EP0100951B1 - Kippstange - Google Patents

Kippstange Download PDF

Info

Publication number
EP0100951B1
EP0100951B1 EP83107254A EP83107254A EP0100951B1 EP 0100951 B1 EP0100951 B1 EP 0100951B1 EP 83107254 A EP83107254 A EP 83107254A EP 83107254 A EP83107254 A EP 83107254A EP 0100951 B1 EP0100951 B1 EP 0100951B1
Authority
EP
European Patent Office
Prior art keywords
spring
stick
tilting
joint
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83107254A
Other languages
English (en)
French (fr)
Other versions
EP0100951A1 (de
Inventor
Immanuel Straub
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Straub Federnfabrik AG
Original Assignee
Straub Federnfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Straub Federnfabrik AG filed Critical Straub Federnfabrik AG
Priority to AT83107254T priority Critical patent/ATE30121T1/de
Publication of EP0100951A1 publication Critical patent/EP0100951A1/de
Application granted granted Critical
Publication of EP0100951B1 publication Critical patent/EP0100951B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C19/00Design or layout of playing courts, rinks, bowling greens or areas for water-skiing; Covers therefor
    • A63C19/06Apparatus for setting-out or dividing courts
    • A63C19/062Slalom gate poles, posts or marking sticks for sport fields
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F9/00Arrangement of road signs or traffic signals; Arrangements for enforcing caution
    • E01F9/60Upright bodies, e.g. marker posts or bollards; Supports for road signs
    • E01F9/623Upright bodies, e.g. marker posts or bollards; Supports for road signs characterised by form or by structural features, e.g. for enabling displacement or deflection
    • E01F9/627Upright bodies, e.g. marker posts or bollards; Supports for road signs characterised by form or by structural features, e.g. for enabling displacement or deflection self-righting after deflection or displacement
    • E01F9/629Traffic guidance, warning or control posts, bollards, pillars or like upstanding bodies or structures

Definitions

  • the invention relates to a tilting rod, in particular a slalom tilting rod, with a first rod part, a second rod part and a coil spring fastened to the first rod part and to the second rod part, the part of which does not serve for fastening forms a spring joint.
  • a tilting rod in particular a slalom tilting rod
  • the first rod part serves as a floor anchoring part
  • the second rod part forms the pivot rod.
  • a pennant pole (CH-A-142477) and a slalom tilting pole of this type are already known.
  • the result of the spring joint provided with such a rod is that when it is touched, it is not knocked over or tilted, but merely yields resiliently and then returns to the original position.
  • the rod continues to vibrate for a long time after it has been bent. These vibrations can cause the ground anchoring part inserted in the snow to loosen with such a slalom tilting rod. There is then a danger that it will be torn out of the snow on another turn.
  • Another disadvantage is that after a tight fit, e.g. by freezing the ground anchoring part, the spring of the spring joint can be pulled apart when trying to pull the slalom tilting rod out of the snow.
  • a slalom tilting rod in which the lower end of the swivel rod is pressed axially against the floor anchoring part by a compression spring acting on a tension element. If a force acts laterally on the swivel rod, it can be swiveled against the force of the compression spring, the compression spring then ensuring that it returns to the original vertical position.
  • the disadvantage here is that even with a swivel of almost 90 ° there is no longer any automatic erection, but the swivel rod must be brought into the erection position by hand.
  • this is achieved in the case of a tilting rod of the type mentioned at the outset in that at least one active member is provided, which stresses the coil spring windings of the spring joint, and in that, coaxially to the coil spring, a further coil spring is provided, the windings of which have a winding sense, which is opposite to that of the windings of the first-mentioned coil spring, and fit snugly against the windings of the first-mentioned coil spring at least in the area of the spring joint.
  • This configuration avoids the disadvantages of using a helical spring as a spring joint. If the tilt rod is tilted, it returns to its original position after a few short vibrations.
  • the tilt position is more than 90 °. A much larger turn is even possible.
  • the turns open evenly because, in contrast to the individual disks of the known slalom tilting rod described above, they are connected to one another.
  • the slalom tilting rod according to the invention also has a high positional stability. If the additional coil spring were missing, the rod would never return to exactly the same position as before after tilting, because the individual turns of the spring joint rub against each other and thus assume slightly different positions each time.
  • the further coil spring is advantageously arranged within the first-mentioned coil spring, which forms the spring joint. With a relatively small diameter of the spring joint, this makes it possible to achieve both a great positional stability and an adequate tilting resistance.
  • the further helical spring advantageously also has turns which do not abut one another. This makes assembly easier, and any slight dimensional deviations of the two coil springs can be tolerated without damage, without affecting the function of the tilt rod.
  • the active member is expediently arranged at the end or in the vicinity of one end of the spring joint and acts on the other end of the helical spring forming the spring joint via a tension member. This results in a particularly simple construction. The same also applies to an embodiment in which, for reasons of symmetry, one active member is arranged at the ends of the helical spring and these members are connected to one another via a tension member.
  • the active member is expediently formed by a compression spring.
  • Compression springs are relatively inexpensive to manufacture.
  • the compression spring advantageously has a larger wire cross section than the helical spring forming the spring joint. This makes it possible to keep the diameter of the spring joint small and to exert such a force on this spring joint that the swivel rod is returned to the original position quickly and without long vibrations after a deflection.
  • the compression springs expediently have a smaller diameter than the spring joint or the attachment lugs, so that they can move freely in the plastic tube of the tilt rod. So that the compression spring and the coil spring forming the spring joint form a unit that is conveniently suitable for connecting the rod parts, it is advantageous that at least one turn of the compression spring is clamped between turns of the coil spring.
  • the respective compression spring can also consist of one piece with the coil spring forming the spring joint. In this case, it is sufficient to wind a single spring, which is then able to perform several functions.
  • the helical spring can have a fastening projection on both sides of the part serving as a spring joint.
  • this fastening attachment can be pressed or screwed into the first rod part or into the second rod part, which normally each consist of a piece of plastic tube. This enables the tilt rod to be manufactured cheaply.
  • the fastening attachment is expediently part of the coil spring. This makes the production of the slalom tilting rod cheaper. It is advantageous if the respective attachment projection has a smaller diameter than the part of the coil spring that forms the spring joint. The larger diameter of the part serving as a spring joint contributes to the stability of the tilting rod.
  • a relatively small force of the compression spring is then sufficient, which can then also be formed as part of the helical spring forming a spring joint. If, however, it is required that the tilting rod has the same diameter over its entire length, it is expedient if the respective fastening attachment has the same diameter as the part forming the spring joint. In this case it is also possible to cover the spring joint without the diameter in this area becoming larger than that of the rest of the rod.
  • the fastening attachment is fastened by pressing it into a rod part, it expediently has at least one turn which has a somewhat larger diameter than the rest of the attachment. This enables better anchoring in the plastic pipe. A good anchor is necessary so that e.g. B. when pulling the tilt rod out of the snow or out of the ground the coil spring is not torn from one of the rod parts.
  • the spring joint part expediently has a practically conical end section at both ends. This results in a gradual transition from the spring joint part to the fastening part, which improves the functionality of the spring joint part.
  • the spring joint part expediently has a cylindrical section between the conical end sections. It is primarily the cylindrical section that deforms when the rod tilts and ensures that the rod returns to the practically exactly same position afterwards.
  • the coil spring or the compression spring can consist of round wire. This results in the lowest manufacturing costs and enables the helical spring to be screwed into a thread of the respective rod part. However, it is also possible to manufacture the coil spring and / or the compression spring from square wire. This enables an even better use of the available limited space and brings about greater positional stability.
  • the dimensional stability of a tilting rod can possibly be impaired by the compression spring, because it has a tendency to curve because of the force exerted by the tension member. This curvature can then be transferred to the relatively soft plastic tube and thus also cause the tilting rod to curve.
  • a straight holder can be provided for the compression spring. This advantageously consists of a wound sheet metal strip of practically the same width as the inside diameter of the compression spring. It prevents the same from bending to either side and, because it can move in the tension spring, at the same time form part of the tension member, which is held under tension by the compression spring.
  • the tension member can be or have a chain.
  • a chain has the advantage that it is sufficient to cut a piece from the chain material, the end links of the chain then serving as a fastening element.
  • a cable as a tension member, for example a steel cable, or a corresponding element made of plastic.
  • the attachment lugs can be screwed into a thread of the respective rod part. This simplifies the assembly of the tilt rod. If necessary, the joint unit can also be easily replaced.
  • a vibration damping device which e.g. acts on the spring joint. This makes it possible to effectively dampen the vibrations of the tilting rod and gives the designer greater freedom in the design of the spring joint. For example, when using a vibration damper, the diameter of the spring joint can be kept relatively small without this being bought at the expense of a disproportionately long decay time.
  • a vibration damper device which is formed by a friction member that can be moved back and forth inside the slalom tilting rod, is particularly recommended for cost reasons.
  • a friction member can be manufactured cheaply and uses z.
  • the friction member advantageously consists of a cylindrical jacket-shaped resilient sheet metal piece which is coupled to the free end of the compression spring and rubs against the inner wall of the slalom tilting rod during its movement.
  • Such a friction member is very cheap to manufacture and can be easily assembled using the same means as the tension member.
  • a friction member which consists of a tubular, resilient piece of sheet metal which is coupled to the free end of the compression spring and bears against the windings of this compression spring with prestress and rubs against it during its movement.
  • a friction member which consists of a tubular, resilient piece of sheet metal which is coupled to the free end of the compression spring and bears against the windings of this compression spring with prestress and rubs against it during its movement.
  • the vibration damping device according to the invention can also be used for tilt rods which have a different joint design than a spring joint.
  • FIGS. 1 and 2 of a tilting rod 10 intended for use as a slalom tilting rod has a first rod part 11 designed as a floor anchoring part, which is connected via a spring joint 13 to a second rod part 15 designed as a pivoting rod.
  • This connection enables the pivoting rod 15 to be pivoted in any direction.
  • Both the floor anchoring part 11 and the swivel rod 15 consist of a light plastic tube, the free ends of which are each closed by a pin 17.
  • plastic pipe other pipe or rod materials, e.g. Wood or aluminum. However, the use of plastic is preferred.
  • the spring joint 13 is formed by a helical spring 19 which, in addition to the spring joint section 13, has further sections 21, 23 (FIG. 2) with special functions.
  • the sections 21 serve as fastening lugs with which the coil spring 19 is anchored in the floor anchoring part 11 and in the pivot rod 15.
  • the fastening projection 21 is provided with a turn 22 which has a slightly larger diameter than the diameter of the rest of the fastening projection. This is particularly advantageous for anchoring in a plastic pipe. If such is used for the production of the slalom tilting rod, the tube end can, for. B. can be slightly softened by immersion in hot water before the approach 21 is inserted into the pipe end. The wide tube end then adapts to the contours of the attachment projection 21, the plastic tube firmly enclosing the attachment projection 21 after cooling.
  • the sections 23 of the coil spring 19 have a slightly smaller diameter than the fastening sections 21 and serve as active members which stress the spring joint part 13 of the coil spring 19.
  • the sections 23 thus represent compression springs which are connected to one another via a tension member 25 under pre-tension to fulfill their purpose. As a result, the turns of the spring joint 13 are pressed firmly against one another.
  • the diameter of the sections 23 serving as compression springs is smaller than that of the fastening lugs 21.
  • the turns in the plastic tube 11, 15 can move freely without friction losses due to friction of the turns on the inner wall of the plastic tube.
  • the section 13, which forms the spring joint part can be wound in such a way that the windings lie against one another with a prestress.
  • the size of this preload is limited for design and manufacturing reasons.
  • the preload cannot exceed a certain size for a given spring dimension.
  • the spring joint would be so soft that after a contact with the slalom tilting rod, the vibrations of long duration already mentioned at the beginning would occur. This disadvantage has prompted experts to refrain from the usual spring joints in Slakom tipping rods.
  • the spring joint 13 formed from a helical spring 19 is subjected to pressure from an active member 23 in addition to any prestress that may be present, this spring joint is nevertheless stiff enough for the given small dimensions due to the diameter of the slalom rod a touch and deflection of the slalom tilting rod to bring it back into its original position quickly and without large and long-lasting vibrations.
  • the spring joint part 13 has a conical end section 14 at both ends. Between these end sections 14 there is a cylindrical section 16, the diameter of which approximately corresponds to the outside diameter of the slalom tilting rod or is somewhat larger. With such a configuration, the turns in the cylindrical section with the large diameter primarily open when turning. If the rod then returns to its original position after the bend and the turns come to lie slightly differently on one another, the relatively large diameter of the spring joint has the advantage that the slalom tilting rod returns to a position that is only slightly different from the original one Location is. Greater positional stability is achieved when using square wire to produce the coil spring 19. As a rule, the positional stability of a spring made of round wire is also sufficient, which is cheaper than a spring with a different wire profile.
  • the described configuration of the helical spring forming the spring joint 13 is extremely simple and cheap. However, it would also be possible to design the compression springs 23 separately. In principle, a single compression spring 23 would also suffice. However, the use of two compression springs has the advantage that the individual compression springs 23 can be made relatively short, so that they do not buckle when pressed together and practically hardly ever come into contact with the tube wall. Instead of a compression spring 23 could z. B. a gas spring or other elastically deformable member can be used, which is suitable for stressing the spring joint 13 under pressure.
  • the tension member 25 consists of a chain which is attached to each end of the spring with a ring 29.
  • the compression springs 23 are tensioned so that the windings in the region 13 are pressed together.
  • the rings used to fasten 29 advantageously consist of about 1 1/2 turns of a coil spring. With a suitable dimensioning, the ends of these rings prevent the ring from rotating because they would abut the spring 23 if they were to rotate.
  • FIGS. 3 and 4 The exemplary embodiment of a slalom tilting rod 10 shown in FIGS. 3 and 4 is basically constructed similarly to the slalom tilting rod according to FIGS. 1 and 2. The same reference numbers can therefore be used. However, as a comparison of FIG. 3 with FIG. 2 shows, the joint unit 30 has a somewhat different structure.
  • the spring joint 13 is in turn formed by a helical spring 19 which, in addition to the spring joint section 13, also has a fastening section 21 with which the helical spring 19 is anchored in the floor anchoring part 11 and in the pivot rod 15.
  • a threaded section 8, 12 is provided in the respective plastic tube 11, 15, into which section 21 of the coil spring 19 is screwed. The attachment could also be done in the same way as described in the first embodiment.
  • the coil spring 19 advantageously has the same diameter over the entire length, which simplifies the manufacture of the spring. This also makes it possible for the slalom tilting rod 10 to have the same diameter over its entire length, it also being possible to cover the spring joint.
  • the active element is formed by a compression spring 23.
  • the spring rings 29 advantageously consist of approximately 1 "Y 2 turns of a helical spring, the ends of these rings preventing rotation of the ring with a suitable dimensioning, as was already described above in relation to the first exemplary embodiment of the invention.
  • a steel cable 25 it could also For example, a plastic cable, e.g. made of nylon, or a chain, as shown in Figure 2, can be used.
  • a vibration damping device 33 is also provided on the spring joint unit 30. This has the task of damping the movements of the swivel rod 15 after a deflection, so that it will soon return to the original position and remain in it.
  • the vibration damping device is activated by an inside of the slalom tilting rod, e.g. formed in the ground anchoring back and forth friction member.
  • the friction member consists of a resilient sheet metal piece in the form of a cylinder jacket (FIG. 4), which is coupled to the free end of the compression spring 23 with the ring 29 and rubs against the inner wall of the slalom tilting rod as it moves.
  • the slalom tilting rod is made of plastic.
  • the compression spring 23 and the friction member 33 are arranged in the floor anchoring part 11.
  • the arrangement shown has the advantage that the center of gravity of the slalom tilting rod is very low and the masses moved when the pivoting rod is deflected are kept as small as possible.
  • FIG. 5 A preferred embodiment of the tilt rod 10 is shown in Figures 5 and 6.
  • the structure of the joint unit 30 is the same as that of FIG. 3.
  • the spring joint 13 is in turn formed by a helical spring 19 which, in addition to the spring joint section 13, also has a fastening section 21 with which the helical spring 19 is anchored in the first rod part 11 and in the second rod part 15 is.
  • the respective rod part 11, 15 is advantageously formed by a plastic tube in which a threaded section 8, 12 is provided.
  • This section 23 is designed as a compression spring. In Figure 5, only a section 23 is provided. However, it would be possible, as in FIG. 1, to provide two such sections 23.
  • the spring joint 13 is covered by a number of rings 31 which surround the spring joint 13.
  • the tension member 25, which connects the opposite ends of the helical spring to one another, consists of a chain 25 'and a strip-shaped part 25 "which is twisted as shown in FIG. 5.
  • the strip 25" therefore has a twist as it did arises when one end is clamped and the other end is twisted around the longitudinal axis of the strip.
  • Eyelets 26, 26 ' are provided at the ends of the strip 25 ", one eyelet 26' being used for connection to the chain 25 ', while the other eyelet 26 receives a spring ring 29.
  • the spring rings 29 therefore have the same function as in the other embodiments, namely to fasten the tension member 25 within the spring 19, the compression spring 23 still compressing the windings in the region of the spring joint 13 with additional force.
  • the twisted strip 25 " has a special function. Because section 23 is relatively long, it has the tendency in the construction of FIG. 3 to bend laterally. This can lead to deformation of the relatively soft pipe section in which it is housed. This is prevented by the strip 25 ".
  • This strip 25 " is advantageously made of sheet metal so that it has sufficient dimensional stability. However, it would also be possible to use another element, for example a tube or a star-shaped profile, for stiffening.
  • the stiffening 25" is primarily for versions of the tilting rod important where a vibration damping device 33 can be dispensed with or where a vibration damping device of the type according to FIGS. 3 and 4 is used.
  • the vibration damping device 33 is arranged above the compression spring section 23.
  • the vibration damping device consists of a sleeve 33 which has a slot 34 which extends practically in the longitudinal direction. These The bush rests with a certain preload on the section 23 and is connected to the free end of the compression spring section 23 by an embossing 35 which engages in a thread. If section 23 is thus pressed together, sleeve 33 rubs against the windings of compression spring section 23.
  • This configuration has the advantage that friction conditions that remain practically constant are achieved over the entire service life of the tilting rod.
  • both the stiffening member 25 ′′ and the vibration damping device 33 could be used in the spring joint units of the other embodiments.
  • a spring 36 can also be seen from FIG. 5, which has a winding direction opposite the winding direction of the helical spring 19.
  • This spring 36 which can be referred to as a stabilizing spring, extends over the area of the spring joint 13.
  • the outside diameter of the spring 36 corresponds to the inside diameter of the spring 19, so that the turns of the spring 36 bear against the turns of the helical spring 19. In this way, it is brought about that, after the spring joint 13 has deflected, the individual turns of the spring 19 always come to lie practically exactly on one another, so that the tilting rod practically always returns to the original position after being pivoted out.
  • a stabilizing spring 36 could also be used in the embodiment in FIG. 3.
  • the invention is not limited to these embodiments. It is possible for a person skilled in the art to change the tilt rod according to the requirements of the various fields of application without departing from the invention. The invention is therefore not limited to the use of the tilt rod as a slalom tilt rod.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Springs (AREA)
  • Switches With Compound Operations (AREA)
  • Walking Sticks, Umbrellas, And Fans (AREA)
  • Pivots And Pivotal Connections (AREA)

Description

  • Die Erfindung betrifft eine Kippstange, insbesondere eine Slalomkippstange, mit einem ersten Stangenteil, einem zweiten Stangenteil und einer am ersten Stangenteil und am zweiten Stangenteil befestigten Schraubenfeder, deren nicht der Befestigung dienende Teil ein Federgelenk bildet. Bei der Verwendung als Slalomkippstange dient der erste Stangenteil als Bodenverankerungsteil, währenddem der zweite Stangenteil den Schwenkstab bildet.
  • Eine Wimpelstange (CH-A-142477) und eine Slalomkippstange dieser Art sind bereits bekannt. Das bei einer solchen Stange vorgesehene Federgelenk hat zur Folge, dass sie bei einer Berührung nicht umgeworfen oder schräg gestellt wird, sondern bloss federnd nachgibt und dann wieder in die ursprüngliche Lage zurückkehrt. Nachteilig ist jedoch, dass die Stange nach dem Abbiegen noch während längerer Zeit Schwingungen ausführt. Diese Schwingungen können dazu führen, dass sich bei einer solchen Slalomkippstange der im Schnee eingesteckte Bodenverankerungsteil lokkert. Es besteht dann die Gefahr, dass sie bei einer weiteren Abbiegung aus dem Schnee herausgerissen wird. Nachteilig ist auch, dass nach einem starken Festsitzen, z.B. durch Einfrieren, des Bodenverankerungsteils die Feder des Federgelenks auseinander gezogen werden kann, wenn versucht wird, die Slalomkippstange aus dem Schnee herauszuziehen.
  • Um diesen Nachteilen abzuhelfen, ist bereits eine Slalomkippstange geschaffen worden, bei der das untere Ende des Schwenkstabes in Axialrichtung durch eine auf ein Zugelement wirkende Druckfeder gegen den Bodenverankerungsteil gepresst wird. Wirkt seitlich eine Kraft auf den Schwenkstab, so kann dieser entgegen der Kraft der Druckfeder verschwenkt werden, wobei dann die Druckfeder dafür sorgt, dass er sich wieder in die ursprüngliche senkrechte Stellung begibt. Nachteilig ist dabei, dass bereits bei einer Verschwenkung von nahezu 90° kein automatisches Aufrichten mehr erfolgt, sondern der Schwenkstab von Hand in die Aufrichtstellung gebracht werden muss.
  • Um diesen Nachteil zu vermeiden, ist bereits vorgeschlagen worden, ein Gelenk mit mehreren Scheiben zu bilden, die wie die Wirbelkörper der Wirbelsäule übereinander angeordnet sind, wobei wiederum eine Druckfeder und ein Zugelement vorgesehen sind, um die Schwenkstange in Richtung zum Bodenverankerungsteil zu ziehen (EP-A-0 063 254, veröffentlicht am 27. 10. 82; das Dokumentfällt unter Artikel 54(3) EPÜ). In der Praxis hat sich jedoch gezeigt, dass sich beim Verschwenken lediglich ein Spalt zwischen zwei Scheiben öffnet und die übrigen Scheiben in ihrer Stellung verbleiben. Lediglich bei einer besonders starken Abbiegung öffnen sich noch weitere Spalte. Wegen diesem ungleichmässigen Öffnen werden einzelne Scheiben durch das Zugglied übermässig , beansprucht, was zu einem raschen Verschleiss führt und die Funktionsfähigkeit des Gelenkes rasch beeinträchtigt. Auch ist der Ausschwingvorgang immer noch relativ lang, so dass auch hier eine gewisse Gefahr besteht, dass sich der Bodenverankerungsteil im Schnee löst.
  • Die beiden letztgenannten Slalomkippstangen haben weiter den Nachteil, dass sie relativ teuer in der Herstellung sind.
  • Es ist Aufgabe der vorliegenden Erfindung, eine Kippstange zu schaffen, die nach einer Abbiegung eine relativ kleine Schwingdauer aufweist und eine hohe Lagestabilität besitzt. Sie sollte auch Abbiegungen in einem Winkel von über 120° ermöglichen, praktisch keinem Verschleiss unterworfen und billig in der Herstellung sein.
  • Gemäss der Erfindung wird dies bei einer Kippstange der eingangs erwähnten Art dadurch ereicht, dass mindestens ein aktives Glied vorgesehen ist, welches die Schraubenfederwindungen des Federgelenks auf Druck beansprucht, und dass koaxial zur Schraubenfeder eine weitere Schraubenfeder vorgesehen ist, deren Windungen einen Wicklungssinn aufweisen, welcher jenem der Windungen der erstgenannten Schraubenfeder entgegengesetzt ist, und an den Windungen der erstgenannten Schraubenfeder mindestens im Bereich des Federgelenks passend anliegen. Durch diese Ausbildung werden die Nachteile der Verwendung einer Schraubenfeder als Federgelenk vermieden. Wird die Kippstange gekippt, so kehrt sie nach wenigen kurzen Schwingungen in die ursprüngliche Lage zurück. Es besteht keine Gefahr eines Blockierens, wenn die Kippstellung mehr als 90° beträgt. Es ist sogar eine wesentlich grössere Abbiegung möglich. Bei jeder Abbiegung öffnen sich die Windungen gleichmässig, da sie im Gegensatz zu den einzelnen Scheiben der vorher beschriebenen bekannten Slalomkippstange miteinander verbunden sind. Die erfindungsgemässe Slalomkippstange besitzt dank der weiteren Schraubenfeder auch eine hohe Lagestabilität. Würde die weitere Schraubenfeder fehlen, so würde nach einem Kippen der Stab nie ganz genau in die gleiche Lage wie vorher zurückkehren, weil die einzelnen Windungen des Federgelenks aneinander reiben und somit jedesmal leicht unterschiedliche Stellungen zueinander einnehmen. Weil aber eine weitere Schraubenfeder vorgesehen ist, die mit ihren Windungen an den Windungen des Federgelenks anliegt, wird eine Führung der Windungen des Federgelenks bewirkt, so dass diese Windungen nach einer Biegung des Federgelenks praktisch wieder in die gleiche Stellung zurückgeführt werden, die sie vorher innehielten. Dies gibt der Kippstange die gewünschte hohe Lagestabilität. Des weiteren hat sich in der Praxis gezeigt, dass das Federgelenk dank der weiteren Schraubenfeder wesentlich weniger beschädigungsanfällig ist als die vorbekannten Federgelenke. Bei harten Schlägen gegen das Federgelenk fängt nämlich die weitere Schraubenfeder Scherkräfte ab, die auf die erstgenannte Schraubenfeder einwirken und zur Verformung dieser Schraubenfeder führen können. Von besonderer Bedeutung für die Verstärkung des Federgelenks ist der entgegengesetzte Wicklungssinn, weil dadurch bewirkt wird, dass die Windungen der weiteren Schraubenfeder spiellos an den Windungen der erstgenannten Schraubenfedern anliegen.
  • Vorteilhaft ist die weitere Schraubenfeder innerhalb der erstgenannten Schraubenfeder angeordnet, welche das Federgelenk bildet. Dies ermöglicht es, bei relativ kleinem Durchmesser des Federgelenks sowohl eine grosse Lagestabilität als auch einen ausreichenden Kippwiderstand zu erzielen. Vorteilhaft weist ferner die weitere Schraubenfeder nichtaneinanderanliegende Windungen auf. Dadurch wird die Montage erleichtert, und es können auch etwaige geringe Massabweichungen der beiden Schraubenfedern schadlos toleriert werden, ohne dass sie die Funktion der Kippstange beeinträchtigen.
  • Zweckmässigerweise ist das aktive Glied am Ende oder in der Nähe eines Endes des Federgelenkes angeordnet und ist auf das andere Ende der das Federgelenk bildenden Schraubenfeder über ein Zugglied wirksam. Dies ergibt eine besonders einfache Konstruktion. Das gleiche gilt auch für eine Ausführungsform, bei der aus Symmetriegründen je ein aktives Glied an den Enden der Schraubenfeder angeordnet ist und diese Glieder miteinander über ein Zugglied verbunden sind.
  • Zweckmässigerweise wird das aktive Glied durch eine Druckfeder gebildet. Druckfedern sind relativ billig herstellbar. Die Druckfeder weist vorteilhaft einen grösseren Drahtquerschnitt auf als die das Federgelenk bildende Schraubenfeder. Dies ermöglicht es, den Durchmesser des Federgelenkes klein zu halten und auf dieses Federgelenk eine solche Kraft auszuüben, dass der Schwenkstab nach einer Auslenkung rasch und ohne lange Schwingungen in die ursprüngliche Lage zurückgeführt wird. Die Druckfedern haben zweckmässigerweise einen kleineren Durchmesser als das Federgelenk oder die Befestigungsansätze, damit sie sich im Plastikrohr der Kippstange ungehindert bewegen können. Damit die Druckfeder und die das Federgelenk bildende Schraubenfeder eine Einheit bilden, die sich bequem zur Verbindung der Stangenteile eignet, ist es vorteilhaft, dass mindestens eine Windung der Druckfeder zwischen Windungen der Schraubenfeder eingeklemmt ist. Die jeweilige Druckfeder kann aber auch aus einem Stück mit der das Federgelenk bildenden Schraubenfeder bestehen. In diesem Falle genügt es, eine einzige Feder zu wickeln, die dann in der Lage ist, mehrere Funktionen zu übernehmen.
  • Die Schraubenfeder kann zu beiden Seiten des als Federgelenk dienenden Teils einen Befestigungsansatz aufweisen. Dieser Befestigungsansatz kann bei der Fertigung in den ersten Stangenteil bzw. in den zweiten Stangenteil, welche normalerweise je aus einem Stück Kunststoffrohr bestehen, eingepresst oder eingeschraubt werden. Dies ermöglicht eine billige Herstellung der Kippstange. Zweckmässigerweise ist der Befestigungsansatz ein Teil der Schraubenfeder. Dies verbilligt die Herstellung der Slalomkippstange. Es ist dabei von Vorteil, wenn der jeweilige Befestigungsansatz einen kleineren Durchmesser besitzt, als der das Federgelenk bildende Teil der Schraubenfeder. Der grössere Durchmesser des als Federgelenk dienenden Teils trägt zur Stabilität der Kippstange bei. Es genügt dann eine relativ kleine Kraft der Druckfeder, die dann ebenfalls als Teil der als Federgelenk bildenden Schraubenfeder ausgebildet sein kann. Wenn aber gefordert wird, dass die Kippstange auf ihrer ganzen Länge den gleichen Durchmesser aufweist, so ist es zweckmässig, wenn der jeweilige Befestigungsansatz den gleichen Durchmesser besitzt, wie der das Federgelenk bildende Teil. In diesem Fall ist es auch möglich, das Federgelenk abzudecken, ohne dass der Durchmesser in diesem Bereich grösser wird als bei der übrigen Stange.
  • Wenn der Befestigungsansatz durch Einpressen in einen Stangenteil befestigt wird, so weist er zweckmässigerweise mindestens eine Windung auf, die einen etwas grösseren Durchmesser besitzt als der übrige Ansatz. Dies ermöglicht eine bessere Verankerung im Kunststoffrohr. Eine gute Verankerung ist notwendig, damit z. B. beim Herausziehen der Kippstange aus dem Schnee oder aus dem Boden die Schraubenfeder nicht aus einem der Stangenteile gerissen wird. Wenn der Durchmesser des Federgelenks aber grösser gewählt wird als derjenige der Befestigungsansätze, so besitzt der Federgelenkteil zweckmässigerveise an beiden Enden einen praktisch konischen Endabschnitt. Dadurch erfolgt ein gradueller Übergang vom Federgelenkteil zum Befestigungsteil, was die Funktionsfähigkeit des Federgelenkteils verbessert. Der Federgelenkteil weist aber zweckmässigerweise zwischen den konischen Endabschnitten einen zylindrischen Abschnitt auf. Es ist in erster Linie der zylindrische Abschnitt, der sich beim Kippen der Stange verformt und dafür sorgt, dass die Stange nachher wieder in die praktisch genau gleiche Stellung zurückkehrt.
  • Die Schraubenfeder oder die Druckfeder können aus Runddraht bestehen. Dies ergibt die niedrigsten Fabrikationskosten und ermöglicht ein Einschrauben der Schraubenfeder in ein Gewinde des jeweiligen Stangenteils. Es ist aber möglich, die Schraubenfeder und/oder die Druckfeder auch aus Vierkantdraht herzustellen. Dies ermöglicht eine noch bessere Ausnützung des zur Verfügung stehenden knappen Raumes und bewirkt eine grössere Lagestabilität.
  • Die Formstabilität einer Kippstange kann unter Umständen durch die Druckfeder beeinträchtigt werden, denn diese hat wegen der durch das Zugglied ausgeübten Kraft die Tendenz sich zu krümmen. Diese Krümmung kann sich dann auf das relativ weiche Plastikrohr übertragen und so auch eine Krümmung der Kippstange bewirken. Um dies zu verhindern, kann bei der Druckfeder ein Geradehalter vorgesehen werden. Dieser besteht vorteilhaft aus einem verwundenden Blechstreifen von praktisch gleicher Breite wie der Innendurchmesser der Druckfeder. Er verhindert so eine Ausbiegung derselben nach irgendeiner Seite und kann, weil er in der Zugfeder beweglich ist, zugleich einen Teil des Zugglieds bilden, welches von der Druckfeder unter Spannung gehalten wird. Das Zugglied kann eine Kette sein oder eine solche aufweisen. Die Verwendung einer Kette hat den Vorteil, dass es genügt, vom Kettenmaterial ein Stück abzulängen, wobei dann die Endglieder der Kette als Befestigungselement dienen. Es ist aber auch möglich, als Zugglied ein Kabel zu verwenden, z.B. ein Stahlkabel, oder ein entsprechendes Element aus Kunststoff.
  • Wie bereits erwähnt wurde, können die Befestigungsansätze in ein Gewinde des jeweiligen Stangenteils eingeschraubt sein. Dadurch wird die Montage der Kippstange vereinfacht. Bei Bedarf kann die Gelenkeinheit auch leicht ausgewechselt werden.
  • Von besonderem Vorteil ist es, wenn eine Schwingungsdämpfvorrichtung vorgesehen ist, die z.B. auf das Federgelenk einwirkt. Dies ermöglicht es, die Schwingungen der Kippstange wirksam zu dämpfen und gibt dem Konstrukteur grössere Freiheit bei der Ausgestaltung des Federgelenkes. So kann beispielsweise bei der Anwendung eines Schwingungsdämpfers der Durchmesser des Federgelenks relativ klein gehalten werden, ohne dass dies auf Kosten einer unverhältnismässig langen Ausschwingzeit erkauft wird.
  • Wenn auch verschiedene Arten von Schwingddgsdämpfern anwendbar sind, so empfiehlt sich aus Kostengründen besonders eine Schwingungsdämpfervorrichtung, die durch ein im Innern der Slalomkippstange hin- und herbewegliches Reibglied gebildet wird. Ein solches Reibglied kann billig hergestellt werden und benützt z. B. die Plastikrohr-Innenwandung als Reibfläche. Vorteilhaft besteht das Reibglied aus einem zylindermantelförmigen federnden Blechstück, das mit dem freien Ende der Druckfeder gekoppelt ist und bei seiner Bewegung an der Innenwandung der Slalomkippstange reibt. Ein solches Reibglied ist sehr billig in der Herstellung und kann leicht mit den gleichen Mitteln montiert werden wie das Zugglied.
  • Sehr zweckmässig ist aber auch ein Reibglied, das aus einem röhrenförmigen federnden Blechstück besteht, das mit dem freien Ende der Druckfeder gekoppelt ist und an den Windungen dieser Druckfeder mit Vorspannung anliegt und bei seiner Bewegung an diesen reibt. Bei dieser Ausbildung besteht Gewähr, dass praktisch die gleichen Reibungsverhältnisse über die ganze Lebensdauer der Kippstange aufrecht erhalten bleiben und nicht etwa durch eine Fliessbewegung, wie sie bei thermoplastischem Material auftreten kann, beeinflusst werden. Zudem wirkt die Hülse, die durch das federnde Blechstück gebildet wird, stabilisierend auf die Druckfeder ein, welche unter der Spannung durch das Zugglied die Tendenz besitzt, seitlich auszubiegen und diese Ausbiegung auf das Kunststoffrohr des Stabes zu übertragen. Es können daher weitere Massnahmen zur Stabilisierung der Druckfeder entfallen.
  • Die erfindungsgemässe Schwingungsdämpfvorrichtung kann auch für Kippstangen verwendet werden, die eine andere Gelenkausbildung aufweisen als ein Federgelenk.
  • Ausführungsbeispiele der Erfindung werden nun unter Bezugnahme auf die Zeichnung beschrieben, wobei die Figuren 1, 2 und 3 nur Kippstangen mit dem aktiven Glied, welches die Schraubenfederwindungen des Federgelenkes auf Druck beansprucht, zeigen. Es zeigt.
    • Figur 1 ein erstes Ausführungsbeispiel einer Kippstange, bestehend aus einem ersten und einem zweiten Stangenteil, die über ein Federgelenk miteinander verbunden sind,
    • Figur 2 die vergrösserte Darstellung des Federgelenks von Figur 1,
    • Figur 3 ein zweites Ausführungsbeispiel einer Kippstange mit einem eingebauten Schwingungsdämpfer,
    • Figur 4 den Schwingungsdämpfer nach Figur 3 in einer Ansicht von oben,
    • Figur 5 ein drittes, besonders bevorzugtes Ausführungsbeispiel einer Kippstange mit einem eingebauten Schwingungsdämpfer und einer der das Federgelenk bildenden Schraubenfeder angepassten weiteren Schraubenfeder.
    • Figur 6 den Schwingungsdämpfer nach Figur 5 im Schnitt.
  • Das in den Figuren 1 und 2 gezeigte Ausführungsbeispiel einer zur Verwendung als Slalomkippstange vorgesehenen Kippstange 10 weist einen ersten als Bodenverankerungsteil ausgebildeten Stangenteil 11 auf, der über ein Federgelenk 13 mit einem zweiten als Schwenkstab ausgebildeten Stangenteil 15 verbunden ist. Diese Verbindung ermöglicht eine Verschwenkung des Schwenkstabes 15 in beliebiger Richtung. Sowohl der Bodenverankerungsteil 11 als auch der Schwenkstab 15 bestehen aus einem leichten Kunststoffrohr, wobei die freien Enden durch je einen Zapfen 17 abgeschlossen sind. Statt Kunststoffrohr können auch andere Rohr- oder Stabmaterialien, z.B. Holz oder Aluminium, verwendet werden. Die Verwendung von Kunststoff wird jedoch vorgezogen.
  • Beim gezeigten Ausführungsbeispiel wird das Federgelenk 13 durch eine Schraubenfeder 19 gebildet, die ausser dem Federgelenkabschnitt 13 noch weitere Abschnitte 21, 23 (Fig. 2) mit besonderen Funktionen aufweisen. Die Abschnitte 21 dienen als Befestigungsansätze, mit welcher die Schraubenfeder 19 im Bodenverankerungsteil 11 und im Schwenkstab 15 verankert ist. Zur besseren Verankerung ist dabei der Befestigungsansatz 21 mit einer Windung 22 versehen, die einen etwas grösseren Durchmesser besitzt als der Durchmesser des übrigen Befestigungsansatzes. Dies ist besonders vorteilhaft zur Verankerung in einem Kunststoffrohr. Wird ein solches zur Herstellung der Slalomkippstange verwendet, so kann das Rohrende z. B. durch Eintauchen in heisses Wasser etwas erweicht werden, bevor der Ansatz 21 in das Rohrende eingeschoben wird. Das weite Rohrende passt sich dann den Konturen des Befestigungsansatzes 21 an, wobei nach der Abkühlung das Kunststoffrohr den Befestigungsansatz 21 fest umschliesst.
  • Die Abschnitte 23 der Schraubenfeder 19 besitzen einen etwas kleineren Durchmesser als die Befestigungsabschnitte 21 und dienen als aktive Glieder, welche den Federgelenkteil 13 der Schraubenfeder 19 auf Druck beanspruchen. Die Abschnitte 23 stellen also Druckfedern dar, welche zur Erfüllung ihres Zweckes über ein Zugglied 25 unter Vorspannung miteinander verbunden sind. Dadurch werden die Windungen des Federgelenks 13 fest aufeinander gepresst.
  • Wie bereits erwähnt, ist der Durchmesser der als Druckfedern dienenden Abschnitte 23 kleiner als jener der Befestigungsansätze 21. Infolgedessen können sich die Windungen im Kunststoffrohr 11, 15 frei bewegen, ohne dass Reibungsverluste durch Reibungen der Windungen an der Innenwandung des Kunststoffrohrs entstehen.
  • Bei der Herstellung der Schraubenfeder 19 kann der Abschnitt 13, der den Federgelenkteil bildet, so gewunden werden, dass die Windungen mit einer Vorspannung aneinander liegen. Der Grösse dieser Vorspannung sind jedoch aus konstruktiven und fabrikatorischen Gründen Grenzen gesetzt. Die Vorspannung kann also bei einer gegebenen Federabmessung eine gewisse Grösse nicht überschreiten. Bei dem üblichen Rohrdurchmesser und der üblichen Länge einer Slalomkippstange würde somit das Federgelenk so weich, dass nach einer Berührung der Slalomkippstange die bereits eingangs erwähnten Schwingungen von langer Dauer auftreten würden. Dieser Nachteil hat denn auch die Fachwelt veranlasst, bei Slakomkippstangen von den üblichen Federgelenken abzusehen. Dadurch aber, dass erfindungsgemäss von einem aktiven Glied 23 das aus einer Schraubenfeder 19 gebildete Federgelenk 13 zusätzlich zu einer eventuell vorhandenen Vorspannung auf Druck beansprucht wird, wird dieses Federgelenk bei den gegebenen, durch den Durchmesser des Slalomstabs bedingten kleinen Abmessungen trotzdem steif genug, um bei einer Berührung und Auslenkung der Slalomkippstange diese rasch und ohne grosse und lang andauernde Schwingungen wieder in die ursprüngliche Lage zu bringen.
  • Beim gezeigten Ausführungsbeispiel weist der Federgelenkteil 13 an beiden Enden einen konischen Endabschnitt 14 auf. Zwischen diesen Endabschnitten 14 liegt ein zylindrischer Abschnitt 16, dessen Durchmesser ungefähr dem Aussendurchmesser der Slalomkippstange entspricht oder noch etwas grösser ist. Bei einer solchen Ausgestaltung öffnen sich beim Abbiegen in erster Linie die Windungen im zylindrischen Abschnitt mit dem grossen Durchmesser. Wenn dann der Stab nach dem Abbiegen wieder in die ursprüngliche Lage zurückkehrt und die Windungen geringfügig anders aufeinander zu liegen kommen, so bringt der relativ grosse Durchmesser des Federgelenks den Vorteil, dass die SlalomKippstange wieder in eine Lage zurückkehrt, die nur unmerkbar verschieden von der ursprünglichen Lage ist. Eine grössere Lagestabilität wird bei der Verwendung von Vierkantdraht zur Herstellung der Schraubenfeder 19 erzielt. In der Regel reicht aber auch die Lagestabilität einer aus Runddraht gefertigten Feder, die billiger ist als eine Feder mit einem anderen Drahtprofil.
  • Die beschriebene Ausgestaltung der das Federgelenk 13 bildenden Schraubenfeder ist äusserst einfach und billig. Es wäre aber auch möglich, die Druckfedern 23 separat auszubilden. Grundsätzlich würde auch eine einzige Druckfeder 23 genügen. Die Verwendung von zwei Druckfedern hat jedoch den Vorteil, dass die einzelnen Druckfeder 23 relativ kurz ausgebildet werden können, so dass sie beim Zusammenpressen nicht ausknikken und praktisch kaum je mit der Rohrwandung in Berührung kommen. Statt eine Druckfeder 23 könnte als aktives Element auch z. B. eine Gasfeder oder ein anderes elastisch verformbares Glied verwendet werden, das geeignet ist, das Federgelenk 13 auf Druck zu beanspruchen.
  • Beim gezeigten Ausführungsbeispiel besteht das Zugglied 25 aus einer Kette, die an jedem Ende der Feder mit einem Ring 29 befestigt ist. Dabei werden die Druckfedern 23 gespannt, so dass die Windungen in der Region 13 zusammengepresst werden. Die zur Befestigung verwendeten Ringe 29 bestehen vorteilhaft aus etwa 11/2 Windungen einer Schraubenfeder. Bei geeigneter Bemessung verhindern die Enden dieser Ringe eine Drehung des Ringes, weil sie bei einer Drehung an der Feder 23 anstossen würden.
  • Aus Figur 2 ist auch ersichtlich, dass die Schraubenfeder 19 zusammen mit dem Zugglied 25 und den Ringen 29 eine einzige Einheit 30 bilden. Diese Gelenkeinheit 30 erleichtert die Montage des Slalomstabes. Um diesen zu bilden, genügt es, die Gelenkeinheit in die Teile 11 und 15 zu stecken.
  • Das in den Figuren 3 und 4 dargestellte Ausführungsbeispiel einer Slalomkippstange 10 ist grundsätzlich ähnlich aufgebaut wie die Slalomkippstange gemäss den Figuren 1 und 2. Es können daher die gleichen Bezugsziffern verwendet werden. Wie aber ein Vergleich der Figur 3 mit Figur 2 zeigt, besitzt die Gelenkeinheit 30 einen etwas unterschiedlichen Aufbau.
  • Das Federgelenk 13 wird wiederum durch eine Schraubenfeder 19 gebildet, die ausser dem Federgelenkabschnitt 13 noch je einen Befestigungsabschnitt 21 aufweist, mit welchen die Schraubenfeder 19 im Bodenverankerungsteil 11 und im Schwenkstab 15 verankert ist. Bei diesem Ausführungsbeispiel ist im jeweiligen Kunststoffrohr 11, 15 ein Gewindeabschnitt 8, 12 vorgesehen, in welchen der Abschnitt 21 der Schraubenfeder 19 eingeschraubt ist. Die Befestigung könnte aber auch in gleicher Art erfolgen, wie dies beim ersten Ausführungsbeispiel beschrieben wurde.
  • Im Gegensatz zum ersten Ausführungsbeispiel besitzt die Schraubenfeder 19 vorteilhaft über die ganze Länge den gleichen Durchmesser, was die Herstellung der Feder vereinfacht. Dies ermöglicht es auch, dass die Slalomkippstange 10 über ihre ganze Länge den gleichen Durchmesser aufweist, wobei zudem noch eine Abdeckung des Federgelenks möglich ist. Beim gezeigten Ausführungsbeispiel sind zu diesem Zwecke eine Anzahl von Ringen 31 vorgesehen, welche das Federgelenk 13 umgeben. Diese Ringe bestehen vorteilhaft aus Kunststoff. Werden sie von einer Skikante berührt, so können sie sich drehen. Dadurch wird sowohl eine Beschädigung des Federgelenks 13 als auch der Skis verhindert. Es kann keine metallische Berührung zwischen Skis und Slalomkippstange erfolgen. Das aktive Element wird durch eine Druckfeder 23 gebildet. Diese könnte einen Teil der Schraubenfeder 19 darstellen, besteht aber beim gezeigten Ausführungsbeispiel aus einer separaten Feder, die einen grösseren Drahtquerschnitt aufweist, als die das Federgelenk bildende Schraubenfeder 19. Dies ermöglicht eine grössere Druckbeanspruchung des Federgelenkteils 13. Die Schraubenfeder 19 ist mit der Druckfeder 23 dadurch verbunden, dass mindestens eine Windung der Druckfeder 23 zwischen Windungen der Schraubenfeder 19 eingeklemmt ist. Das Zugglied 25, welches die einander entgegengesetzten Enden der Schraubenfeder 19 und der Druckfeder 23 miteinander verbindet, besteht aus einem Stahlkabel, das an jedem Ende eine Öse 26 aufweist, in die je ein Federring 29 eingeschlauft ist. Die Federringe 29 bestehen vorteilhaft aus etwa 1"Y2 Windungen einer Schraubenfeder, wobei bei geeigneter Bemessung die Enden dieser Ringe eine Drehung des Ringes verhindern, wie dies bereits vorher in Bezug auf das erste Ausführungsbeispiel der Erfindung beschrieben wurde. Statt ein Stahlkabel 25 könnte auch z. B. ein Kunststoffkabel, z. B. aus Nylon, verwendet werden, oder eine Kette, wie dies in Figur 2 dargestellt ist.
  • Beim gezeigten Ausführungsbeispiel ist an der Federgelenkeinheit 30 noch eine Schwingungsdämpfvorrichtung 33 vorgesehen. Diese hat die Aufgabe, die Bewegungen des Schwenkstabes 15 nach einer Auslenkung zu dämpfen, so dass er in Kürze wieder in die ursprüngliche Lage zurückkehrt und in dieser verbleibt. Die Schwingungsdämpfvorrichtung wird durch ein im Innern der Slalomkippstange, z.B. im Bodenverankerungsteil hin- und herbewegliches Reibglied gebildet. Beim gezeigten Ausführungsbeispiel besteht das Reibglied aus einem zylindermantelförmigen federnden Blechstück (Figur 4), das mit dem freien Ende der Druckfeder 23 mit dem Ring 29 gekoppelt ist und bei seiner Bewegung an der Innenwandung der Slalomkippstange reibt. Für diesen Zweck ist es besonders vorteilhaft, wenn die Slalomkippstange aus Kunststoff besteht.
  • Wie Figur 3 zeigt, sind die Druckfeder 23 und das Reibglied 33 im Bodenverankerungsteil 11 angeordnet. Es wäre aber auch möglich, die Anordnung umgekehrt vorzunehmen, so dass sich die Druckfeder 23 und das Reibglied 33 im Schwenkstab 15 befinden. Die gezeigte Anordnung hat jedoch den Vorteil, dass der Schwerpunkt der Slalomkippstange sehr tief zu liegen kommt und die bei einem Auslenken des Schwenkstabes bewegten Massen möglichst klein gehalten werden.
  • Ein bevorzugtes Ausführungsbeispiel der Kippstange 10 ist in den Figuren 5 und 6 dargestellt. Der Aufbau der Gelenkeinheit 30 gleicht jenem von Figur 3. So wird das Federgelenk 13 wiederum durch eine Schraubenfeder 19 gebildet, die ausser dem Federgelenkabschnitt 13 noch je einen Befestigungsabschnitt 21 aufweist, mit welchem die Schraubenfeder 19 im ersten Stangenteil 11 und im zweiten Stangenteil 15 verankert ist. Der jeweilige Stangenteil 11, 15 wird vorteilhaft durch ein Kunststoffrohr gebildet, in welchem ein Gewindeabschnitt 8, 12 vorgesehen ist. Im Gegensatz zum Ausführungsbeispiel von Figur 3 ist keine separate Druckfeder 23 vorhanden, sondern die Schraubenfeder 19 besitzt einen Abschnitt 23 von kleinerem Durchmesser als'die übrige Feder. Dieser Abschnitt 23 ist als Druckfeder ausgebildet. In Figur 5 ist lediglich ein Abschnitt 23 vorgesehen. Es wäre aber möglich, wie in Figur 1, zwei solche Abschnitte 23 vorzusehen.
  • Die Abdeckung des Federgelenks 13 wird wie beim Ausführungsbeispiel von Figur 3 durch eine Anzahl von Ringen 31 bewirkt, welche das Federgelenk 13 umgeben. Das Zugglied 25, welches die einander entgegengesetzten Enden der Schraubenfeder miteinander verbindet, besteht aus einer Kette 25' und einem streifenförmigen Teil 25", der wie in Figur 5 gezeigt, verwunden ist. Es hat also beim Streifen 25" eine Verwindung stattgefunden, wie sie entsteht, wenn das eine Ende festgespannt und das andere Ende um die Längsachse des Streifens verdreht wird. Im Streifen 25" sind an den Enden Ösen 26, 26' vorgesehen, wobei die eine Öse 26' der Verbindung mit der Kette 25' dient, währenddem die andere Öse 26 einen Federring 29 aufnimmt. Die Federringe 29 haben also die gleiche Aufgabe wie bei den anderen Ausführungsformen, nämlich das Zugglied 25 innerhalb der Feder 19 zu befestigen, wobei die Druckfeder 23 die Windungen im Bereich des Federgelenks 13 noch mit zusätzlicher Kraft zusammenpresst.
  • Der verwundene Streifen 25", dessen Breite grundsätzlich dem Innendurchmesser der Feder im Bereich des Druckfederabschnittes 23 entspricht, hat eine besondere Funktion. Da nämlich der Abschnitt 23 relativ lang ist, hat er bei der Konstruktion von Figur 3 die Tendenz, sich seitlich auszubiegen. Dies kann zu einer Verformung des relativ weichen Rohrabschnitts führen, in welchem er untergebracht ist. Dies wird aber durch den Streifen 25" verhindert. Dieser Streifen 25" besteht vorteilhaft aus Blech, damit er eine genügende Formstabilität aufweist. Es wäre aber auch möglich, zur Versteifung ein anderes Element, z.B. ein Rohr oder ein sternförmiges Profil, zu verwenden. Die Versteifung 25" ist vor allem für Ausführungen der Kippstange von Bedeutung, wo auf eine Schwingungsdämpfvorrichtung 33 verzichtet werden kann oder wo eine Schwingungsdämpfvorrichtung von der Art gemäss den Figuren 3 und 4 verwendet wird.
  • Beim Ausführungsbeispiel gemäss den Figuren 5 und 6 ist die Schwingungsdämpfvorrichtung 33 über dem Druckfederabschnitt 23 angeordnet. Die Schwingungsdämpfvorrichtung besteht aus einer Hülse 33, die einen sich praktisch in Längsrichtung erstreckenden Schlitz 34 aufweist. Diese Büchse liegt mit einer gewissen Vorspannung auf dem Abschnitt 23 auf und ist mit einer in einen Gewindegang eingreifenden Prägung 35 mit dem freien Ende des Druckfederabschnitts 23 verbunden. Wird somit der Abschnitt 23 zusammengepresst, so reibt die Hülse 33 an den Windungen des Druckfederabschnitts 23. Diese Ausgestaltung hat den Vorteil, dass praktisch gleich bleibende Reibungsverhältnisse über die ganze Lebensdauer der Kippstange erzielt werden.
  • Es ist dem Fachmann ersichtlich, dass sowohl das Versteifungsglied 25" als auch die Schwingungsdämpfvorrichtung 33 bei den Federgelenkeinheiten der übrigen Ausführungsformen verwendet werden könnte.
  • Aus Figur 5 ist ferner noch eine Feder 36 ersichtlich, welche einen dem Wicklungssinn der Schraubenfeder 19 entgegengesetzten Wicklungssinn aufweist. Diese Feder 36, die als Stabilisierungsfeder bezeichnet werden kann, erstreckt sich über den Bereich des Federgelenks 13. Der Aussendurchmesser der Feder 36 entspricht dem Innendurchmesser der Feder 19, so dass die Windungen der Feder 36 an den Windungen der Schraubenfeder 19 anliegen. Auf diese Weise wird bewirkt, dass nach einer Durchbiegung des Federgelenks 13 die einzelnen Windungen der Feder 19 immer praktisch genau aufeinander zu liegen kommen, so dass nach einer Ausschwenkung der Kippstab praktisch immer wieder in die ursprüngliche Lage zurückkehrt. Es ist dem Fachmann klar, dass eine solche Stabilisierungsfeder 36 auch bei der Ausführungsform von Figur 3 Anwendung finden könnte.
  • Die Erfindung ist nicht auf diese Ausführungsformen beschränkt. Es ist dem Fachmann möglich, die Kippstange entsprechend den Anforderungen der verschiedenen Anwendungsgebiete abzuändern, ohne von der Erfindung abzuweichen. Die Erfindung ist also nicht auf die Verwendung der Kippstange als Slalomkippstange beschränkt.

Claims (26)

1. Kippstange mit einem ersten Stangenteil (11), einem zweiten Stangenteil (15) und einer am ersten Stangenteil (11) und einem zweiten Stangenteil (15) befestigten Schraubenfeder (19), deren nicht der Befestigung dienende Teil ein Federgelenk (13) bildet, dadurch gekennzeichnet, dass mindestens ein aktives Glied (23) vorgesehen ist, welches die Schraubenfederwindungen des Federgelenkes (13) auf Druck beansprucht, und dass koaxial zur Schraubenfeder (19) eine weitere Schraubenfeder (36) vorgesehen ist, deren Windungen einen Wicklungssinn aufweisen, welcher jenem der Windungen der erstgenannten Schraubenfeder (19) entgegengesetzt ist, und an den Windungen der erstgenannten Schraubenfeder (19) mindestens im Bereich des Federgelenks (13) passend anliegen.
2. Kippstange nach Anspruch 1, dadurch gekennzeichnet, dass die weitere Schraubenfeder innerhalb der erstgenannten Schraubenfeder angeordnet ist.
3. Kippstange nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die weitere Schraubenfeder nichtaneinanderanliegende Windungen aufweist.
4. Kippstange nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das aktive Glied (23) an oder in der Nähe eines Endes des Federgelenks angeordnet und auf das andere Ende der das Federgelenk (13) bildenden Schraubenfeder (19) über ein Zugglied (25) wirksam ist.
5. Kippstange nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass je ein aktives Glied (23) an einem Ende der Schraubenfeder (19) angeordnet ist und dass diese aktiven Glieder (23) miteinander über ein Zugglied (25) verbunden sind.
6. Kippstange nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass das aktive Glied (23) durch eine Druckfeder gebildet wird.
7. Kippstange nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Druckfeder (23) einen grösseren Drahtquerschnitt aufweist als die das Federgelenk (13) bildende Schraubenfeder (19).
8. Kippstange nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Druckfeder (23) einen kleineren Durchmesser hat als das Federgelenk (13).
9. Kippstange nach Anspruch 8, dadurch gekennzeichnet, dass mindestens eine Windung der Druckfeder (23) zwischen Windungen der das Federgelenk (13) bildenden Schraubenfeder eingeklemmt ist.
10. Kippstange nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die jeweilige Druckfeder (23) aus einem Stück mit der das Federgelenk (13) bildenden Schraubenfeder besteht.
11. Kippstange nach Anspruch 10, dadurch gekennzeichnet, dass die Schraubenfeder (19) zu beiden Seiten des als Federgelenk (13) dienenden Teils einen Befestigungsansatz (21) aufweist.
12. Kippstange nach Anspruch 11, dadurch gekennzeichnet, dass der jeweilige Befestigungsansatz (21) einen Teil der Schraubenfeder (19) darstellt.
13. Kippstange nach Anspruch 12, dadurch gekennzeichnet, dass der jeweilige Befestigungsansatz (21) einen kleineren Durchmesser besitzt als der das Federgelenk (13) bildende Teil der Schraubenfeder (19).
14. Kippstange nach Anspruch 12, dadurch gekennzeichnet, dass der jeweilige Befestigungsansatz (21) den gleichen Durchmesser besitzt wie der als Federgelenk (13) dienende Teil der Schraubenfeder (19).
15. Kippstange nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Federgelenkteil (13) an beiden Enden einen praktisch konischen Endabschnitt besitzt.
16. Kippstange nach Anspruch 15, dadurch gekennzeichnet, dass der Federgelenkteil (13) zwischen den konischen Endabschnitten einen zylindrischen Abschnitt (16) aufweist.
17. Kippstange nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Schraubenfeder (19) und/oder die Druckfeder (23) aus Runddraht besteht.
18. Kippstange nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Schraubenfeder (19) und/oder die Druckfeder (23) aus Vierkantdraht besteht.
19. Kippstange nach einem der Ansprüche 6 bis 18, dadurch gekennzeichnet, dass bei der Druckfeder (23) ein Geradehalter vorgesehen ist, um ein Krümmen der Druckfeder wegen der durch das Zugglied (25) ausgeübten Kraft zu verhindern.
20. Kippstange nach Anspruch 19, dadurch gekennzeichnet, dass der Geradhalter aus einem verwundenen Blechstreifen (25") von praktisch gleicher Breite wie der Innendurchmesser der Druckfeder (23) besteht und Teil des Zugglieds (25) bildet.
21. Kippstange nach einem der Ansprüche 11 bis 20, dadurch gekennzeichnet, dass die Befestigungsansätze (21) in ein Gewinde (12) des jeweiligen Stangenteils (11, 15) eingeschraubt sind.
22. Kippstange nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass eine Schwingungsdämpfvorrichtung (33) vorgesehen ist.
23. Kippstange nach Anspruch 22, dadurch gekennzeichnet, dass die Schwingungsdämpfvorrichtung (33) durch ein im Innern der Kippstange hin- und herbewegliches Reibglied gebildet wird.
24. Kippstange nach.Anspruch 23, dadurch gekennzeichnet, dass das Reibglied (33) aus einem zylindermantelförmigen, federnden Blechstück besteht, das mit dem freien Ende der Druckfeder (23) gekoppelt ist und bei seiner Bewegung an der Innenwandung der Slalomkippstange reibt.
25. Kippstange nach Anspruch 23, dadurch gekennzeichnet, dass das Reibglied (33) aus einem röhrenförmigen federnden Blechstück besteht, das mit dem freien Ende der Druckfeder (23) gekoppelt ist und an Windungen dieser Druckfeder (23) mit Vorspannung anliegt und bei seiner Bewegung an diesen reibt.
26. Kippstange nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass das Federgelenk (13) von einer Anzahl von übereinander angeordneten Ringen (31) aus relativ weichem Material, z. B. Kunststoff, umgeben ist, welche das Federgelenk (13) abdecken.
EP83107254A 1982-07-28 1983-07-23 Kippstange Expired EP0100951B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83107254T ATE30121T1 (de) 1982-07-28 1983-07-23 Kippstange.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4576/82 1982-07-28
CH457682 1982-07-28

Publications (2)

Publication Number Publication Date
EP0100951A1 EP0100951A1 (de) 1984-02-22
EP0100951B1 true EP0100951B1 (de) 1987-10-07

Family

ID=4278671

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83107254A Expired EP0100951B1 (de) 1982-07-28 1983-07-23 Kippstange

Country Status (3)

Country Link
EP (1) EP0100951B1 (de)
AT (1) ATE30121T1 (de)
DE (1) DE3373981D1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2628332A2 (fr) * 1987-08-03 1989-09-15 Charbonnier Jacques Axes a ressort pour ski a elements paralleles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0063254A1 (de) * 1981-04-18 1982-10-27 Gerd D. Maibach Sicherheitsslalomstab

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE124746C (de) *
CH142477A (de) * 1929-12-21 1930-09-30 Amstutz Max Absteck-Feldzeichen.
US1890696A (en) * 1932-06-30 1932-12-13 Rosenhahn Carl Punching bag apparatus
DE1159226B (de) * 1963-05-20 1963-12-12 Goetzewerke Zugfederring fuer Wellendichtringe
DE2306421A1 (de) * 1973-02-09 1974-08-22 Tschelisnik Slalom-sicherheitstorstange
DE2310717A1 (de) * 1973-03-03 1974-09-12 Fritz Schoeggl Slalom-torstange
DE2524592A1 (de) * 1975-06-03 1976-12-23 Wilhelm Gronbach Stossdaempfer
EP0077313B1 (de) * 1981-10-13 1987-03-25 LINDSKOG, Kjell Jan-Erik Biegsame Slalomstange

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0063254A1 (de) * 1981-04-18 1982-10-27 Gerd D. Maibach Sicherheitsslalomstab

Also Published As

Publication number Publication date
DE3373981D1 (en) 1987-11-12
ATE30121T1 (de) 1987-10-15
EP0100951A1 (de) 1984-02-22

Similar Documents

Publication Publication Date Title
EP0504749B1 (de) Brausehalter für eine Wandstange
DE2941008B1 (de) Gestell
DE3346537A1 (de) Spreizanker
EP0297033A2 (de) Verbindungselement für eine Stange
DE2717250C3 (de) Dorn zum Einführen eines Gewindeeinsatzes in Gewindelöcher
DE3048152C2 (de) Plattenhalterung für Fassaden- oder Dachkonstruktionen
DE2922126A1 (de) Metallhuelsenduebel
DE2954560C2 (de)
EP0063254B1 (de) Sicherheitsslalomstab
EP0100951B1 (de) Kippstange
DE3041937C2 (de) Rohrförmiger Reibungsstoßdämpfer
DE3312702A1 (de) Gleitlager, insbesondere gelenklager
DE2816544A1 (de) Selbstverriegelnder verankerungsbolzen
DE3244858A1 (de) Markierungsstange
DE3238889A1 (de) Befestigungsvorrichtung zur schwenkbaren befestigung eines gegenstands, insbesondere haltegriffs, an einer wand od. dgl.
DE2923327B1 (de) Vorrichtung zur Gewichtsentlastung eines bewegbaren Tors
DE29720821U1 (de) Längenverstellbare Stange
CH695253A5 (de) Vorrichtung zur Befestigung eines Schwingungsdämpfers an einem Freileitungsseil.
DE7007594U (de) Schraubverbindung, insbesondere zur verwendung bei metallenen fenster- oder tuerrahmen.
EP1357304B1 (de) Verankerungseinheit
AT397926B (de) Slalomstange
EP4175517B1 (de) Aufhängevorrichtung
DE8314925U1 (de) Befestigungsvorrichtung
DE9401712U1 (de) Vorrichtung zum Verhindern des Lockerns von im Erdboden befestigten langgestreckten Gegenständen
EP1188939A1 (de) Hammerkopfelement zur Befestigung in einer einen Schlitz aufweisenden Montageschiene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR IT LI

17P Request for examination filed

Effective date: 19840925

R17P Request for examination filed (corrected)

Effective date: 19840516

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR IT LI

REF Corresponds to:

Ref document number: 30121

Country of ref document: AT

Date of ref document: 19871015

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3373981

Country of ref document: DE

Date of ref document: 19871112

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880731

Ref country code: CH

Effective date: 19880731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST