11 eine stumpfe Ringrandkante mit einem stumpfen Öffnungswinkel größer als 135° gebildet.The opening 11 opens into the ogive cavity 33 in the axial direction A. The transition from the opening 11 to the ogive cavity 33 can preferably be completely rounded. In the illustrated execution of a floor according to Figure 1b a blunt ring edge is formed between the ogive cavity 33 and the opening 11 with an obtuse opening angle greater than 135 °.

Die Innenkontur 32 der Ogivenwand 31, die die Form des Ogivenhohlraums 33 umfänglich definiert, ist in Axialrichtung A stetig gerundet. Die Innenkontur 32 der Ogivenwand 31 ist in Umfangsrichtung vorzugsweise vollständig rotationssymmetrisch und insbesondere stetig gerundet. In Umfangsrichtung weist die Innenkontur 32, die den Ogivenhohlraum 33 umgibt, keine Stufen, Sprünge, Kanten oder Vorsprünge auf. Die Ogivenwand 31 ist umfänglich vorzugsweise vollständig frei von axialen Nuten, Vorsprüngen, Kerben oder dergleichen.The inner contour 32 of the ogive wall 31, which defines the shape of the ogive cavity 33 circumferentially, is continuously rounded in the axial direction A. The inner contour 32 of the ogive wall 31 is preferably completely rotationally symmetrical and in particular continuously rounded in the circumferential direction. In the circumferential direction, the inner contour 32, which surrounds the ogive cavity 33, has no steps, jumps, edges or projections. The ogive wall 31 is circumferentially preferably completely free of axial grooves, projections, notches or the like.

Der Boden 35 des Ogivenhohlraums 33 ist durch Schultern 35 gebildet, die ausgehend von der Ogivenwand 31 in Radialrichtung nach innen hervorstehen. Die Rundungen der Innenkontur 32 gehen vorzugsweise stufenfrei und/oder kantenfrei, vorzugsweise vollständig gerundet, in den Boden 35 über. Die Rundungen der Innenkontur 32 entlang der Ogivenwand 31 sind vorzugsweise mit Krümmungsradien gebildet, die wenigstens 0,5 mm und bis zu 5 mm groß sind. Vorzugsweise weist die Innenkontur 32 der Ogivenwand 31 Krümmungsradien auf, die wenigstens 0,5, wenigstens 0,75 oder wenigstens 1 mm groß sind.The bottom 35 of the ogive cavity 33 is formed by shoulders 35, which protrude inwards from the ogive wall 31 in the radial direction. The curves of the inner contour 32 preferably merge into the floor 35 without steps and / or without edges, preferably completely rounded. The curves of the inner contour 32 along the ogive wall 31 are preferably formed with radii of curvature that are at least 0.5 mm and up to 5 mm in size. The inner contour 32 of the ogive wall 31 preferably has radii of curvature which are at least 0.5, at least 0.75 or at least 1 mm in size.

Die Wandstärke der Ogivenwand 31 in Radialrichtung R liegt vorzugsweise zwischen 0,3 mm und 3 mm. Insbesondere kann die Wandstärke der Ogivenwand 31 zwischen 0,5 mm und 2 mm liegen. Die kleinste Wandstärke in Radialrichtung der Ogivenwand 31 liegt vorzugsweise bei mehr als 0,5 mm, vorzugsweise zwischen 1,0 mm und 1,5 mm. Quer zur Wand kann die Wandstärke größer als 1 mm sein.The wall thickness of the ogive wall 31 in the radial direction R is preferably between 0.3 mm and 3 mm. In particular, the wall thickness of the ogive wall 31 can be between 0.5 mm and 2 mm. The smallest wall thickness in the radial direction of the ogive wall 31 is preferably more than 0.5 mm, preferably between 1.0 mm and 1.5 mm. The wall thickness can be greater than 1 mm across the wall.

Ein erfindungsgemäßes Vollgeschoss 1 kann einen Hohlraum aufweisen, der den Ogivenhohlraum 33 und die Öffnung 11 umfasst, welcher sich in Axialrichtung A vollständig zumindest über den Ogivenabschnitt 3 erstreckt.A full storey 1 according to the invention can have a cavity which comprises the ogive cavity 33 and the opening 11, which extends completely in the axial direction A at least over the ogive section 3.

Die nach innen ragende Schulter 35, die den Boden des Ogivenhohlraums 33 definiert, und die vorzugsweise den Ogivenhohlraum 33 insbesondere vollständig in Axialrichtung A fußseitig begrenzt, kann mittig eine Öffnung oder Mündung 37 aufweisen. Die Höhe des Ogivenabschnitts 3 in Axialrichtung A hat das Bezugszeichen lo. Die Mündung 37 ist vorzugsweise zu der Axialrichtung A konzentrisch und/oder koaxial. Ausgehend von der Mündung 37 erstreckt sich in Axialrichtung A fußseitig des Ogivenhohlraums 33 ein Schacht 55 in den Zylinderabschnitt 5 des Geschosses 1. Der Schacht 55 beginnt am Fuße des Ogivenhohlraums 33. Der Schacht 55 kann sich mit einer schlundartigen Öffnung oder Mündung 37 in den Ogivenhohlraum 33 öffnen. Der in Figur 1b dargestellte Schacht 55 weist einen Mikrokanal 57 und einen Deformationshohlraum 53 auf. Im Bereich des Mikrokanals 57 stoßen die einander diagonal gegenüberliegenden Schachtinnenrandabschnitte zusammen. Im Bereich des Mikrokanals 57 kann ein Kapillarabschnitt gebildet sein, in dem sich in Axialrichtung A ein Kanal ausgehend von dem Ogivenhohlraum 33 Geschoss-heckseitig erstreckt, der eine lichte Weite von weniger als 10 µm oder weniger als 1 µm aufweist. Der Mikrokanal 57 weist eine lichte Weite auf, die vorzugsweise deutlich geringer ist, als der Öffnungsdurchmesser do der Öffnung 11 an der Spitze 13 des Geschosses 1. Vorzugsweise ist die lichte Weite des Mikrokanals 57 kleiner als 2 mm, insbesondere kleiner als 1 mm.The inwardly projecting shoulder 35, which defines the bottom of the ogive cavity 33, and which preferably delimits the ogive cavity 33 on the foot side in particular completely in the axial direction A, can have an opening or opening 37 in the center. The height of the ogive section 3 in the axial direction A has the reference symbol lo. The mouth 37 is preferably concentric and / or coaxial with the axial direction A. Starting from the mouth 37, a shaft 55 extends into the cylinder section 5 of the floor 1 in the axial direction A on the foot side of the ogive cavity 33. The shaft 55 begins at the foot of the ogive cavity 33. The shaft 55 can extend into the ogive cavity with a throat-like opening or mouth 37 33 open. The in Figure 1b Shaft 55 shown has a microchannel 57 and a deformation cavity 53. In the area of the microchannel 57, the diagonally opposite inner edge edge sections collide. A capillary section can be formed in the area of the microchannel 57, in which a channel extends in the axial direction A, starting from the ogive cavity 33 on the storey side, which has a clear width of less than 10 μm or less than 1 μm. The microchannel 57 has a clear width which is preferably significantly smaller than the opening diameter do of the opening 11 at the tip 13 of the projectile 1. The clear width of the microchannel 57 is preferably less than 2 mm, in particular less than 1 mm.

Die Schachtmündung 37 kann beispielsweise eine Art trichterförmigen Übergangsbereich zwischen dem Schacht 55 und dem Ogivenhohlraum 33 bilden. Vorzugsweise geht der Boden 35 des Ogivenhohlraums 33, insbesondere stufenfrei und/oder kantenfrei, gerundet in die Mündung 37 über. Die Mündung 37 geht vorzugsweise gerundet in die weiteren Abschnitte, beispielsweise den Mikrokanal 57 und/oder den Deformationshohlraum 53, des Schachts 55 über.The shaft mouth 37 can, for example, form a kind of funnel-shaped transition region between the shaft 55 and the ogive cavity 33. The bottom 35 of the ogive cavity 33 preferably merges into the mouth 37 rounded, in particular step-free and / or edge-free. The mouth 37 preferably merges into the further sections, for example the microchannel 57 and / or the deformation cavity 53, of the shaft 55.

Fußseitig des Mikrokanals 57 weist der Schacht 55 einen sich in Heckrichtung im Wesentlichen konusförmig aufweitenden Deformationshohlraum 53 auf. Der Deformationshohlraum 53 hat in Axialrichtung A heckseitig ein im Wesentlichen flaches, sich vorzugsweise quer, insbesondere senkrecht, zu der Axialrichtung A in Radialrichtung R erstreckendes Flachende. In Richtung der Spitze bzw. Stirnseite ist der Deformationshohlraum 53 keilförmig, insbesondere konusförmig, und spitzt sich zu.At the foot of the microchannel 57, the shaft 55 has a deformation cavity 53 which widens essentially conically in the rear direction. The deformation cavity 53 has an essentially flat rear end in the axial direction A, preferably a flat end which extends transversely, in particular perpendicularly, to the axial direction A in the radial direction R. In the direction of the tip or end face, the deformation cavity 53 is wedge-shaped, in particular conical, and tapers.

Der Schacht 55 ist zumindest abschnittsweise oder in Axialrichtung rotationssymmetrisch bezüglich der Geschoss-Achse A. In Radialrichtung R ist der Schacht 55 von einer Deformationshülsenwand 51 des Geschosses 1 umgeben. Die Wandstärke der Deformationshülsenwand 51 ist größer als die Wandstärke der Ogivenwand 31. Insbesondere ist die kleinste Wandstärke der Deformationshülsenwand 51 größer als die größte Radialwandstärke der Ogivenwand 31. Die Wandstärke der Deformationshülsenwand 51 kann zwischen der Hälfte und ¼ des Zylinderdurchmessers (bzw: Kaliberdurchmessers) Dz liegen. Vorzugsweise ist die Wandstärke der Deformationshülsenwand 51 größer als 2/3, größer als ¾ oder sogar größer als 90% des halben (Kaliber-) Zylinderdurchmessers Dz.The shaft 55 is at least in sections or in the axial direction rotationally symmetrical with respect to the projectile axis A. In the radial direction R, the shaft 55 is surrounded by a deformation sleeve wall 51 of the projectile 1. The wall thickness of the deformation sleeve wall 51 is greater than the wall thickness of the ogive wall 31. In particular, the smallest wall thickness of the deformation sleeve wall 51 is greater than the greatest radial wall thickness of the ogive wall 31. The wall thickness of the deformation sleeve wall 51 can be between half and ¼ of the cylinder diameter (or: caliber diameter) Dz. The wall thickness of the deformation sleeve wall 51 is preferably greater than 2/3, greater than ¾ or even greater than 90% of half (caliber) cylinder diameter Dz.

Die Wandstärke der Ogivenwand im axialen Bereich des Ogivenhohlraums 33 ist vorzugsweise in der Mitte kleiner als ¼ des (Kaliber-) Zylinderdurchmessers Dz.The wall thickness of the ogive wall in the axial region of the ogive cavity 33 is preferably smaller in the middle than ¼ of the (caliber) cylinder diameter Dz.

Die axiale Höhe lH der Deformationshülsenwand 51, die den Schacht 55 umgibt, erstreckt sich in Axialrichtung zwischen 5 und 10 mm, vorzugsweise zwischen 6 und 9 mm, insbesondere zwischen 7 und 8 mm, bevorzugt ausgehend von dem Schulterboden 35 des Ogivenhohlraums 33. Die axiale Höhe des Deformationshohlraums 53 ist größer als die Länge des Mikrokanalabschnitts 57. Insbesondere kann die axiale Höhe des Deformationshohlraums 53 wenigstens doppelt so groß sein wie die axiale Höhe des Mikrokanals 57.The axial height l H of the deformation sleeve wall 51, which surrounds the shaft 55, extends in the axial direction between 5 and 10 mm, preferably between 6 and 9 mm, in particular between 7 and 8 mm, preferably starting from the shoulder bottom 35 of the ogive cavity 33 The axial height of the deformation cavity 53 is greater than the length of the microchannel section 57. In particular, the axial height of the deformation cavity 53 can be at least twice the axial height of the microchannel 57.

Der Zylinderabschnitt 5 erstreckt sich ausgehend vom Fuß bzw. Heck 71 des Geschosses bis zum Ogivenabschnitt 3 über 3 mm bis 10 mm (Höhe lz), vorzugsweise zwischen 4 mm und 8 mm, insbesondere über etwa 6 mm.The cylinder section 5 extends from the foot or rear 71 of the projectile to the ogive section 3 over 3 mm to 10 mm (height lz), preferably between 4 mm and 8 mm, in particular over about 6 mm.

Die Kalotte hat vorzugsweise einen heckseitigen Außendurchmesser von 4 bis 6 mm, insbesondere 5 mm. Anstelle des dargestellten Kegelstumpfabschnitts 75 kann die Kante zwischen dem Heck 71 und der zylindrischen Außenkontur 34 im Bereich des Zylinderabschnitts 5 vollständig gerundet sein, insbesondere mit einem Rundungsradius zwischen 0,3 und 1,5 mm, vorzugsweise zwischen 0,4 und 1 mm. Da in dem Zylinderabschnitt 5 ein sich heckseitig aufweitender Deformationshohlraum 53 vorgesehen ist, sowie gegebenenfalls eine Kalotte 73, kann erreicht werden, dass sich der Schwerpunkt des Geschosses 1 in Axialrichtung A in Richtung der Stirnseite des Geschosses 1 verlagert. Der Deformationshohlraum 53 sowie gegebenenfalls die Kalotte 73 dient bzw. dienen insofern als Massenausgleich relativ zu dem stirnseitig vorgesehenen Ogivenhohlraum 33. Durch Einstellung der axialen Waage des Geschoss-Schwerpunkts können dessen Flugeigenschaften optimiert werden. Beispielsweise kann ein erfindungsgemäßes Geschosses für Übungspatronen zum Erreichen ähnlicher ballistischer Eigenschaften, wie Gewicht, gegebenenfalls Schwerpunkt, und/oder Schussempfinden, entsprechend behördenüblicher Übungspatronen oder Einsatzpatronen, beispielsweise der Einsatzmunition 9x19 ACTION 4, ausgelegt sein.The calotte preferably has a rear outer diameter of 4 to 6 mm, in particular 5 mm. Instead of the truncated cone section 75 shown, the edge between the rear 71 and the cylindrical outer contour 34 can be completely rounded in the region of the cylinder section 5, in particular with a radius of curvature between 0.3 and 1.5 mm, preferably between 0.4 and 1 mm. Since in the cylinder section 5 there is a deformation cavity 53 which widens at the rear, and optionally a calotte 73, it can be achieved that the center of gravity of the projectile 1 shifts in the axial direction A in the direction of the end face of the projectile 1. The deformation cavity 53 and optionally the spherical cap 73 serve or serve in this respect as a mass balance relative to the ogive cavity 33 provided on the end face. By adjusting the axial balance of the center of gravity of the projectile, its flight characteristics can be optimized. For example, a projectile for projectile cartridges according to the invention can be designed to achieve similar ballistic properties, such as weight, possibly center of gravity, and / or the feeling of shooting, corresponding to practice cartridges or insert cartridges customary for authorities, for example the 9x19 ACTION 4 ammunition.

Das in Figur 1b und Figur 1a dargestellte Vollgeschoss 1 weist einen massiven, vollzylindrischen Geschossstamm 7 bzw. Stammabschnitt auf, in dem das Geschoss in Axialrichtung A in Form eines massiven, insbesondere hohlraumfreien Vollzylinders ausgebildet ist. Der Stamm 7 weist insbesondere mittig, koaxial zu der Geschossachse A, keinen Hohlraum auf, insbesondere keinen Hohlraum, der sich in Form eines dünnen Kapillarkanals unter Ausbildung von Innenrändern axial erstreckt. Vorzugsweise hat der vollzylindrische Stamm 7 eine idealzylindrische Außenseite. Bei einer alternativen Ausgestaltung eines Geschosses mit einem boat-tail, kann der Stamm 7 außenseitig zumindest abschnittsweise kegelstumpfförmig sein. In einem Schnitt quer, insbesondere senkrecht zur Rotationsachse A des Geschosses 1, ist der Stammquerschnitt 7 kreisförmig. Die Höhe des Stammes 7 zwischen dem Heck 71 bzw. einer in dem Heck 71 ausgebildeten Kalotte 73 und dem heckseitigen Ende des Deformationshohlraums 53 (Stammhöhe ls) beträgt weniger als 5 mm, vorzugsweise weniger als 3 mm, insbesondere weniger als 2 mm oder weniger als 1 mm. Gemäß einer alternativen Ausführung eines erfindungsgemäßen Geschosses kann das Geschoss in Axialrichtung unter Verzicht auf einen Stamm vollständig durchdrungen sein. Derartige Geschosse werden im Folgenden näher beschrieben.This in Figure 1b and Figure 1a The full storey 1 shown has a solid, fully cylindrical storey trunk 7 or trunk section, in which the storey is designed in the axial direction A in the form of a solid, in particular void-free, full cylinder. The trunk 7 has, in particular in the middle, coaxial to the projectile axis A, no cavity, in particular no cavity that extends axially in the form of a thin capillary channel with the formation of inner edges. The fully cylindrical stem 7 preferably has an ideally cylindrical outside. In an alternative embodiment of a projectile with a boat tail, the trunk 7 can be frustoconical at least in sections on the outside. In a cross section, in particular perpendicular to the axis of rotation A of the projectile 1, the trunk cross section 7 is circular. The height of the trunk 7 between the rear 71 or a calotte 73 formed in the rear 71 and the rear end of the deformation cavity 53 (trunk height ls) is less than 5 mm, preferably less than 3 mm, in particular less than 2 mm or less than 1 mm. According to an alternative embodiment of a projectile according to the invention, the projectile can be completely penetrated in the axial direction without a trunk. Such floors are described in more detail below.

Die Figuren 2 bis 6 zeigen unterschiedliche alternative Ausführungen erfindungsgemäßer Vollgeschosse für Übungspatronen. Die in den Figuren 2 bis 6 dargestellten Vollgeschosse entsprechen weitgehend dem in Figur 1b dargestellten Vollgeschoss. Die Vollgeschosse der Figuren 2 bis 6 unterscheiden sich von dem Vollgeschoss 1 gemäß Figur 1b durch die Art, Form und Größe des sich ausgehend von dem Ogivenhohlraum in den Zylinderabschnitt des Geschoss erstreckenden Schachts. Die Vollgeschosse der Figuren 1b bis 6 weisen praktisch dieselbe Außenkontur auf, insbesondere dieselben Abmessungen in Axialrichtung A und/oder Radialrichtung R. Zur einfacheren Lesbarkeit der Figurenbeschreibung werden im Folgenden für die Figuren 2 bis 6 für ähnliche oder identische Teile des erfindungsgemäßen Vollgeschosses dieselben oder ähnlichen Bezugszeichen verwendet.The Figures 2 to 6 show different alternative designs of full floors for practice cartridges according to the invention. The in the Figures 2 to 6 full floors shown largely correspond to that in Figure 1b illustrated full floor. The full floors of the Figures 2 to 6 differ from the full floor 1 according to Figure 1b by the type, shape and size of the shaft extending from the ogive cavity into the cylinder section of the projectile. The full floors of the Figures 1b to 6 have practically the same outer contour, in particular the same dimensions in the axial direction A and / or radial direction R. For easier readability of the description of the figures, the following is used for the Figures 2 to 6 the same or similar reference numerals are used for similar or identical parts of the full floor according to the invention.

Figur 2 zeigt ein Vollgeschoss 1.2, das sich von dem Vollgeschoss 1 gemäß Figur 1b im Wesentlichen dadurch unterscheidet, dass die Innenwände des Schachts 55.2 in Axialrichtung A über eine größere Länge zusammengeführt sind, als die axiale Höhe des Deformationshohlraums 53.2. Figure 2 shows a full floor 1.2, which is according to the full floor 1 Figure 1b essentially differs in that the inner walls of the shaft 55.2 are brought together in the axial direction A over a greater length than the axial height of the deformation cavity 53.2.

Bei dem Vollgeschoss 1.2 ist die axiale Höhe des Mikrokanalabschnitts 57.2 größer als die axiale Höhe des Deformationshohlraums 53.2, insbesondere wenigstens doppelt so groß. Bei dem Vollgeschoss 1.2 weist der Schacht 55.2 eine schlundartige Mündung 37.2 auf, die sich trichterförmig von dem Mikrokanal 57.2 zu dem Boden 35.2 des Ogivenhohlraums 33 weitet. Zwischen dem fußseitigen Ende des stirnseitig kegelförmig verjüngenden Deformationshohlraums 53.2 und der Kalotte 73 am Fuß 71 des Geschosses 1.2 weist das Geschoss 1.2 einen Stamm 7.2 auf. Die axiale Höhe des Stamms 7.2 ist größer als die axiale Höhe des Deformationshohlraums 53.2. Ein Deformationsgeschoss 1.2 gemäß Figur 2 kann beispielsweise dadurch entstehen, dass gemäß einer Soll-Vorgabe ein Deformationsgeschoss 1, wie in Figur 1b dargestellt, zu fertigen ist, jedoch mehr Metallmaterial zum Fertigen bereitgestellt wird. Das überschüssige Material gegenüber der Form des Vollgeschosses 1 wird bei dem Vollgeschoss 1.2 dadurch toleriert, dass die gegenüberliegenden Innenseitenabschnitte des Schachts 55.2 in Radialrichtung R näher aneinander geschoben werden.In the case of the full storey 1.2, the axial height of the microchannel section 57.2 is greater than the axial height of the deformation cavity 53.2, in particular at least twice as large. In the case of the full storey 1.2, the shaft 55.2 has a throat-like opening 37.2 which widens in a funnel shape from the microchannel 57.2 to the bottom 35.2 of the ogive cavity 33. Between the foot-side end of the deformation cavity 53.2 tapering conically at the end face and the calotte 73 at the foot 71 of the projectile 1.2, the projectile 1.2 has a trunk 7.2. The axial height of the trunk 7.2 is greater than the axial height of the deformation cavity 53.2. A deformation floor 1.2 according to Figure 2 can arise, for example, in that a deformation storey 1, as in figure 1b is shown to be manufactured, but more metal material is provided for manufacture. The excess material compared to the shape of the full storey 1 is tolerated in the full storey 1.2 in that the opposite inner side sections of the shaft 55.2 are pushed closer to one another in the radial direction R.

Figur 3 zeigt ein Vollgeschoss 1.3 mit einem schlauchförmigen Schacht 55.3. Der Schacht 55.3 des Vollgeschosses 1.3 bildet eine sich in Axialrichtung A koaxial zu der Rotationsachse A des Vollgeschosses 1.3 erstreckende Deformationsröhre 58.3 mit im Wesentlichen konstanter lichter Weite. Die Deformationsröhre 58.3 kann in Axialrichtung mittig eine Einschnürung aufweisen. Der Schacht 55.3 weist einen Deformationshohlraum 53.3 auf, der sich im Wesentlichen über die gesamte Länge des Schachts 55.3 bis hin zu dessen Mündung 37.3 erstreckt. Die Deformationsröhre 58.3 bzw. der Mikrokanal des Vollgeschosses 1.3 kann als abschnittsweise zylindrischer Deformationshohlraum 53.3 betrachtet werden, der an der Mündung 37.3 in den Ogivenhohlraum 33 übergeht. Die Deformationshülse 51.3 des Vollgeschosses 1.3 hat insofern eine zylindrische Außenseite und eine nahezu zylindrische, taillierte Innenseite, die das Deformationsrohr 58.3 definiert. Die größte lichte Weite der Deformationsröhre 58.3 ist kleiner als die lichte Weite der stirnseitigen Öffnung 11, insbesondere schmäler als die Hälfte, vorzugsweise schmäler als 1/4 der lichten Weite. Die Wandstärke in Radialrichtung R der Deformationshülse 51.3 ist größer als die mittlere Wandstärke der O-givenhülse 31.3. Figure 3 shows a full floor 1.3 with a tubular shaft 55.3. The shaft 55.3 of the full storey 1.3 forms a deformation tube 58.3 which extends in the axial direction A coaxially to the axis of rotation A of the full storey 1.3 and has an essentially constant clear width. The deformation tube 58.3 can have a constriction in the middle in the axial direction. The shaft 55.3 has a deformation cavity 53.3 which extends essentially over the entire length of the shaft 55.3 up to its mouth 37.3. The deformation tube 58.3 or the microchannel of the full storey 1.3 can be viewed as a sectionally cylindrical deformation cavity 53.3 which merges into the ogive cavity 33 at the mouth 37.3. The deformation sleeve 51.3 of the full storey 1.3 has a cylindrical outside and an almost cylindrical, waisted inside, which defines the deformation tube 58.3. The greatest clear width of the deformation tube 58.3 is smaller than the clear width of the front opening 11, in particular narrower than half, preferably narrower than 1/4 of the clear width. The wall thickness in the radial direction R of the deformation sleeve 51.3 is greater than the average wall thickness of the O-given sleeve 31.3.

Figur 4 zeigt ein Vollgeschoss 1.4 für eine Übungspatrone, bei dem der Schacht 55.4 in Axialrichtung A unter Ausbildung eines Stamms 7.4 ähnlich lang geformt ist wie der Schacht 55.3 des Vollgeschosses 1.3 gemäß Figur 3. Der Schacht 55.4 ist entlang seiner gesamten axialen Länge zu einem Mikrokanal 57.4 verengt, der sich vorzugsweise kapillarartig von der Mündung 37.4 in den Zylinderabschnitt 5 des Vollgeschosses 1.4 erstreckt. Die lichte Weite des Mikrokanals 57.4 ist vorzugsweise kleiner als 1/10, insbesondere kleiner als 1/100 der lichten Weite der stirnseitigen Öffnung 11 des Vollgeschosses 1.4. Die Schultern 35.4 des Vollgeschosses 1.4 sind derart dich aneinander geführt, dass die Mündung 37.4 des Schachts 55.4 punktartig verengt ist. Das Vollgeschoss 1.4 ist unter praktisch vollständiger Auflösung des Deformationshohlraums gebildet. Dies kann als weitere Verengung des Schachts 55.4 im Vergleich zu dem Schacht 55.2 des Vollgeschosses 1.2 bzw. des Schachts 55 des Vollgeschosses 1 angesehen werden. Im Vergleich zu den Vollgeschossen 1, 1.2 und 1.3 weist das Vollgeschoss 1.4 eine erhöhtes Vollmaterialvolumen auf, da der Zylinderabschnitt 5 des Vollgeschosses 1.4 trotz Ausbildung eines Deformationshülsenabschnitts 51.4 praktisch dieselbe Masse aufweist, wie das aus dem Stand der Technik bekannte Vollgeschoss (der jedoch über keine Deformationshülse 51.4 verfügt). Figure 4 shows a full floor 1.4 for a practice cartridge, in which the shaft 55.4 is formed in the axial direction A with the formation of a trunk 7.4 as long as the shaft 55.3 of the full floor 1.3 according to Figure 3 . The shaft 55.4 is narrowed along its entire axial length to a microchannel 57.4 which preferably extends in a capillary-like manner from the mouth 37.4 into the cylinder section 5 of the full storey 1.4. The clear width of the microchannel 57.4 is preferably less than 1/10, in particular less than 1/100, of the clear width of the front opening 11 of the full story 1.4. The shoulders 35.4 of the full storey 1.4 are brought together so that the mouth 37.4 of the shaft 55.4 is narrowed at points. The full floor 1.4 is formed with virtually complete dissolution of the deformation cavity. This can be seen as a further narrowing of the shaft 55.4 compared to the shaft 55.2 of the full floor 1.2 or the shaft 55 of the full floor 1. Compared to the full storeys 1, 1.2 and 1.3, the full storey 1.4 has an increased full material volume, since the cylinder section 5 of the full storey 1.4, despite the formation of a deformation sleeve section 51.4, has practically the same mass as the full storey known from the prior art (which, however, does not have any Deformation sleeve 51.4).

Gegenüber den in den Figuren 1b bis 4 dargestellten Vollgeschossen 1, 1.2, 1.3 bzw. 1.4 unterscheiden sich die in den Figuren 5 und 6 dargestellten Vollgeschosse 1.5 bzw. 1.6 dadurch, dass der Schacht 55.5 bzw. 55.6 den Zylinderabschnitt 5 des Geschosses 1.5 bzw. 1.6 vollständig durchdringt. Die Vollgeschosse 1.5 bzw. 1.6 weisen keinen zylindrischen Stammabschnitt auf. Anders gesagt hat ein vollzylindrischer Stammabschnitt bei den in den Figuren 5 und 6 dargestellten Vollgeschossen 1.5 bzw. 1.6 die Höhe Null.Opposite the in the Figures 1b to 4 full floors 1, 1.2, 1.3 and 1.4 shown differ in the Figures 5 and 6 Full floors 1.5 and 1.6 shown in that the shaft 55.5 or 55.6 completely penetrates the cylinder section 5 of the floor 1.5 or 1.6. The full floors 1.5 and 1.6 do not have a cylindrical trunk section. In other words, a fully cylindrical trunk section in the in the Figures 5 and 6 full floors 1.5 and 1.6 shown the height zero.

Das Vollgeschoss 1.5, das in Figur 5 dargestellt ist, weist einen rohrförmigen Schacht 55.5 auf, der mit einer lichten Weite, die in Axialrichtung nahezu konstant ist, und der sich vollständig durch den Zylinderabschnitt 5 erstreckt. Die durchgängige Deformationsröhre 58.5 des Vollgeschosses 1.5 hat zur Folge, dass der Zylinderabschnitt 5 vollständig als Deformationshülse 51.5 realisiert ist. Die Deformationsröhre 58.5 kann als Deformationshohlraum 53.5 bzw. Schacht 55.5 betrachtet werden, der im Wesentlichen zylindrisch sich von der Mündung 37.5 bis zu der Kalotte 73 des Vollgeschosses 1.5 erstreckt. Es sei klar, dass ein in das Geschoss vollständig durchdringender Schacht 55.5 sich auch bis zum Heck 71 des Geschosses 1.5 erstrecken kann, wenn heckseitig des Geschosses 1.5 keine Kalotte 73 vorgesehen ist (nicht dargestellt). Dasselbe gilt für den Schacht 55.6 gemäß Figur 6. Das Geschoss 1.5 kann als vollständig hülsenförmiges Vollgeschoss bezeichnet sein. Es weist einen durchgängigen Axialkanal auf, der sich zusammensetzt aus der stirnseitigen Öffnung 11, dem Ogivenhohlraum 33 und der Deformationsröhre 58.5. Die kleinste lichte Weite dieses Axialkanals entspricht der kleinsten lichten Weite der Deformationsröhre 58.5. Die kleinste lichte Weite der Deformationsröhre 58.5 bzw. des Mikrokanals des Vollgeschosses 1.5 definiert einen Durchmesser kleiner als den der stirnseitigen Öffnung. Die kleinste lichte Weite der Deformationsröhre 58.5 ist vorzugsweise kleiner als 2 mm, insbesondere kleiner als 1 mm, besonders bevorzugt kleiner als 0,5 mm. Die größte lichte Weite der Deformationsröhre 58.5 ist vorzugsweise an deren Übergang zu dem Ogivenhohlraum (der Mündung 37.5) und/oder der kalottenseitigen bzw. heckseitigen Öffnung realisiert und misst vorzugsweise weniger als 2 mm, insbesondere weniger als 1 mm. Vorzugsweise beträgt die radiale Differenz zwischen kleinster lichter Weite und größter lichter Weite der den Zylinderabschnitt 5 durchdringenden Deformationsröhre 58.5 weniger als 0,5 mm, vorzugsweise weniger als 200 µm, insbesondere weniger als 100 µm.The full floor 1.5, which in Figure 5 is shown, has a tubular shaft 55.5 which has a clear width which is almost constant in the axial direction and which extends completely through the cylinder section 5. The continuous deformation tube 58.5 of the full storey 1.5 has the result that the cylinder section 5 is completely implemented as a deformation sleeve 51.5. The deformation tube 58.5 can be viewed as a deformation cavity 53.5 or shaft 55.5, which extends essentially cylindrically from the mouth 37.5 to the calotte 73 of the full storey 1.5. It is clear that a shaft 55.5 penetrating completely into the floor can also extend to the rear 71 of floor 1.5 if no calotte 73 is provided on the rear side of floor 1.5 (not shown). The same applies to shaft 55.6 according to Figure 6 . The floor 1.5 can be described as a completely tubular full floor. It has a continuous axial channel, which is composed of the front opening 11, the ogive cavity 33 and the deformation tube 58.5. The smallest clear width of this axial channel corresponds to the smallest clear width of the deformation tube 58.5. The smallest clear width of the deformation tube 58.5 or the microchannel of the full storey 1.5 defines a diameter smaller than that of the front opening. The smallest clear width of the deformation tube 58.5 is preferably less than 2 mm, in particular less than 1 mm, particularly preferably less than 0.5 mm. The greatest clear width of the deformation tube 58.5 is preferably realized at its transition to the ogive cavity (the mouth 37.5) and / or the opening on the calotte side or the rear side and preferably measures less than 2 mm, in particular less than 1 mm. The radial difference between the smallest clear width and the largest clear width of the deformation tube 58.5 penetrating the cylinder section 5 is preferably less than 0.5 mm, preferably less than 200 μm, in particular less than 100 μm.

Bei dem in Figur 6 dargestellten Vollgeschoss 1.6 ist der Schacht 55.6, welcher den Zylinderabschnitt 5 in Axialrichtung A vollständig durchdringt, abschnittsweise zu einem Mikrokanal 57.6 verjüngt. Der Mikrokanal 57.6 kann vorzugsweise kapillarartig mit einer lichten Weite von weniger als 10 µm, vorzugsweise weniger als 1 µm ausgebildet sein. Vorzugsweise erstreckt sich der kapillarartig verengte Abschnitt des Mikrokanals 57.6 über wenigstens die Hälfte, vorzugsweise wenigstens 2/3, insbesondere wenigstens ¾ der axialen Länge des Schachts 55.6. Der Schacht 55.6 kann stirnseitig, bei der Mündung 37.6, und/oder heckseitig, bei der Mündung zur Kalotte 37 bzw. dem Geschossheck 71, zu einem schlauch- oder röhrenartigen Mikrokanal 57.6.mit größerer lichter Weite aufgeweitet sein. Ähnlich dem in Figur 4 dargestellten Vollgeschoss 1.4 weist das Vollgeschoss 1.6 gemäß Figur 6 praktisch dieselbe Masse auf wie das aus dem Stand der Technik bekannte Vollgeschoss für Übungspatronen (welches jedoch keine Deformationshülse 51.6 oder dergleichen aufweist).At the in Figure 6 Full floor 1.6 shown, the shaft 55.6, which completely penetrates the cylinder section 5 in the axial direction A, tapers in sections to form a microchannel 57.6. The microchannel 57.6 can preferably be formed in a capillary-like manner with a clear width of less than 10 μm, preferably less than 1 μm. The capillary-like section of the microchannel 57.6 preferably extends over at least half, preferably at least 2/3, in particular at least ¾ of the axial length of the Shaft 55.6. The shaft 55.6 can be widened at the end, at the mouth 37.6, and / or at the rear, at the mouth to the calotte 37 or the projectile tail 71, to form a tube-like or tube-like microchannel 57.6. Similar to that in Figure 4 The full floor 1.4 shown has the full floor 1.6 according to Figure 6 practically the same mass as the solid bullet for exercise cartridges known from the prior art (which, however, has no deformation sleeve 51.6 or the like).

Figur 7 zeigt eine schematische Schnittansicht eines erfindungsgemäßen Vollgeschosses 1' nach dessen Aufprall auf ein Ziel oder eine schusssichere Weste, wie eine ballistische Weste der Schutzklasse I. Das durch den Aufprall deformierte Vollgeschoss 1' ist sowohl im Bereich des Ogivenabschnitts 3' als auch im Bereich des Zylinderabschnitts 5' deutlich gestaucht. Der sich in den Zylinderabschnitt 5' des Vollgeschosses 1' erstreckende Schacht 55' ist durch den Aufprall des Geschosses 1' auf das Ziel oder dergleichen unter plastischer Verformung aufgeweitet. Im Unterscheid zu den bekannten Vollgeschossen erfolgt die plastische Deformation in Form einer Aufstauchung und über eine deutlich vergrößerte Axiallänge in Axialrichtung A des Vollgeschosses 1', sodass bei dem erfindungsgemäßen Vollgeschoss dessen kinetische Energie bei dem Aufprall auf einen Widerstand in einem verhältnismäßig größeren Wirkungsgrad in plastische Verformungsenergie umgewandelt wird als bei herkömmlichen Geschossen. Bei dem Aufprall auf einen Widerstand, insbesondere ein Weichziel, wie SK I, geht nur eine geringfüge Querdeformation des Geschosses einher. Vorzugsweise faltet sich die Ogivenhülsenwand 31 beim Aufprall radial nach außen. Beim Falten kann sich ein radial äußerster Ring-Knick 31' bilden. Vorzugsweise erfolgt kein Aufpilzen des Geschosses unter Wanderung der Geschossspitze, insbesondere über die Radialen Kaliberdurchmesser hinaus, in Radialrichtung nach außen. Bei dem Aufprall auf den Widerstand weitet sich der Schacht 55' sowohl im Bereich des eventuell vorhandenen Mikrokanalabschnitts 57' als auch im Bereich eines eventuell vorhandenen Deformationshohlraums 53' in Radialrichtung R auf. Bei dem erfindungsgemäßen Vollgeschoss 1' deformieren sich sowohl die Ogivenhülsenwand 31' als auch die Deformationshülsenwand 51'. Figure 7 shows a schematic sectional view of a full storey 1 'according to the invention after its impact on a target or a bulletproof vest, such as a ballistic vest of protection class I. The full storey 1' deformed by the impact is both in the area of the ogive section 3 'and in the area of the cylinder section 5 'significantly compressed. The shaft 55 ', which extends into the cylinder section 5' of the full storey 1 ', is widened by the impact of the storey 1' on the target or the like with plastic deformation. In contrast to the known full storeys, the plastic deformation takes place in the form of an upsetting and over a significantly increased axial length in the axial direction A of the full storey 1 ', so that in the full storey according to the invention, its kinetic energy in the case of an impact with a resistance in a relatively greater efficiency in plastic deformation energy is converted than with conventional bullets. In the event of an impact on a resistance, in particular a soft target, such as SK I, there is only a slight transverse deformation of the projectile. The ogive sleeve wall 31 preferably folds radially outwards on impact. A radially outermost ring kink 31 'can form during folding. Preferably the bullet does not mushroom while the tip of the bullet migrates, in particular beyond the radial caliber diameter, in the radial direction to the outside. In the event of an impact on the resistance, the shaft 55 'widens in the radial direction R both in the region of the microchannel section 57' which may be present and in the region of any deformation cavity 53 'which may be present. In the full storey 1 'according to the invention, both the ogive sleeve wall 31' and the deformation sleeve wall 51 'deform.

Die oben beschriebenen Vollgeschosse gemäß den bevorzugten Ausführungen der Figuren 1 bis 7 betreffen Vollgeschosse für Übungspatronen gemäß dem in Deutschland besonders gebräuchlichen Kaliber 9 mm Luger, das auch als 9 mm Para oder 9 x 19 (mm) bekannt ist. Dem Fachmann ist klar, dass er eine entsprechende Geschossgeometrie für ein erfindungsgemäßes Vollgeschoss auch für andere Kaliber erzeugen kann. Der Fachmann weiß, wie der zu diesem Zweck die Geschosslänge lD und/oder den (Kaliber-) Geschoss-Durchmesser Dz skalieren muss, um zu einem entsprechenden erfindungsgemäßen Vollgeschoss anderen Kalibers zu kommen, beispielsweise dem Kaliber .357 Mag., dem Kaliber .40 S&W, dem Kaliber .44 Rem. Mag. oder dem Kaliber .45 ACP.The full floors described above according to the preferred embodiments of the Figures 1 to 7 concern bullets for practice cartridges according to the caliber 9 mm Luger, which is particularly common in Germany, also known as 9 mm Para or 9 x 19 (mm). It is clear to the person skilled in the art that he can also generate a corresponding floor geometry for a full floor according to the invention for other calibers. The person skilled in the art knows how to scale the projectile length l D and / or the (caliber) projectile diameter Dz in order to arrive at a corresponding full projectile of another caliber according to the invention, for example the .357 Mag. Caliber, the caliber. 40 S&W, caliber .44 Rem. Mag. Or the .45 ACP caliber.

Im Folgenden wird unter Zuhilfenahme der Figuren 8 bis 11 eine erfindungsgemäße Werkzeug-Anordnung zum Durchführen eines erfindungsgemäßen Herstellungsverfahrens für die Herstellung erfindungsgemäßer metallischer Vollgeschosse für Übungspatronen beschrieben.In the following, with the help of Figures 8 to 11 describes a tool arrangement according to the invention for carrying out a production method according to the invention for the production of metallic full projectiles for exercise cartridges according to the invention.

Figur 8 zeigt eine Setz-Presse 100, die Teil einer erfindungsgemäßen Werkzeug-Anordnung sein kann. Die Setz-Presse 100 weist als wesentliche Bestandteile eine Metallrohlingaufnahme 105X, einen Heckstempel mit einer Bodenseite 107x und einen Setz-Stempel 115x auf. Der Setz-Stempel 115x weist vorzugsweise einen zylindrischen Außendurchmesser auf, der im Wesentlichen dem Innendurchmesser der Metallrohlingaufnahme 105x entspricht. Der Innendurchmesser der Metallrohlingaufnahme 105x ist vorzugsweise entsprechend dem gewünschten Kaliberdurchmesser des herzustellenden Geschosses bemessen. Figure 8 shows a setting press 100, which can be part of a tool arrangement according to the invention. The setting press 100 has, as essential components, a metal blank receptacle 105X, a rear stamp with a bottom side 107x and a setting stamp 115x. The setting punch 115x preferably has a cylindrical outer diameter which essentially corresponds to the inner diameter of the metal blank receptacle 105x. The inner diameter of the metal blank receptacle 105x is preferably dimensioned in accordance with the desired caliber diameter of the projectile to be produced.

Figur 8 zeigt eine Setz-Presse 100 in einer Stellung, bei der der Setz-Stempel 115 in seiner betriebsgemäßen weitest eingeführten Stellung bezüglich der Bodenseite 107X bzw. der Metallrohlingaufnahme 105x angeordnet ist (Setz-Endstellung). Zwischen der Frontseite 113x des Setz-Stempels 115x, der zylindrischen Innenseite der Metallrohlingaufnahme 105x und der Bodenseite 107X ist eine Kavität gebildet, in der sich ein Metallrohling 1x befindet. Der in Figur 8 gezeigte Metallrohling 1x weist eine Zentrierstanzung auf, die durch einen Zentriervorsprung der Setz-Presse 100 an der Stirnseite 13x des Metallrohlings 1x eingebracht ist. An der Heckseite 71x des Metallrohlings 1x gegenüberliegend dessen Stirnseite 13x hat der vollzylindrische Metallrohling 1x mittig und konzentrisch eine kalottenartige Einbuchtung durch eine korrespondierend geformte, kegelförmige Kalotten-Formnase 173x an der Bodenseite 107x, also der Stirnseite des Heckstempels. Radial außenseitig weist der Metallrohling 1x an dessen Heckseite 71x einen phasenartigen Kegelstumpfabschnitt 75x auf, der im Kantenbereich zwischen dem Heck 71x und der zylindrischen Umfangsseite 5x des Metallrohlings 1x angeordnet ist. Der phasenseitige Kegelstumpfabschnitt 75x ist durch korrespondierende Verjüngung im Übergangsbereich zwischen dem Heckstempel und der zylindrischen Innenwand der Setzmatrize 105x definiert. Figure 8 shows a setting press 100 in a position in which the setting punch 115 is arranged in its operationally most widely inserted position with respect to the bottom side 107X or the metal blank receptacle 105x (final setting position). A cavity is formed between the front side 113x of the setting die 115x, the cylindrical inside of the metal blank receptacle 105x and the bottom side 107X, in which a metal blank 1x is located. The in Figure 8 The metal blank 1x shown has a centering punch, which is introduced through a centering projection of the setting press 100 on the end face 13x of the metal blank 1x. On the rear side 71x of the metal blank 1x opposite its front side 13x, the fully cylindrical metal blank 1x has a dome-shaped indentation in the center and concentrically through a correspondingly shaped, conical dome-shaped nose 173x on the bottom side 107x, i.e. the front side of the rear stamp. Radially on the outside, the metal blank 1x has a phase-like truncated cone section 75x on its rear side 71x, which is arranged in the edge region between the rear 71x and the cylindrical peripheral side 5x of the metal blank 1x. The phase-side truncated cone section 75x is defined by corresponding tapering in the transition area between the rear punch and the cylindrical inner wall of the setting die 105x.

Zum Setz-Formen des Metallrohlings 1x in der Setz-Presse 100 wird zunächst ein im Wesentlichen zylindrischer Metallrohling (nicht dargestellt) bereitgestellt, der beispielsweise von einem Kupferdraht abgelängt wurde. Das Ablängen kann spanend, beispielsweise durch Sägen oder Fräsen, oder spanlos, beispielsweise durch Stanzen oder Schneiden, erfolgen. Der abgelängte Metallrohling wird dann in die Metallrohlingaufnahme 105x platziert. Anschließend findet eine Relativbewegung des Setz-Stempels 115x relativ zu der Bodenseite 107X statt, bis die Kavität zwischen dem Setz-Stempel 115x, der Matrize bzw. Metallrohlingaufnahme 105x und der Bodenseite 107x zu der in Figur 8 dargestellten Setz-Endstellung verkleinert ist. Die Bodenseite 107x der Presse ist durch die stirnseitige Oberseite eines Heckstempels gebildet. In der Setz-Presse erfolgt die Umformung des Metallrohlings zu dem in Figur 8 dargestellten Metallrohling 1x durch Press-Umformen, also Kaltumformen. Das Setzen des Metallrohlings der zur Umformung zu einem Geschoss verwendet wird, insbesondere in einer Setz-Presse 100, ist ein optionaler Schritt des erfindungsgemäßen Herstellungsverfahrens. Ein Metallrohling kann auch ohne vorherigen Setz-Schritt, unmittelbar nach dem Ablängen aus einem Metalldraht, wie einem Kupferdraht, in eine Vorformpresse bzw. für einen Vorformschritt bereitgestellt werden.To set the metal blank 1x in the setting press 100, an essentially cylindrical metal blank (not shown) is provided, which has been cut to length from a copper wire, for example. The cutting can be done by cutting, for example by sawing or milling, or without cutting, for example by punching or cutting. The cut metal blank is then placed in the metal blank holder 105x. Then there is a relative movement of the setting punch 115x relative to the bottom side 107X until the cavity between the setting punch 115x, the die or metal blank receptacle 105x and the bottom side 107x to that in FIG Figure 8 shown final setting position is reduced. The bottom side 107x of the press is formed by the front upper side of a rear stamp. The metal blank is shaped into the in the setting press Figure 8 represented metal blank 1x by press forming, i.e. cold forming. The setting of the metal blank, which is used for forming a projectile, in particular in a setting press 100, is an optional step of the manufacturing method according to the invention. A metal blank can also be provided in a preform press or for a preforming step without a previous setting step, immediately after being cut to length from a metal wire, such as a copper wire.

Figur 9a zeigt eine Vorformpresse 101 einer erfindungsgemäßen Werkzeug-Anordnung. Die Figuren 9b und 9c zeigen Geschossrohlinge 1a, 1a' (erster Stufe), die in einer Vorformpresse gefertigt wurden. Figure 9a shows a preform press 101 of a tool arrangement according to the invention. The Figures 9b and 9c show projectile blanks 1a, 1a '(first stage), which were manufactured in a preform press.

Die Vorformpresse 101 weist als wesentliche Bestandteile einen hohlzylindrischen Geschossrohlingaufnahme 105a auf sowie eine Bodenseite 107a, die in Axialrichtung A die Geschossrohlingaufnahme 105a begrenzt, und einen Vorformstempel 111 mit einem sich in Axialrichtung zu einer Frontfläche 113 kegelstumpfförmig verjüngenden Vorformabschnitt 112. Der Vorformstempel 111 hat einen zylindrischen Führungsabschnitt 115, der formkomplementär zu dem zylindrischen Innendurchmesser der Geschossrohlingaufnahme 105a geformt ist, um den Vorformstempel beim Vorform-Pressvorgang zu führen. Die Bodenfläche 107a ist als Teil eines Heck-Stempels gebildet. Der Auswurfstempel bzw. Heckstempel definiert, vorzugsweise gemeinsam mit dem unteren Endabschnitt der Vorformmatrize 105a, die Geometrie des Hecks 71 (gegebenenfalls mit Kalotte 73) des Geschossrohlings 1a, 1a' (erster Stufe).The preform press 101 has, as essential components, a hollow cylindrical projectile blank receptacle 105a and a bottom side 107a, which delimits the projectile blank receptacle 105a in the axial direction A, and a preform punch 111 with a preform section 112 tapering in the shape of a truncated cone in the axial direction to a front surface 113. The preform punch 111 has a cylindrical one Guide section 115, which is shaped to complement the cylindrical inner diameter of the projectile blank receptacle 105a in order to guide the preform stamp during the preform pressing process. The bottom surface 107a is formed as part of a rear stamp. The ejection stamp or rear stamp defines, preferably together with the lower end section of the preforming die 105a, the geometry of the rear 71 (optionally with a spherical cap 73) of the projectile blank 1a, 1a '(first stage).

Figur 9a zeigt die Vorform-Presse 101 mit dem Vorformstempel 111 in betriebsgemäßer Endstellung (Vorform-Endstellung), in der zwischen dem Vorformstempel, der Geschossrohlingaufnahme 105a und der Bodenseite 107a eine Vorform-Kavität zum Definieren der Innen- und/oder Außenkontur des Geschossrohlings 1a (erster Stufe) definiert ist. Zum Bilden eines rotationssymmetrischen Ogivenhohlraums ist der Vorformabschnitt 112 des Vorformstempels 111 vorliegend kegelstumpfförmig und rotationssymmetrisch gebildet. In der in Figur 9a dargestellter Vorform-Endstellung ist zwischen dem Boden 107a und der Frontfläche 113 des Vorformstempels 111 ein Axialabstand hs gebildet. Bei der in Figur 9a dargestellter Ausführung hat der Boden 107a eine Kalotten-Formnase, die sich kegelförmig ausgehend von einer flachen, ringförmigen Fußfläche in Axialrichtung in die Kavität hinein erstreckt. Der Vorform-Axialabstand hs bzw. die Vorform-Stammhöhe bemisst sich bei dieser Ausgestaltung der Vorformpresse zwischen der Spitze der Kalotten-Formnase 171a des Heckstempels und der Frontfläche 113 des Vorformstempels 111. Bei einer anderen (nicht dargestellten) Ausgestaltung einer Vorformpresse 101, bei der der Boden 107a ohne Kalotten-Formnase 173a ausgestaltet ist, würde sich die Vorform-Stammhöhe hs zwischen dem flachen Fuß-Formabschnitt 171a des Heckstempels und der Fronfläche 113 des Vorformstempels 111 erstrecken. Figure 9a shows the preform press 101 with the preform punch 111 in the operational end position (preform end position), in which a preform cavity between the preform punch, the projectile blank receptacle 105a and the bottom side 107a for defining the inner and / or outer contour of the projectile blank 1a (first Level) is defined. To form a rotationally symmetrical ogive cavity, the preform section 112 of the preform punch 111 is in the present case frustoconical and rotationally symmetrical. In the in Figure 9a shown preform end position between the bottom 107a and the front surface 113 of the preform die 111, an axial distance h s is formed. At the in Figure 9a In the illustrated embodiment, the bottom 107a has a spherical cap-shaped nose which extends conically in the axial direction, starting from a flat, ring-shaped foot surface, into the cavity. In this embodiment of the preform press, the preform axial distance h s or the preform trunk height is measured between the tip of the calotte molding nose 171a of the rear die and the front surface 113 of the preform die 111. In another (not shown) embodiment of a preform press 101, If the bottom 107a is configured without a dome-shaped nose 173a, the preform trunk height h s would be between the flat foot-shaped section 171a of the rear punch and the front surface 113 of the preform punch 111 extend.

Der Vorformstempel 111 hat einen sich verjüngenden Vorformabschnitt 112, der in eine Frontfläche 113 mündet. Die Frontfläche 113 kann sehr schmal sein. Der Vorformabschnitt 112 gemäß Figur 9a hat die Form einen zu der Achse A rotationssymmetrischen Kegelstumpf. Andere rotationssymmetrische sich verjüngende Formen, beispielsweise eine parabolische Form oder eine abschnittsweise gerundete Form, sind denkbar. Die Basis des Vorformabschnitts 112 hat denselben Außendurchmesser wir der Führungsabschnitt 115 des Vorformstempels 111. In der Vorform-Endstellung, die Figur 9a zeigt, ist zwischen der Basis des Vorformabschnitts 112 und der Heckfläche 171a der Bodenseite 107a, bzw. eine größte Höhe der Kavität hRa gebildet. Die größte Kavität-Höhe hRa erstreckt sich bei der Vorformpresse 101 zwischen der Heckfläche 171a und der von der Fußfläche 171a weitest entfernten Stelle, an welcher vorzugsweise der Vorformabschnitt 112 des Vorformstempels 111 auf die Innenseite der hohlzylindrischen Geschossrohlingaufnahme 105a trifft. Erfindungsgemäß ist in der Vorform-Endstellung eine Stammhöhe entsprechend dem Axialabstand hs geringer als 45%, vorzugsweise geringer als 40%, insbesondere geringer als 25%, weiter bevorzugt geringer als 10%, der Kavitätshöhe hRa. Die Länge des Vorform-Abschnitts 112 in Axialrichtung A ausgehend von der Frontfläche 113 des Vorform-Stempels 111 beträgt zwischen 5 mm und 25 mm, vorzugsweise zwischen 8 mm und 17 mm, insbesondere zwischen 10 mm und 15 mm, besonders bevorzugt zwischen 13,5 mm und 14 mm. Der Durchmesser der Frontflächen liegt vorzugsweise zwischen 1 mm und 3 mm, insbesondere bei etwa 2 mm.The preform punch 111 has a tapered preform section 112 which opens into a front surface 113. The front surface 113 can be very narrow. The preform section 112 according to Figure 9a has the shape of a truncated cone which is rotationally symmetrical to the axis A. Other rotationally symmetrical tapered shapes, for example a parabolic shape or a shape rounded in sections, are conceivable. The base of the preform section 112 has the same outer diameter as the guide section 115 of the preform punch 111. In the preform end position, the Figure 9a shows, a greatest height of the cavity h Ra is formed between the base of the preform section 112 and the rear surface 171a of the bottom side 107a. The largest cavity height h Ra extends in the preform press 101 between the rear surface 171a and the point furthest away from the base surface 171a, at which the preform section 112 of the preform punch 111 preferably meets the inside of the hollow cylindrical projectile blank receptacle 105a. According to the invention, in the preform end position, a stem height corresponding to the axial distance hs is less than 45%, preferably less than 40%, in particular less than 25%, more preferably less than 10%, of the cavity height h Ra . The length of the preform section 112 in the axial direction A, starting from the front surface 113 of the preform punch 111, is between 5 mm and 25 mm, preferably between 8 mm and 17 mm, in particular between 10 mm and 15 mm, particularly preferably between 13.5 mm and 14 mm. The diameter of the front surfaces is preferably between 1 mm and 3 mm, in particular approximately 2 mm.

Die erfindungsgemäße Werkzeug-Anordnung für die Setz-Presse 100 und die Vorformpresse 101 kann dieselbe Geschossrohlingaufnahme 105a bzw. Metallrohlingaufnahme 105x (dieselbe Matrize) und/oder dieselbe Bodenseite 107a bzw. 107x (demselben Heckstempel) verwenden. Bei einer erfindungsgemäßen Werkzeug-Anordnung kann die Geschossrohlingaufnahme 105a bzw. 105b (die Matrize) und/oder die Bodenfläche 107a bzw. 107b (der Heckstempel) der Vorformpresse 101 und der Innenkontur-Formpresse 103 dieselbe sein. Die Setzpresse 100, Vorformpresse 101, die Innenkontur-Formpresse 103 und/oder die Ogivenformpresse 200 können teilweise oder vollständig voneinander unterschiedliche durch je eine individuelle Setzstation, Vorformstation, Innenkonturformstation und/oder Ogivenformstation verwirklicht sein.The tool arrangement according to the invention for the setting press 100 and the preform press 101 can use the same projectile blank receptacle 105a or metal blank receptacle 105x (same die) and / or the same bottom side 107a or 107x (same rear punch). In a tool arrangement according to the invention, the projectile blank receptacle 105a or 105b (the die) and / or the bottom surface 107a or 107b (the rear punch) of the preforming press 101 and the inner contour molding press 103 can be the same. The setting press 100, preforming press 101, the inner contour forming press 103 and / or the ogive forming press 200 can be realized partially or completely different from one another by an individual setting station, preforming station, inner contour forming station and / or ogive forming station.

Der in der Vorformpresse 101 durch Pressen des Stempels 111 in der Geschossrohlingaufnahme 105a befindliche Metallrohling erzeugt den Geschossrohling erster Stufe 1a, wie in Figur 9b dargestellt. Bei dem Geschossrohling 1a verbleibt eine Stammhöhe ls zwischen dem Stumpf-Ende 113a der eckigen stumpfförmigen Innenkontur 32 und dem Heckende 71a bzw. der darin gebildeten Kalottenaussparung 73. Die sich in Axialrichtung A erstreckende Stammhöhe ls entspricht im Wesentlichen dem Vorform-Axialabstand hs gemäß Figur 9a, wobei Metallmaterial-Setzerscheinungen des Geschossrohlings 1a zu berücksichtigen sind. In dem axialen Bereich der Stammhöhe ls ist der Geschossrohling 1a mit einem vollzylindrischen Stammabschnitt 7a ausgebildet. In dem vollzylindrischen Stammabschnitt 7a hat der Geschossrohling 1a quer zu der Axialrichtung A einen massiven vollkreisförmigen Querschnitt. Der Stammabschnitt 7a des Geschossrohlings 1a ist fußseitig bzw. heckseitig (entfernt von der Stirn 13a) des Geschossrohlings 1a gebildet. Die Außenkontur 34a des Geschossrohlings 1a ist im Wesentlichen idealzylindrisch und weist vorzugsweise einen Außendurchmesser auf, der dem Geschoss-Zylinderdurchmesser Dz entspricht. Vorzugsweise wird der Geschossdurchmesser Dz in den Metall- bzw. Geschossrohling vor dessen Bereitstellung in die Formpresse 101 erzeugt, und der Außendurchmesser des Geschosses bleibt in der Vorformpresse 101 (und gegebenenfalls der Innenkontur-Formpresse 103 und/oder der Ogiven-form-Presse 200) zumindest abschnittsweise konstant. Insbesondere im Zylinderabschnitt 5a (bzw. 5, 5b) des Geschossrohlings 1a (1, 1b) bleibt der Geschossaußendurchmesser nach dem Bereitstellen des Metall- bzw. Geschossrohlings in die Vorformpresse bis zum Ende des Herstellungsverfahrens konstant.The metal blank located in the preform press 101 by pressing the punch 111 in the projectile blank receptacle 105a produces the projectile blank first stage 1a, as in FIG Figure 9b shown. In the case of the projectile blank 1a, a trunk height l s remains between the stump end 113a of the angular truncated inner contour 32 and the rear end 71a or the dome recess 73 formed therein. The trunk height l s extending in the axial direction A essentially corresponds to the preform axial distance h s Figure 9a , whereby metal material settling phenomena of the projectile blank 1a have to be taken into account. In the axial region of the trunk height 1 s , the projectile blank 1a is formed with a fully cylindrical trunk section 7a. In the fully cylindrical trunk section 7a, the projectile blank 1a has a solid, fully circular cross section transverse to the axial direction A. The trunk section 7a of the projectile blank 1a is formed on the foot or rear side (away from the forehead 13a) of the projectile blank 1a. The outer contour 34a of the projectile blank 1a is essentially ideally cylindrical and preferably has an outer diameter which corresponds to the projectile cylinder diameter Dz. The projectile diameter Dz is preferably generated in the metal or projectile blank before it is provided in the molding press 101, and the outer diameter of the projectile remains in the preform press 101 (and, if appropriate, the inner contour molding press 103 and / or the ogive form press 200). constant at least in sections. In particular in the cylinder section 5a (or 5, 5b) of the projectile blank 1a (1, 1b), the projectile outer diameter remains constant after the metal or projectile blank has been provided in the preform press until the end of the production process.

Die Wandstärke des Hülsenabschnitts 3a des Geschossrohlings 1a nimmt von der Stirn 13a des Geschossrohlings 1a hin zu dessen Heck 71a vorzugsweise stetig insbesondere kontinuierlich zu. In dem vorderen Hülsenabschnitt 3a ist die (mittlere) Wandstärke der Hülsenwand 31a in Radialrichtung R kleiner als die (mittlere) Wandstärke der Hülsenwand 31a im Zylinderabschnitt 5a. Die kegelstumpfförmige Aussparung 55a in dem Geschossrohling 1a hat eine Innenkontur 32a, die im Wesentlichen zu der Außenkontur des Vorformstempels 111 (deren Vorformabschnitt 112 und Fronfläche 113) entspricht. Bei Verwendung eines anders als kegelstumpfförmig geformten Formstempels 111 (nicht dargestellt) wird die Hohlraum-Aussparung 55a des Geschossrohlings 1a eine andere, entsprechend formkomplementär zu dem jeweiligen sich verjüngenden Vorformstempel gebildete Innenkontur aufweisen.The wall thickness of the sleeve section 3a of the projectile blank 1a preferably increases continuously, in particular continuously, from the forehead 13a of the projectile blank 1a to the rear 71a thereof. In the front sleeve section 3a, the (average) wall thickness of the sleeve wall 31a in the radial direction R is smaller than the (average) wall thickness of the sleeve wall 31a in the cylinder section 5a. The frustoconical recess 55a in the projectile blank 1a has an inner contour 32a which essentially corresponds to the outer contour of the preform punch 111 (the preform portion 112 and the front surface 113) thereof. If a shaped punch 111 (not shown) shaped differently from a truncated cone is used (not shown), the cavity recess 55a of the projectile blank 1a will have a different inner contour which is formed to complement the respective tapering preform punch.

Figur 9c zeigt eine alternative Ausgestaltung eines Geschossrohlings 1a' (erster Stufe), wobei unterschiedliche Innenkontur-Stumpfenden 113a, 113a', 113a" dargestellt sind. Das strichliert dargestellte Stumpfende 113a der Geschossrohling-Innenkontur 55a' entspricht der Darstellung gemäß Figur 9b. Die strichlierten Stumpfenden 113a' und 113a" zeigen, dass in Axialrichtung A heckseitig Stumpfenden des Einstichhohlraums 55a' bei Verwendung eines Formstempels, der im Wesentlichen wie der in Figur 9a dargestellte Formstempel geformt ist, jedoch eine größere axiale Länge (Stumpfende 113a') oder eine kürzere axiale Länge (Stumpfende 113a") aufweist. Figure 9c shows an alternative embodiment of a projectile blank 1a '(first stage), different inner contour stump ends 113a, 113a', 113a "being shown. The stump end 113a shown in broken lines of the projectile blank inner contour 55a 'corresponds to the illustration Figure 9b . The dashed stump ends 113a 'and 113a "show that in the axial direction A the stump ends of the puncture cavity 55a' on the rear side when using a shaping stamp which is essentially like that in FIG Figure 9a Shaped punch shown is shaped, but has a greater axial length (butt end 113a ') or a shorter axial length (butt end 113a ").

Gemäß der strichlierten Linie 113a' ist der Geschossrohling 1a' in Axialrichtung A vollständig durchdrungen, sodass der Geschossrohling 1a' vollständig hülsenförmig ist. Die Einstich-Öffnung 55a' geht in die Kalotten-Nase 73a' über. Es sei klar, dass zur Bildung einer derartigen Form eine entsprechend angepasste Vorform-Presse mit kegelstumpfförmiger Kalotten-Nase zu verwenden ist. Die Innenkontur 32a' der Hülsenwand 31a' nimmt bei dem in Figur 9c dargestellten Geschossrohling 1a' vorzugsweise kontinuierlich insbesondere stetig zu, bis zu der Stelle (113a'), an der die Schacht-Öffnung 55a' des Geschossrohlings 1a' in die Kalotten-Aussparung 73a' übergeht. Bei dem in Figur 9c dargestellten, vollständig durchdrungenen Geschossrohling 1a' ist kein vollzylindrischer Geschossrohling-Stamm ausgebildet. Der Geschossrohling 1a ist frei von einem Geschossstamm bzw. mit einem Geschossstamm der Höhe Null gebildet. Auch bei einem vollständig durchdrungenen Geschossrohling 1a können andere als kegelstumpfförmige Vorform-Stempel verwendet werden.According to the dashed line 113a ', the projectile blank 1a' is completely penetrated in the axial direction A, so that the projectile blank 1a 'is completely sleeve-shaped. The puncture opening 55a 'merges into the cap nose 73a'. It is clear that a suitably adapted preform press with a frustoconical dome nose must be used to form such a shape. The inner contour 32a 'of the sleeve wall 31a' takes in the in Figure 9c The projectile blank 1a 'shown, preferably continuously in particular up to the point (113a') at which the shaft opening 55a 'of the projectile blank 1a' merges into the spherical recess 73a '. At the in Figure 9c The completely penetrated projectile blank 1a 'shown is not a fully cylindrical projectile blank trunk. The projectile blank 1a is formed free from a projectile trunk or with a projectile trunk of zero height. Even with a completely penetrated projectile blank 1a, preform punches other than frustoconical shapes can be used.

Figur 9c zeigt strichliert auch eine weitere Möglichkeit zur Bildung eines Geschossrohlings mit einem gegenüber dem in den Figuren 9a und 9b dargestellten Geschossrohlings 1a vergrößerten Stamm mit einer Stammhöhe ls". Figure 9c also shows in dashed lines another way of forming a projectile blank with one compared to that in the Figures 9a and 9b Bullet blank shown 1a enlarged trunk with a trunk height l s " .

Figur 10a zeigt eine Innenkontur-Formpresse 103 und Figur 10b eine mit der in Figur 10a dargestellten Innenkontur-Formpresse 103 hergestellten Geschossrohling 1b (zweiter Stufe). Wie die zuvor beschriebene Setz-Presse 100 und die zuvor beschriebene Vorform-Presse 103 sowie die nachfolgend beschriebene Ogiven-Formpresse ist die in Figur 10a dargestellte Innenkontur-Formpresse mit im Wesentlichen rotationssymmetrischen Werkzeugen zur Bildung von rotationssymmetrischen Vollgeschossen für Übungspatronen gebildet. Die Innenkontur-Formpresse 103 umfasst als Hauptbestandteile den Innenkontur-Formstempel 121, die axial gegenüber dem Innenkontur-Formstempel 121 angeordnete Bodenseite 107b und die hohlzylindrische Geschossrohlingaufnahme 105b. Figure 10a shows an inner contour molding press 103 and Figure 10b one with the in Figure 10a shown inner contour molding press 103 manufactured blank 1b (second stage). Like the previously described setting press 100 and the previously described preform press 103, as well as the ogive molding press described below, the one in FIG Figure 10a shown inner contour molding press with essentially rotationally symmetrical tools for forming rotationally symmetrical full projectiles for practice cartridges. The main components of the inner contour forming press 103 include the inner contour forming die 121, the bottom side 107b arranged axially opposite the inner contour forming die 121 and the hollow cylindrical projectile blank receptacle 105b.

In der Innenkontur-Form-Endstellung, die in Figur 10a dargestellt ist, begrenzt der Innenkontur-Formstempel 121 stirnseitig und die Bodenseite 107b bzw. die Stirnseite 107b des Heckstempels fußseitig eine Kavität für den Geschossrohling 1b. Die Kavität für den Geschossrohling 1b ist in Radialrichtung R außenumfänglich von der ideal-hohlzylindrischen Matrize 105b begrenzt. Zum Erreichen der in Figur 10a dargestellten Innenkontur-Endstellung wird der Innenkontur-Formstempel 121 in den zuvor in der Vorform-Presse 103 vorgeformten Geschossrohling 1a eingepresst, bis der Geschossrohling 1b zweiter Stufe geformt ist, wie in den Figuren 10a und 10b beispielsweise dargestellt.In the inner contour shape end position, which in Figure 10a is shown, the inner contour shaping die 121 delimits a cavity for the projectile blank 1b on the face side and the bottom side 107b or the face side 107b of the rear die on the foot side. The cavity for the projectile blank 1b is delimited on the outside in the radial direction R by the ideal hollow cylindrical die 105b. To achieve the in Figure 10a shown inner contour end position, the inner contour forming die 121 is pressed into the projectile blank 1a previously preformed in the preform press 103 until the projectile blank 1b of the second stage is shaped, as in FIGS Figures 10a and 10b for example.

Der in Figur 10a dargestellte Innenkontur-Formstempel hat einen Innenkontur-Formabschnitt 122, der in Axialrichtung A abschnittsweis als zylindrischer Hülsenformabschnitt 133 gebildet ist. Mit dem zylindrischen Hülsenformabschnitts 133 des Innenkontur-Formstempels 121 und der in Radialrichtung R dem Hülsenformabschnitt 133 gegenüberliegenden Innenseite der Innenkonturform-Außenmatrize 105b wird die zylindrische Wandform und die Wandstärke der stirnseitigen Hülsenwand 31b definiert. Es sei klar, dass der Hülsenformabschnitt 133 mit einer leichten Entformungsschräge, vorzugsweise kleiner als 1°, gebildet sein kann.The in Figure 10a The inner contour shaping punch shown has an inner contour shaping section 122, which in sections in the axial direction A is a cylindrical sleeve shaping section 133 is formed. The cylindrical wall shape and the wall thickness of the front sleeve wall 31b are defined with the cylindrical sleeve shape section 133 of the inner contour molding die 121 and the inside of the inner contour shape outer die 105b opposite the sleeve shape section 133 in the radial direction R. It is clear that the sleeve molding section 133 can be formed with a slight draft, preferably less than 1 °.

Insbesondere der Innenkontur-Formabschnitt 122 angrenzend zu einem Führungsabschnitt 127 des Innenkontur-Formstempels 121 weist einen kegelstumpfförmigen Übergangsabschnitt 128 auf, der sich in Radialrichtung von dem Innenkontur-Formabschnitt 122 zu dem Führungsabschnitt 127 erstreckt.In particular, the inner contour molding section 122 adjacent to a guide section 127 of the inner contour molding die 121 has a truncated cone-shaped transition section 128 which extends in the radial direction from the inner contour molding section 122 to the guide section 127.

Der Innenkontur-Formstempel 121 weist einen Führungsabschnitt 127 auf, der sich in Axialrichtung unmittelbar anschließend an dem Formabschnitt 122 fern des Frontendes 123 erstreckt und der vorzugsweise im Wesentlichen formkomplementär zu der hohlzylindrischen Innenseite der Geschossrohlingaufnahme 105b gebildet ist. Der Führungsabschnitt 127 des Innenkontur-Formstempels 121 kann zur sicheren Führung des Formstempels in der Innenkontur-Formungs-Matrize 105b dienen, insbesondere während der Relativbewegung des Stempels 121 relativ zu der Bodenseite 107b.The inner contour form punch 121 has a guide section 127 which extends in the axial direction immediately after the form section 122 far from the front end 123 and which is preferably essentially complementary in shape to the hollow cylindrical inside of the projectile blank receptacle 105b. The guide section 127 of the inner contour forming die 121 can serve to securely guide the forming die in the inner contour forming die 105b, in particular during the relative movement of the die 121 relative to the bottom side 107b.

Zwischen dem Innenkontur-Formabschnitt 122 bzw. dessen Hülsenformabschnitt 133 und dem Führungsabschnitt 127 des Innenkontur-Formstempels 121 erstreckt sich in Axialrichtung A und in Radialrichtung R ein vorzugsweise kegelstumpfförmiger Übergangsabschnitt 128. Es sei klar, dass der Übergangsabschnitt 128 in Axialrichtung unmittelbar in den Führungsabschnitt 127 und den Innenkontur-Formabschnitt 122 übergeht.A preferably frustoconical transition section 128 extends in the axial direction A and in the radial direction R between the inner contour shaped section 122 or its sleeve shaped section 133 and the guide section 127 of the inner contour forming die 121. It should be understood that the transition section 128 in the axial direction directly into the guide section 127 and merges with the inner contour molding portion 122.

Ab dem vorderen Ende des Innenkonturstempel-Führungsabschnitts 127, der durch den äußeren Ringrand des Übergangsabschnitts 128 gebildet wird, gegenüber der Heckfläche 171b, der Bodenseite 107 des Heckstempels, erstreckt sich die maximale axiale Höhe der Kavität (hRb) in der Innenkontur-Form-Endstellung.The maximum axial height of the cavity (h Rb ) in the inner contour shape extends from the front end of the inner contour stamp guide section 127, which is formed by the outer ring edge of the transition section 128, opposite the rear surface 171b, the bottom side 107 of the rear stamp. End position.

In der Innenkontur-Form-Endstellung gemäß Figur 10a ist zwischen der Frontfläche 123 des Innenkontur-Formstempels 121 und dem in Axialrichtung A vorderen Ende der Bodenseite 107b ein Axialabstand hr, der als Innenkontur-Restabstand bezeichnet sein kann, vorhanden. Wie in Figur 10a angedeutet, ist der Restabstand hr größer als der Vorform-Axialabstand hs. Vorzugsweise ist der Innenkonturform-Restabstand hr wenigstens 1,2mal, wenigstens 1,5mal oder wenigstens 2mal so groß wie der Vorform-Axialabstand hs. Bei einer schmalen Stammhöhe hs kann der Innenkonturform-Restabstand hr mehr als 10mal, mehr als 100mal oder sogar mehr als 1000mal größer sein als der Vorform-Axialabstand hs.In the inner contour shape end position according to Figure 10a there is an axial distance h r between the front surface 123 of the inner contour forming die 121 and the front end of the bottom side 107b in the axial direction A, which can be referred to as the inner contour remaining distance. As in Figure 10a indicated, the remaining distance h r is greater than the preform axial distance hs. The inner contour shape remaining distance h r is preferably at least 1.2 times, at least 1.5 times or at least twice as large as the preform axial distance hs. With a narrow stem height h s , the inner contour shape remaining distance h r can be more than 10 times, more than 100 times or even more than 1000 times greater than the preform axial distance h s .

Die axiale Größe des Innenkontur-Formabschnitts 122 ist, wie aus den Figuren 10a und 10b zu entnehmen ist, kleiner als die axiale Länge des Vorformabschnitts 112. Vorzugsweise kann die axiale Länge des Vorformabschnitts 112 wenigstens 1,2mal, wenigstens 1,5mal, oder wenigstens 2mal so groß sein wie die axiale Länge des Innenkontur-Formabschnitts 122. Der Innenkontur-Formabschnitt 122 ist in Axialrichtung A vorzugsweise nicht kleiner als 10%, 20%, 30% oder 50% der axialen Länge des Vorformabschnitts 112.The axial size of the inner contour molding section 122 is as shown in FIGS Figures 10a and 10b is less than the axial length of the preform section 112. Preferably, the axial length of the preform section 112 can be at least 1.2 times, at least 1.5 times, or at least twice as long as the axial length of the inner contour molding section 122. The shaped section 122 in the axial direction A is preferably not less than 10%, 20%, 30% or 50% of the axial length of the preform section 112.

In dem Innenkontur-Formabschnitt, dessen Ergebnis in Form des Geschossrohlings (zweiter Stufe) 1b in den Figuren 10a und 10b zu sehen ist, wird der Geschossrohling 1b dergestalt geformt, dass er in Axialrichtung A einen hülsenförmigen, vorderen Abschnitt 3b und einen heckseiteigen bzw. hinteren Zylinderabschnitt 5b bildet. Der stirnseitige Hohlraum 33b in dem Geschossrohling 1b ist im Wesentlichen formkomplementär zu der Form des Innenkontur-Formabschnitts 122 der Innenkontur-Formpresse 103 gebildet.In the inner contour molding section, the result of which in the form of the projectile blank (second stage) 1b in the Figures 10a and 10b can be seen, the projectile blank 1b is shaped such that it forms a sleeve-shaped front section 3b and a rear-side or rear cylinder section 5b in the axial direction A. The end cavity 33b in the projectile blank 1b is essentially complementary to the shape of the inner contour molding section 122 of the inner contour molding press 103.

Am Boden 35b des innenkonturgeformten Hohlraums 33b ist axial mittig eine Mündung 37b, die in den Schacht 55b übergeht. In dem Zylinderabschnitt 5b des Geschossrohlings 1b (zweiter Stufe) ist eine Deformationshülse 51b, die den Schacht 55b radial umgibt, gebildet. Bei dem Geschossrohling 1b gemäß Figur 10b erstreckt sich der Schacht 55b mikrokanalartig bis zu einer verbleibenden Stammhöhe hs, Unterhalb des Kanals 55b schließt ein vollzylindrischer Geschossrohlingstamm 7b an. Der Geschossrohling 1b hat am Fußende 71b eine Kalotten-Aussparung 73b, die das untere Ende des Geschossrohlingstammes 7b und der Stammhöhe definiert.At the bottom 35b of the internally contoured cavity 33b is an opening 37b axially in the middle, which merges into the shaft 55b. A deformation sleeve 51b, which radially surrounds the shaft 55b, is formed in the cylinder section 5b of the projectile blank 1b (second stage). According to the projectile blank 1b Figure 10b The shaft 55b extends in the manner of a microchannel up to a remaining trunk height h s . Below the channel 55b there is a full-cylindrical projectile blank trunk 7b. The projectile blank 1b has a calotte recess 73b at the foot end 71b, which defines the lower end of the projectile blank trunk 7b and the trunk height.

Die Außenkontur 34b des Geschossrohlings 1b zweiter Stufe ist im Wesentlichen vollzylindrisch und hat sowohl im Zylinderabschnitt 5b als auch in dem vorderen dünnwandigen Abschnitt 3b im Wesentlichen denselben Außendurchmesser, der dem Geschoss (Kaliber-) Durchmesser Dz vorzugsweise entspricht. Der Geschossrohling der zweiten Stufe (1b) weist im Wesentlichen die fertige Schacht-(55b)-Form auf, die sich, wie bereits den Figuren 1 bis 6 beschrieben, geschossabhängig unterscheiden kann. Wie in Figur 9c im Hinblick auf eine alternative Geschossrohling-Geometrie (1a') beschrieben, kann auch ein (nicht dargestellter) Geschossrohling zweiter Stufe selbstverständlich stammfrei realisiert sein. Die Ausbildung des Stammes 7b des Geschossrohlings zweiter Stufe ist bedingt durch den Vorformschritt in der Vorformpresse 101. Wenn der Vorformstempel den Metall- bzw. Geschossrohling (1a') erster Stufe vollständig durchdringt, so hat auch der aus diesem vorgeformten Geschossrohling innenkonturgeformte Geschossrohling keinen Stamm.The outer contour 34b of the projectile blank 1b of the second stage is essentially fully cylindrical and has essentially the same outer diameter in the cylinder section 5b as in the front thin-walled section 3b, which preferably corresponds to the projectile (caliber) diameter D z . The projectile blank of the second stage (1b) essentially has the finished shaft (55b) shape, which, like the previous one, has Figures 1 to 6 described, can differentiate depending on the storey. As in Figure 9c with regard to a described alternative projectile blank geometry (1a '), a projectile blank (not shown) of the second stage can of course also be realized without a stem. The formation of the trunk 7b of the projectile blank second stage is due to the preforming step in the preform press 101. When the preform punch completely penetrates the metal or projectile blank (1a ') of the first stage, the projectile blank made from this preformed projectile blank also has no trunk.

Beim Einpressen des Innenkontur-Formstempels 121 in den vorgeformten Geschossrohling, der in der Geschossrohlingaufnahme 105b und von der durch einen Heckstempel gebildeten Bodenseite 107b gehalten wird, wird die Innenkontur 32a des Geschossrohlings gemäß dem Innenkontur-Formabschnitt 122 umgeformt. Beim Einpressen des Innenkontur-Formstempels 121 in den Geschossrohling wird ein vorderer Geschossrohlingabschnitt 3b dünnwandig, vorzugsweise mit konstanter Wandstärke, insbesondere zumindest abschnittsweise zylinderhülsenförmig, umgeformt. Das bei dieser Innenkontur-Formung durch den Innenkontur-Formstempel 121 verdrängte Metall-Material des Vollgeschosses bzw. Geschossrohlings wird während des Innenkontur-Formschritts in Axialrichtung A hin zu dem fuß- bzw. heckseitigen (hinteren) Zylinderabschnitt 5b des Geschossrohlings (zweiter Stufe) 1b verschoben.When the inner contour shaping punch 121 is pressed into the preformed projectile blank, which is held in the projectile blank receptacle 105b and by the bottom side 107b formed by a rear punch, the inner contour 32a of the projectile blank is shaped in accordance with the inner contour shaping section 122. When the inner contour molding die 121 is pressed into the projectile blank, a front projectile blank section 3b is formed with thin walls, preferably with a constant wall thickness, in particular at least in sections in the form of a cylindrical sleeve. The metal material of the full storey or projectile blank displaced in this inner contour shaping by the inner contour shaping die 121 becomes axial direction A during the inner contour shaping step toward the foot or rear (rear) cylinder section 5b of the projectile blank (second stage) 1b postponed.

Der durch den Vorformstempel 111 bis zu dem stumpfen Ende 113 am Boden der Innenkontur 32a gebildete Kegelschacht 55a wird während des Innenkontur-Formschritts durch den Innenkontur-Formstempel 121 umgeformt. Die Umformung des Kegelkanals 55a erfolgt durch eine teilweise Aufweitung zu einem breiten zylindrischen Hohlraum 33b nahe der Stirn 13b des innenkonturgeformten Geschossrohlings 1b. Hin zum Fuß 71b des Geschossrohlings 1b wird das Metall-Material des Geschossrohlings 1b bei der Umformung des Konuskanals 55a durch den Innenkontur-Formstempel 121 in Axialrichtung A und in Radialrichtung R nach innen zusammengestaucht, sodass sich in Axialrichtung A die den Hohlraum begrenzenden Boden-Schultern 35b mit der mittigen Mündungsöffnung 37b und dem ausgehend von der Mündungsöffnung 37b sich in Axialrichtung A in den Zylinderabschnitt 5b des Geschossrohlings 1b erstreckenden Schacht 55 ausbilden.The conical shaft 55a formed by the preform punch 111 up to the blunt end 113 on the bottom of the inner contour 32a is deformed by the inner contour shaping punch 121 during the inner contour shaping step. The cone channel 55a is reshaped by partial widening to form a wide cylindrical cavity 33b near the forehead 13b of the internally contour-shaped projectile blank 1b. Towards the foot 71b of the projectile blank 1b, the metal material of the projectile blank 1b is compressed inward in the axial direction A and in the radial direction R by the inner contour shaping punch 121 during the shaping of the cone channel 55a, so that in the axial direction A the floor shoulders delimiting the cavity 35b with the central opening 37b and the shaft 55 extending from the opening 37b in the axial direction A into the cylinder section 5b of the projectile blank 1b.

Bei der Herstellung stellt die den Schacht 55b umgebende Deformationshülse 51b eine Fertigungstoleranz bereit, wobei die in dem zunächst durch den Konusschacht 55a und anschließend gegebenenfalls vorhandenen (nicht in Figur 10b dargestellten) Deformationshohlraum gebildeten Innenhohlräume während des Innenkontur-Formschritts verschobenes Material aufnehmen können. Auf diese Weise kann eine passgenaue Außenkontur 34b des Geschossrohlings 1b ohne Nachbearbeitung beispielsweise durch Kalibrieren oder Fräsen gewährleistet sein.During manufacture, the deformation sleeve 51b surrounding the chute 55b provides a manufacturing tolerance, the one that is present in the cone chute 55a and then possibly present (not shown in FIG Figure 10b shown) Deformation cavity formed internal cavities can accommodate displaced material during the inner contour molding step. In this way, a precisely fitting outer contour 34b of the projectile blank 1b can be ensured without post-processing, for example by calibration or milling.

Figur 11 zeigt die Ogivenform-Presse 200. Als Hauptbestandteil umfasst die Ogivenform-Presse 200 einen Heckstempel 207 und eine Geschossaufnahme 205 mit einem Geschossspitzen-Formstempel 213 zum Einführen des vorgeformten und/oder Innenkonturgeformten Geschossrohlings. Dieser wird durch den Heckstempel 207 gehalten oder zumindest zentriert und in einen stationären Teil der Ogivenform-Presse 200 eingeführt, der im Wesentlichen aus der Geschoss-Aufnahme 205 und dem Geschoss- Spitzenstempel 213 besteht. Der Geschoss-Spitzenstempels 213 definiert zusammen mit der Geschossaufnahme 205 die bogenförmige Außenkontur 203 für die Ogive. Die Ogivenmatrize bzw. Geschossaufnahme 205 ist hohlzylindrisch mit ogivenförmiger Innenkontur ausgebildet. In Axialrichtung A geht die Ogiven-Innenkontur 203 der Geschossaufnahme 205 vorzugsweise kontinuierlich insbesondere sprung- und/oder kantenfrei in die ogivenförmige Oberfläche der Bodenseite 213 des Spitzenstempels bzw. Stirn-Stempels über. Figure 11 shows the ogive mold press 200. The main component of the ogive mold press 200 comprises a rear punch 207 and a projectile receptacle 205 with a projectile tip form stamp 213 for inserting the preformed and / or inner contour-shaped projectile blank. This is held by the rear stamp 207 or at least centered and inserted into a stationary part of the ogive molding press 200, which essentially consists of the projectile receptacle 205 and the projectile tip stamp 213. The projectile tip stamp 213, together with the projectile receptacle 205, defines the arcuate outer contour 203 for the ogive. The ogive die or storey receptacle 205 is hollow-cylindrical with an ogive-shaped inner contour. In the axial direction A, the ogive inner contour 203 of the projectile receptacle 205 preferably merges continuously, in particular without jumps and / or edges, into the ogive-shaped surface of the bottom side 213 of the tip stamp or forehead stamp.

Wenn der Geschossrohling mit dem Geschossheckstempel 207 relativ zur durch den Spitzenstempel definierten Bodenseite 213 in die Geschossrohlingaufnahme 205 eingeschoben wird, wird das Metall-Material des vorderen Hülsenabschnitts 23 ogivenartig verformt, sodass aus dem Geschossrohling das Geschoss 2 geformt wird. In der Ogiven-Form-Endstellung, die Figur 11 darstellt, ist aus dem Geschossrohling das abschnittweise ogivenförmige Geschoss 2 gefertigt worden. Das Geschoss 2 kann anschließend beispielsweise durch Planieren nachbearbeitet werden. Der Zylinderabschnitt 25 des Geschosses 2 wird während des Ogiven-Formschritts vorzugsweise nicht verformt, sodass er seinen Außendurchmesser vorzugsweise vollständig beibehält, insbesondere entsprechend dem (Kaliber)-Geschoss-Durchmesser Dz.When the projectile blank with the projectile rear stamp 207 is inserted into the projectile blank receptacle 205 relative to the bottom side 213 defined by the tip stamp, the metal material of the front sleeve section 23 is deformed in an ogive-like manner, so that the projectile 2 is formed from the projectile blank. In the ogive shape end position, the Figure 11 represents, the ogive-shaped projectile 2 was made in sections from the projectile blank. The floor 2 can then be reworked, for example, by leveling. The cylinder section 25 of the projectile 2 is preferably not deformed during the ogive molding step, so that it preferably completely retains its outer diameter, in particular in accordance with the (caliber) projectile diameter D z .

Die Presswerkzeuge bzw. Pressen (100, 101, 103, 200) können mit mechanischen Endschaltern und/oder kraftabhängigen Endschaltern und/oder wegabhängigen Endschaltern zur Definierung der relativen Position der Bodenseite zu dem jeweiligen Stempel in der jeweiligen Endstellung ausgestattet sein. Aufnahmen und Dimensionierungen von Werkzeugen können kaliber-, anlagen- und/oder konstruktionsbedingt unterschiedlich sein.The pressing tools or presses (100, 101, 103, 200) can be equipped with mechanical limit switches and / or force-dependent limit switches and / or path-dependent limit switches for defining the relative position of the base side to the respective punch in the respective end position. Recordings and dimensioning of tools can be different due to caliber, system and / or construction.

Die in der vorstehenden Beschreibung, in den Figuren und Ansprüchen offenbarte Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Realisierung der Erfindung in den verschiedenen Ausgestaltungen von Bedeutung sein.

133
Hülsenformabschnitt
200
Ogiven-Formpresse
203
Ogivenabschnitt
205
Geschossaufnahme
207
Geschossheckstempel
213
Bodenseite
A
Rotationsachse/Axialrichtung
R
Radialrichtung
dO
Öffnungsdurchmesser
DZ
Zylinderdurchmesser
hS
Stammhöhe
hRa
Höhe (Vorformkavität)
hRb
Höhe (Innenkontur-Formkavität)
IG
Geschosslänge
lH
Schachthöhe
lO
Ögivenabschnittshöhe
lS
Stammhöhe
lZ
Zylinderabschnittshöhe
The features disclosed in the above description, in the figures and claims can be of importance both individually and in any combination for realizing the invention in the various configurations.
133
Sleeve molding section
200
Ogiven molding press
203
Ogiven section
205
Floor shot
207
Bullet tail stamp
213
Bottom side
A
Rotation axis / axial direction
R
Radial direction
d O
Opening diameter
D Z
Cylinder diameter
h p
Trunk height
h Ra
Height (preform cavity)
h Rb
Height (inner contour mold cavity)
I G
Floor length
l H
Shaft height
l O
Height section of the ogive
l p
Trunk height
l Z
Cylinder section height

Claims (16)

  1. Metallic solid projectile (1) for practice cartridges, in particular for use on preferably police shooting ranges, wherein the solid projectile (1) comprises an ogival portion (3) at the front side and a cylinder portion (5) for holding the solid projectile (1) in a cartridge case and defines a projectile length (lG) in the axial direction (A),
    wherein the ogival portion (3) comprises an ogival wall (31) and a rotationally symmetrical ogival cavity (33) circumferentially bounded by the ogival wall (31), wherein
    a fully cylindrical stem portion (7) of the solid projectile extends in the axial direction (A) over less than 45% of the projectile length (lG), wherein starting from a bottom (35) of an ogival cavity (33), a shaft (55) extends into the cylinder portion (5), which shaft forms a microchannel (57) and/or a deformation cavity (53), wherein the deformation cavity (53) is shaped at least in sections to be cylindrical and/or at least in sections to be conical with a taper at the front side.
  2. Solid projectile according to claim 1, characterized in that the ogival wall (31) has an ogival wall thickness and the solid projectile (1) forms an annular deformation sleeve wall (51) in the cylinder portion (3) in the axial direction (A) at least in sections, which has a deformation sleeve wall thickness which is greater than the ogival wall thickness, preferably the ogival wall thickness being less than half the radius of the solid projectile and/or preferably the deformation sleeve wall thickness being less than or equal to the radius of the solid projectile (1).
  3. Solid projectile according to one of the claims 1 to 2, characterized in that the solid projectile (1) is blunt at the front side and/or has an opening (11) at the front side which opens into the ogive cavity (33) and has an inner opening diameter (dO), which is greater than 0.5 mm, in particular greater than 1.0 mm, and/or is smaller than 3 mm, in particular smaller than 1.5 mm.
  4. Solid projectile according to one of the preceding claims, characterized in that the fully cylindrical stem portion (7) extends in the axial direction (A) over less than 3 mm, less than 2 mm or less than 1 mm and/or that a calotte (73) is recessed at the rear end (71) of the solid projectile (1).
  5. Solid projectile according to one of the preceding claims, characterized in that an inner contour (32) surrounding the ogival cavity (33) is completely rounded in the axial direction (A), preferably formed step-free and/or has exclusively rounded edges.
  6. Tool arrangement for producing metallic solid projectiles (1) for practice cartridges, preferably with a rotationally symmetrical ogival cavity (33), comprising a preform press (101) having
    a hollow cylindrical projectile blank receptacle (105a) which is bounded in the axial direction (A) by a bottom side (107a),
    a preform punch (111), having a preform section (112) which tapers in the axial direction relative to a front surface (113) in the form of a truncated cone, and in particular rotationally symmetrical, the preform portion (112) being movable relative to the bottom side (107a) for forming a projectile blank (1a) to a preform end position in which the preform punch (111), the bottom side (107a) and the projectile blank receptacle (105a) define a preform cavity for the projectile blank (1a),
    wherein in the preform end position, an axial distance (hS) between the bottom side (107a) and the front surface (113) is less than 45% of a maximum height (hRa) of the cavity in the axial direction (A), wherein the tool arrangement further comprising an inner contour forming press (103) having a hollow cylindrical projectile blank receptacle (105b) which is bounded in the axial direction (A) by a bottom side (107b), and an inner contour forming punch (121) comprising an inner contour forming portion (122) extending axially to a front surface (123), which is formed as a blunt cone tip with a rounded front edge tip (125), said inner contour forming portion (122) being movable relative to the bottom side (107b) for forming the projectile blank (1b) to an inner contour forming end position, wherein said inner contour forming punch (121), said bottom side (107b) and said projectile blank receptacle (105b) define an inner contour forming cavity for said projectile blank (1b), wherein in the inner contour form end position, an axial distance (hr) between the bottom side (107b) and the front surface (123) is greater than the axial distance (hS) between the bottom side (107a) of the preform press (101) and the front surface (113) of the preform punch (111) in the preform end position.
  7. Tool arrangement according to claim 6, characterized in that in particular the inner contour forming portion (122) having adjacent to a guide portion (127) of the inner contour forming punch (121) a frustoconical transition portion (128) extending radially from the inner contour forming portion (122) to the guide portion (127).
  8. Tool arrangement according to claim 6 or 7, characterized in that the taper of the preform portion (112) of the preform punch (111) is sharper than the preferably tapered outer contour of the inner contour portion (122), in particular the sleeve portion, of the inner contour punch (121).
  9. Tool arrangement according to one of the claims 6 to 8, characterized in that the tool arrangement further comprises a setting press (100) having a hollow cylindrical metal blank receptacle (105x) bounded in axial direction (A) by a bottom side (107x) and having a setting punch (115x), which is movable relative to the bottom side (107x) for forming the metal blank (1x) up to a setting end position, in which the setting punch (115x) and the projectile blank receptacle (105x) form a setting cavity with a predetermined clear width for defining a constant outer diameter, in particular the caliber diameter (DZ), of the metal blank (1x).
  10. Tool arrangement according to one of claims 6 to 9, characterized in that the tool arrangement further comprises an ogival forming press (200) which has a hollow cylindrical projectile receptacle (205) which is bounded in the axial direction (A) by a concave, ogival-shaped bottom side (213) and which has a projectile rear punch (207) for holding and/or centering the rear end of the, in particular, internally contour-shaped projectile blank, which is movable relative to the bottom side (213) for forming the solid projectile (2) to an ogival shape end position, in which the projectile rear punch (207), the projectile receptacle (205) and the bottom side (213) define a cavity defining a projectile negative with an ogival portion (23, 203) and a cylinder portion (25) adjacent thereto.
  11. Method for producing metallic solid projectiles (1) for practice cartridges according to calim 1, preferably with a rotationally symmetrical ogive cavity (31), in which a metal blank formed in particular from cut-to-length metal wire is provided, preferably with a cylindrical outer surface, wherein
    in a preforming step, the metal blank is formed into a projectile blank (1a) with a sleeve-shaped portion (3a) which, at the end of the preforming step, extends over more than half of the greatest axial blank height (hRa), in particular the sleeve-shaped portion (3a) being formed with a preferably continuously tapering inner contour (32a), the projectile blank (1a) being deformed after the preforming step in an inner contour forming step in such a manner,
    that a front-side sleeve portion (3b) of the projectile blank (1b) is formed with a radially outer sleeve wall (31b) of substantially constant wall thickness and/or cylindrical inner contour (32b),
    that a rear-side sleeve portion (5b) of the projectile blank (1b) is formed with a shoulder (35b) projecting radially inwards from the sleeve wall (31b), and
    that a shaft (55b) starting from the shoulder (35b) is formed which extends into the rear-side sleeve portion (5b) of the projectile blank (1b),
  12. Method according to claim 11, characterized in that the metal blank is formed in the preforming step while maintaining a remaining fully-cylindrical stem portion (7) of a projectile blank (1a) extending in the axial direction (A) over less than 45% of the greatest axial blank height (hRa), or in that the metal blank is completely penetrated in the axial direction (A) in the preforming step for forming the projectile blank (1a).
  13. Method according to claim 11 or 12, characterized in that shaft (55b) forms a microchannel (57b) and/or a deformation cavity (53b), wherein the deformation cavity (53b) is formed at least sectionally cylindrically and/or at least sectionally conically with taper at the end.
  14. Method according to claim 13, characterized in that in the inner contour forming step the projectile blank (1b) is being formed in such a way,
    that the deformation cavity (53) forms a waist-shaped constriction at the front side, wherein a microchannel (57) is formed in particular between the deformation cavity (53) and the shoulder (35), in which microchannel the inner wall surface of the sleeve section (51) is brought together flat in particular in contact, and/or
    that a distance in the axial direction (A) between the shoulder (35b) and a rear (71) becomes greater than the axial height of the fully cylindrical stem portion (7) of the projectile blank (1a) which maybe present at the end of the preforming step.
  15. Method according to one of the claims 11 to 14, characterized in that the projectile blank, in particular after the inner contour forming step, is formed in an ogival forming step in such a way that the front side sleeve wall (31) forms an ogival outer surface in sections, in particular an opening (11) being maintained at the front side which preferably opens into an ogival cavity (33) defined circumferentially by the sleeve wall (31).
  16. Method according to one of the claims 11 to 15, characterized in that the preforming step, the inner contour forming step and/or the ogival forming step are carried out without cutting, in particular by cold forming, preferably by pressing.
EP17748727.9A 2016-08-05 2017-08-02 Solid metal bullet, tool system and method for producing solid metal bullets Active EP3494357B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RS20201148A RS61040B1 (en) 2016-08-05 2017-08-02 Solid metal bullet, tool system and method for producing solid metal bullets
PL17748727T PL3494357T3 (en) 2016-08-05 2017-08-02 Solid metal bullet, tool system and method for producing solid metal bullets
HRP20201527TT HRP20201527T1 (en) 2016-08-05 2020-09-24 Solid metal bullet, tool system and method for producing solid metal bullets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016009571.7A DE102016009571B3 (en) 2016-08-05 2016-08-05 Metallic solid floor, tool arrangement and method for producing metallic solid floors
PCT/EP2017/069488 WO2018024754A1 (en) 2016-08-05 2017-08-02 Solid metal bullet, tool system and method for producing solid metal bullets

Publications (2)

Publication Number Publication Date
EP3494357A1 EP3494357A1 (en) 2019-06-12
EP3494357B1 true EP3494357B1 (en) 2020-06-24

Family

ID=59523108

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17748727.9A Active EP3494357B1 (en) 2016-08-05 2017-08-02 Solid metal bullet, tool system and method for producing solid metal bullets

Country Status (13)

Country Link
US (2) US11428516B2 (en)
EP (1) EP3494357B1 (en)
CY (1) CY1123765T1 (en)
DE (1) DE102016009571B3 (en)
DK (1) DK3494357T3 (en)
ES (1) ES2834248T3 (en)
HR (1) HRP20201527T1 (en)
HU (1) HUE052064T2 (en)
LT (1) LT3494357T (en)
PL (1) PL3494357T3 (en)
RS (1) RS61040B1 (en)
SG (1) SG11201901023QA (en)
WO (1) WO2018024754A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900759B2 (en) * 2018-09-26 2021-01-26 Environ-Metal, Inc. Die assemblies for forming a firearm projectile, methods of utilizing the die assemblies, and firearm projectiles
DE202020101249U1 (en) * 2020-03-06 2020-05-29 SHU Schürmann Hilleke Umformtechnik GmbH & Co. KG Cutting floor
DE102021104757A1 (en) 2021-02-26 2022-09-01 Ruag Ammotec Ag Metallic practice cartridge bullet
DE102022109315A1 (en) 2022-04-14 2023-10-19 Ruag Ammotec Ag Coated bullet body

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1892158A (en) 1931-05-26 1932-12-27 Matthews John Short range bullet
US3069748A (en) 1956-10-01 1962-12-25 Nosler Partition Bullet Co Inc Bullet making
DE2650136A1 (en) * 1976-10-30 1978-05-11 Dynamit Nobel Ag Projectile for pistol or long barrel gun - has front distortion recess with reduced wall thickness covered by cowl which separates on firing
GB1590600A (en) * 1976-10-30 1981-06-03 Dynamit Nobel Ag Bullet
DE8328476U1 (en) * 1983-10-04 1987-08-20 Mauser-Werke Oberndorf Gmbh, 7238 Oberndorf Projectile for training ammunition
US5131123A (en) * 1989-06-29 1992-07-21 Barnes Bullets, Inc. Methods of manufacturing a bullet
US5259320A (en) * 1989-06-29 1993-11-09 Barnes Bullets, Inc. Intermediate article used to form a bullet projectile or component and a finally formed bullet
US5621186A (en) * 1995-09-20 1997-04-15 Trophy Bonded Bullets, Inc. Bullet
US5943749A (en) * 1997-11-04 1999-08-31 The Nippert Company Method of manufacturing a hollow point bullet
DE10010500A1 (en) * 2000-03-07 2001-09-13 Dynamit Nobel Ag Deforming bullet consists of a casing-less body and a hollow chamber extending into the tapered front part of the body centrally to the longitudinal axis of the bullet
US6776101B1 (en) * 2003-03-21 2004-08-17 Richard K. Pickard Fragmenting bullet
EP1718920A1 (en) * 2004-02-06 2006-11-08 CBC Companhia Brasileira de Cartuchos Lead free monobloc expansion projectile and manufacturing process
SE533168C2 (en) * 2008-06-11 2010-07-13 Norma Prec Ab Firearm projectile
DE102011005389B3 (en) * 2011-03-10 2012-03-01 Metallwerk Elisenhütte GmbH Projectile for practice cartridges
AU2012347410B2 (en) * 2011-12-07 2016-01-14 Sme Engineering (Pty) Ltd A bullet
DE102012003682A1 (en) * 2012-02-23 2014-02-13 Frank Mayer Lead-free expansion hunting bullet with one-piece projectile body and different numbers of guiding or sealing rings as well as differently designed projectile heads
CA2884140A1 (en) 2012-09-06 2014-03-13 Ruag Ammotec Gmbh Bullet for shooting range and practice cartridges
US10209045B2 (en) * 2016-01-15 2019-02-19 Continuous Metal Technology, Inc. Non-jacketed expandable bullet and method of manufacturing a non-jacketed expandable bullet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DK3494357T3 (en) 2020-09-28
CY1123765T1 (en) 2022-03-24
LT3494357T (en) 2020-10-12
WO2018024754A1 (en) 2018-02-08
HRP20201527T1 (en) 2020-12-11
US20190186881A1 (en) 2019-06-20
RS61040B1 (en) 2020-12-31
US11953300B2 (en) 2024-04-09
SG11201901023QA (en) 2019-03-28
US20220357139A1 (en) 2022-11-10
HUE052064T2 (en) 2021-04-28
PL3494357T3 (en) 2021-01-11
DE102016009571B3 (en) 2018-02-08
US11428516B2 (en) 2022-08-30
ES2834248T3 (en) 2021-06-16
EP3494357A1 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
EP1502074B1 (en) Partial fragmentation and deformation bullets having an identical point of impact and proces for the manufacture of such a bullet
EP3494357B1 (en) Solid metal bullet, tool system and method for producing solid metal bullets
AT393559B (en) BULLET
EP1851503A1 (en) Bullet
AT407301B (en) DEVELOPMENT BULLET, AMMUNITION EQUIPPED WITH IT, AND METHOD FOR THE PRODUCTION OF THE BULLET
DE102011108758B3 (en) Multi-part hunting ground
DE2905797C2 (en)
WO2022180243A1 (en) Metal training cartridge bullet
EP1222436B1 (en) Deformation projectile with a penetrator in the nose of the projectile
EP0895573A1 (en) Expansion projectile
DE102016015790B4 (en) Solid metal bullet, tool arrangement and method for manufacturing solid metal bullets
EP3507565B1 (en) Projectile with penetrator
DE19930475A1 (en) Partial decomposition floor
WO2001002791A2 (en) Deformation projectile
EP0636853B1 (en) Bullet for handguns
DE202014103662U1 (en) Lead-free partial decomposition projectile for hunting purposes
EP0106411B1 (en) Small arms ammunition, and manufacturing process therefor
DE10317404A1 (en) Partial dismantling and deformation floors with identical meeting point location
EP4298397A1 (en) Deformation bullet for ammunition for police and other ruling bodies
CH687788A5 (en) Deformation bullet, ammunition equipped therewith, and to processes for the preparation of the projectile.
WO2023161400A1 (en) Intermediate, tool and method for producing a deformation projectile with defined terminal ballistics
DE10109720B4 (en) Forming floor. Projectile construction for pistol, revolver and rifle ammunition etc.
DE3408817A1 (en) Blank cartridge having a weak-point region
DE3447951A1 (en) Metal blank cartridge
DE2228733A1 (en) HUNTING FLOOR

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200109

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1284318

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017005890

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20201527

Country of ref document: HR

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200925

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20201527

Country of ref document: HR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20200402656

Country of ref document: GR

Effective date: 20201116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201527

Country of ref document: HR

Payment date: 20201228

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017005890

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E052064

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200802

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210325

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2834248

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200802

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: LI

Effective date: 20210526

Ref country code: CH

Effective date: 20210526

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201527

Country of ref document: HR

Payment date: 20210727

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201527

Country of ref document: HR

Payment date: 20220726

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20220728

Year of fee payment: 6

Ref country code: CY

Payment date: 20220726

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502017005890

Country of ref document: DE

Representative=s name: SKM-IP SCHMID KRAUSS KUTTENKEULER MALESCHA SCH, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201527

Country of ref document: HR

Payment date: 20230725

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230823

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230801

Year of fee payment: 7

Ref country code: NO

Payment date: 20230822

Year of fee payment: 7

Ref country code: IT

Payment date: 20230831

Year of fee payment: 7

Ref country code: GB

Payment date: 20230824

Year of fee payment: 7

Ref country code: FI

Payment date: 20230823

Year of fee payment: 7

Ref country code: ES

Payment date: 20230918

Year of fee payment: 7

Ref country code: CZ

Payment date: 20230725

Year of fee payment: 7

Ref country code: CH

Payment date: 20230902

Year of fee payment: 7

Ref country code: AT

Payment date: 20230818

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017005890

Country of ref document: DE

Owner name: RWS GMBH, DE

Free format text: FORMER OWNER: RUAG AMMOTEC GMBH, 90765 FUERTH, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230823

Year of fee payment: 7

Ref country code: RS

Payment date: 20230728

Year of fee payment: 7

Ref country code: PL

Payment date: 20230725

Year of fee payment: 7

Ref country code: HU

Payment date: 20230825

Year of fee payment: 7

Ref country code: HR

Payment date: 20230725

Year of fee payment: 7

Ref country code: GR

Payment date: 20230818

Year of fee payment: 7

Ref country code: FR

Payment date: 20230821

Year of fee payment: 7

Ref country code: DK

Payment date: 20230823

Year of fee payment: 7

Ref country code: DE

Payment date: 20230822

Year of fee payment: 7

Ref country code: BE

Payment date: 20230822

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20230724

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20230721

Year of fee payment: 7

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: RWS GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: RUAG AMMOTEC GMBH

Effective date: 20240307

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

Owner name: RWS GMBH, DE

Free format text: FORMER OWNER(S): RUAG AMMOTEC GMBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230802

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230802

REG Reference to a national code

Ref country code: HR

Ref legal event code: PNAN

Ref document number: P20201527

Country of ref document: HR

Owner name: RWS GMBH, DE

Ref country code: NL

Ref legal event code: HC

Owner name: RWS GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: RUAG AMMOTEC GMBH

Effective date: 20240422