EP0100845B1 - Elément de renforcement ou élément porteur pour matériaux de construction, en particulier électrode - Google Patents

Elément de renforcement ou élément porteur pour matériaux de construction, en particulier électrode Download PDF

Info

Publication number
EP0100845B1
EP0100845B1 EP83106099A EP83106099A EP0100845B1 EP 0100845 B1 EP0100845 B1 EP 0100845B1 EP 83106099 A EP83106099 A EP 83106099A EP 83106099 A EP83106099 A EP 83106099A EP 0100845 B1 EP0100845 B1 EP 0100845B1
Authority
EP
European Patent Office
Prior art keywords
net
voltage
carrier
reinforcing
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83106099A
Other languages
German (de)
English (en)
Other versions
EP0100845A3 (en
EP0100845A2 (fr
Inventor
Hans Oppitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eltac Nogler und Daum KG
Original Assignee
Eltac Nogler und Daum KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3545321&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0100845(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Eltac Nogler und Daum KG filed Critical Eltac Nogler und Daum KG
Publication of EP0100845A2 publication Critical patent/EP0100845A2/fr
Publication of EP0100845A3 publication Critical patent/EP0100845A3/de
Application granted granted Critical
Publication of EP0100845B1 publication Critical patent/EP0100845B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/70Drying or keeping dry, e.g. by air vents
    • E04B1/7007Drying or keeping dry, e.g. by air vents by using electricity, e.g. electro-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/294Coated or with bond, impregnation or core including metal or compound thereof [excluding glass, ceramic and asbestos]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/109Metal or metal-coated fiber-containing scrim
    • Y10T442/131Including a coating or impregnation of synthetic polymeric material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/133Inorganic fiber-containing scrim
    • Y10T442/134Including a carbon or carbonized fiber

Definitions

  • the invention relates to a reinforcing or supporting element for building materials, as described in the preamble of claim 1.
  • Reinforcing or supporting elements for building materials consist of rod-shaped or net-shaped or lattice-shaped materials.
  • mesh or mesh made of structural steel or as a plaster base mainly fine metal meshes are used. If the metal grids are used as a plaster base, they are often coated with fired ceramic materials to ensure better adhesion of the plaster mortar.
  • the disadvantage of these metallic plaster bases is that, due to different pH values, they are exposed to corrosion in the building structure and the different moisture conditions. In many cases, the arrangement of the grids in zones with different pH values leads to the formation of a galvanic element and thus to a field structure which causes the structures to be destroyed or the moisture to be drawn up from the ground into the structures.
  • the electroosmotic processes use the phenomenon of electroosmosis to slow down the moisture rising in the capillaries of the masonry and to push it down.
  • Polarization occurs at the interface between water and a solid, with a negative charge on the surface of the solid and a positive charge on the liquid particles. This charge (polarization) does not normally appear, only in an electric field does a migration occur, whereby the solids (as far as they are mobile) migrate to the positive anode (also known as electrophoresis), the liquid particles, especially if the solid particles on the Mobility are prevented, strive to migrate to the negative cathode.
  • DE-A 2 706 172 proposes electrodes with additional foils in order to prevent corrosion.
  • the voltage that can be used in the active process is limited by the decomposition voltage, depending on the composition of the masonry and the salinity of the water, since electrolysis by decomposition of the Water would produce gases that the components in which the electrodes are installed, for. B. plaster, must destroy.
  • DE-A 2 705 814 the formation of detonating gas could even lead to an explosion, so that a limit of 2.8 V is required.
  • the invention is based on a device for the electroosmotic drying of moist structures made of mineral raw materials - according to DD-A 47 791 - which works without the use of an external voltage. It comprises two barrier levels in the form of two electrodes, spaced apart from each other in a damp building.
  • the two barrier levels are electrically conductively connected to one another, the electrode forming the barrier level consisting of a metal and the electrode forming the other barrier level consisting of an electrically conductive non-metal.
  • the metallic electrode can consist of iron or galvanized iron, the electrode of non-metal of graphite or of graphite dispersed in plastic or applied in a film.
  • the electrode formed from non-metal can also be designed in the form of wire, tape, foil or mesh.
  • the electric field to transport liquids in kapilla according to the electroosmotic principles Ren cavities is caused by the combination of the electrically conductive non-metal with a metal, which are built into a working galvanic element.
  • the electrode which is made of non-metal, will set itself up as a cathode with respect to the metal due to its distance in the electrochemical voltage series of the metals from hydrogen. Accordingly, the anode - which is then formed by the metal, that is, the iron - continues to degrade and passivate, as a result of which the operating time of the known device is also very short.
  • the invention is based on the object of creating a reinforcement or support element for building materials of the type mentioned at the beginning, which can be used in areas with different or changing pH values and an intimate connection with the surrounding building materials enables, and moreover it should be possible to use this for a dehumidification system working on an electro-osmotic basis with external current.
  • the chemical-neutral electrode acts as an anode regardless of its distance in the electrochemical voltage series of the metals to hydrogen, since it is connected to an energy supply system at the positive pole. This not only prevents degradation of the anode, but also enables the electrode to be installed in building structures regardless of different pH values. At the same time, however, this also prevents electrochemical degradation in the area of the electrical field at the anode, so that the use of such an electrode is also possible in the renovation of old historical structures with moistened structures.
  • this design makes it possible that when using the reinforcement or support elements as electrodes, even in large-scale systems and at higher operating voltages, no disturbances due to electrolytic decomposition or hydrogen deposits on an anode can occur.
  • the decisive factor here is the continuous coating of the mesh with conductive plastic. Thanks to the flexibility of the network, it can be easily adapted to different environmental conditions, such as different floor levels or building levels. This advantage comes to the fore especially when used for the renovation of dampened building structures. Since the coating of the mesh with the conductive plastic causes the voltage to be evenly distributed over the entire surface of the electrode, a large-area electrokinetic effect, for example a large-area electroosmosis, is achieved.
  • the power supply lines improve the strength of the networks against mechanical stress and at the same time the conductivity.
  • the use of titanium is characterized by the small electrochemical potential difference compared to hydrogen, so that the risk that a galvanic element can build up is further reduced.
  • the high surface roughness has the advantage that there is an intimate connection of the surrounding building materials, in particular of the plastering mortar, with the network. In conjunction with the low proportion of plasticizer, this intimate connection is also maintained and there is no shrinkage on the circumference of the network, so that even over a long period of time, perfect contacting of the surrounding construction materials, especially when using the reinforcing elements as electrodes for dehumidification systems, is guaranteed is.
  • the permanent contacting is additionally increased by the use of plastics doped with oxygen-reducing metals, since the passivation of the anode network is switched off.
  • a design according to claim 6 is also advantageous.
  • the use of a plastic having semiconductor properties is distinguished by the fact that the charge transport by electrons and holes, in contrast to the so-called ion semiconductors, in which a mass transfer occurs with the charge transport port is connected.
  • the conductivity in the temperature conditions occurring in building bodies is advantageous for the use of such reinforcing or supporting elements for building materials. Since the carbon components in these semiconductors do not have to form a skeleton in order to increase the conductivity, it is possible to find sufficiency with a low carbon component, as a result of which the fragility of such plastic coatings is reduced.
  • An embodiment according to claim 8 is also advantageous, since this makes it easier to plaster in or incorporate the reinforcing elements into the building materials and allows them to be well adapted to the surfaces of the building bodies.
  • Such a circuit can be produced very easily in the different technologies, such as, for example, relay control, transistor control or with integrated switching modules, so that simple adaptation to the different applications and ambient conditions is possible.
  • the invention also includes an independent method according to the preamble of claim 11.
  • This method is defined by the characterizing features of claim 11.
  • the feature of the larger positive time integral enables the desired electroosmotic effect, while the negative voltage eliminates any substances formed by electrolytic decomposition, in particular the unfavorable gases, in a reverse reaction.
  • the high concentration of the substances produced on the electrodes results in a rapid and preferred reversal of the chemical processes, while the build-up of the reversed electric field and thus the reversal of the electroosmotic effect is reduced or completely prevented.
  • a procedure according to claim 14 is also advantageous.
  • the voltage peak of the negative period can be cut off or only the part of the sine voltage exceeding a certain voltage can be used.
  • the advantage of the process lies not only in the increased desired effect, which leads to the desired success in a fraction of the time, even with very high water pressure with old and thick masonry, but also in the reliable avoidance of chemical decomposition of the water while preventing gas formation or separation of heavy metals, which in turn can lead to the destruction of building materials.
  • the measured effective voltages of the positive portion of the AC voltage can be greater than 16 V. Electrodes made of conductive or semiconducting plastics are not attacked.
  • a support body 1 is shown as a reinforcement or support element for the building serves fabrics. This support body 1 is designed as a network 2.
  • a power supply line 3 is integrated, which is formed by a conveyor belt 4.
  • the power supply line 3 is arranged in the longitudinal direction - arrow 5 - of the band-shaped network 2 approximately centrally between the two longitudinal edges 6.
  • the Lahnband 4 consists, as indicated over part of its length, from a plurality of individual strands 7, which are formed by metal threads 8.
  • the surface of the metal threads 8 can be silver-coated, or e.g. Titanium wire is used to obtain a good conductivity and a small potential difference between the surface of these metal threads 8 and the plastic 9 surrounding them. If the potential difference is small, then an electromotive force can hardly develop between the different materials, such as silver or titanium, and the plastic 9 according to the invention, and therefore no current flows. However, this does not lead to metal degradation, especially of those metals that have a more negative intrinsic potential, so that no ions go into solution.
  • a support body 10 is shown, which is formed by a network 11.
  • the individual threads 12 to 14 of the network 11 consist of a plastic 15.
  • This plastic 15 is essentially ion-free and is designed in the manner of a thermoset with a macromolecular structure.
  • This plastic 15 is preferably e.g. an acrylate with at least partially crosslinked polymers, which has a high surface roughness and a low proportion of plasticizer.
  • the plastic 15 can preferably be designed according to the Austrian patent specification 313 588 by the same inventor. It is advantageous if the plastic is doped with oxygen-reducing metals. When using a network 11 with a plastic 15 doped in this way as the anode, the oxidation of the anode and its passivation is switched off.
  • FIG. 2 is further recommended if a power supply line 18 is formed by a thread 14 of the network.
  • metal threads 16 or carbon threads 17, which can optionally be provided with a silver coating 19, are arranged in these mesh threads 14 to increase the conductivity, but also in addition to increase the mechanical strength.
  • This silver coating achieves the advantages already described in connection with FIG. 1.
  • any plastic 15 which is highly elastic, flexible or limp and conductive, in the manufacture of the network 11.
  • the entire network is covered with the plastic 15 to produce the desired surface quality of the network 11, as is indicated in the region of the crossing threads 12 and 14 of the network 11.
  • the carbon or metal threads 17 or 16 regardless of their function with regard to improved electrical properties, such as higher conductivity and the like, form a strength-enhancing, thread-like carrier material 20.
  • the carrier material 20 can of course be formed by threads made of any materials that However, metal threads are preferably used because they have a good combination of high strength and good conductivity within the scope of the desired properties according to the invention.
  • FIG. 3 shows a section through a thread 13 of the net 11 on an enlarged scale.
  • 13 metal threads 16 or carbon threads 17 are embedded in the plastic 15 of the thread, some of which are provided with a silver coating 19.
  • carbon components 21 are freely suspended in the plastic 15. This free-floating arrangement of carbon components 21 is possible because the plastic 15 has semiconductor properties and the carbon is therefore not required to build up a line system, but only to increase the conductivity.
  • FIGS. 4 and 5 show two different design variants of how the support body 1 or nets 2 or 11 according to the invention can be arranged on structures 22 and 23, respectively.
  • the building structure 22 or 23 consists, for example, of brick masonry or reinforced concrete in the exemplary embodiments shown.
  • two nets 24 and 25 are fastened to the building structure 22 by means of fastening means 27 consisting of resistant materials 26, for example plastic clamping plugs.
  • fastening means 27 consisting of resistant materials 26, for example plastic clamping plugs.
  • the networks 24 and 25 are embedded in a building material 32, in the present case a plastering mortar 33.
  • the plastering mortar 33 is applied in such a thickness that the nets 24 and 25 come to lie below its outside 34.
  • the nets 24 and 25 thus form an anode 35 and a cathode 36 of an electro-kinetic system 37.
  • the network 25 is again arranged in the region of the bottom 39 and when the two networks 24, 25 are applied to the DC voltage source 30, an intense electrical field 41 is created, which is indicated schematically by field lines 42.
  • the DC voltage source 30 is assigned a counter-pole switching element 44.
  • This opposite pole switching element 44 has the effect that the polarity in the electro-kinetic system 37 is periodically and briefly reversed. As a result, the ions in the electric field cannot be deposited and depolarization is avoided.
  • the high conductivity achieved in this way in the building structure 22 or 23 prevents the salt ions migrating between the networks 24 and 25 from depositing and blooming. Due to the high conductivity, a high current passage in the structure 22 or 23 is also achieved, so that a very intensive field is built up, which causes an intensive water transport in the direction of the cathode.
  • the networks 2, 11, 24, 25 according to the invention in two different high positions relative to the floor 39 and to short-circuit them, i.e. i.e. to connect, which balances out the natural potential difference and creates a so-called horizontal barrier, which prevents the water from migrating up through the built-in networks.
  • the advantage of using the networks according to the invention as a reinforcing or supporting element for building materials is, above all, that the special plastic used, due to the high surface roughness and the low shrinkage, ensures an intimate connection between the building material and the reinforcing element over a long period of time , whereby moisture accumulations in the area of the reinforcing elements and thus subsequent corrosion are switched off and a high electrical conductivity of the system is achieved when using the network as electrodes.
  • FIG. 6 shows a voltage supply device 45 for the networks 48, 49 designed according to the invention, which form an anode 46 or a cathode 47.
  • the voltage supply device comprises a transformer 50, smoothing diodes 51, an opposing pole switching element 52 and a timing element 53.
  • the opposing pole switching element 52 has a pulse switch 55 which is arranged in parallel with the smoothing diodes 51 of a rectifier circuit 54 and is formed by a transistor 56.
  • the signal passage through the transistor 56 is made possible for a certain period of time via the timing element 53.
  • the diode 57 assigned to the opposite pole switching element 52 ensures that a voltage passage is only possible if a negative potential is present at an output 58 of the transformer 50.
  • An input 59 of the pulse switch 55 is present at the output 58 of a DC voltage source 60 formed by the transformer 50.
  • An output 61 is connected to a lead 62 to the anode 46.
  • the transistor 56 serving as a make contact is driven by the timing element 53.
  • a changeover switch 65 is also provided, with which the voltage supply of the two networks 48 and 49 can be reversed, if necessary, so that the anode acts as a cathode or vice versa.
  • a current display device 66 is assigned to the voltage supply device 45.
  • the design of this voltage supply device can be modified as desired within the scope of the invention without deviating from it, and it is also possible to use corresponding relay controls or integrated circuits or microprocessors or the like instead of the transistor circuit shown.
  • the method according to the invention is not restricted to sinusoidal voltages of 50 or 60 S - 1 .
  • This preferred form of the voltage-time curve can, for example, with the voltage supply device described in Figure 6 45 can be achieved.
  • the passage through the transistor 56 is only opened after the positive potential has been present for a certain period of time, so that the anode 46 is subjected to a negative voltage.
  • the supply of the negative voltage via the lead 62 through the transistor 56 is then blocked again when the preselected voltage level is undershot. This creates the special voltage curve shown in FIG. 7.
  • the present invention when using the reinforcement or support elements according to the invention as electrodes if their minimum distance in the vertical direction of the structure is at least 10 cm.
  • the network forming the cathode is preferably to be arranged approximately 30 to 50 cm below the surface of the ground.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Building Environments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Claims (15)

1. Elément de renforcement ou de support pour éléments de construction, qui est formé en tant qu'électrode pour des installations de déshumidi- fication électro-osmotiques, avec un corps de support en forme de réseau, qui présente au moins sur sa surface une matière plastique conductrice, caractérisé en ce que le corps de support en forme de réseau (1, 10) est un réseau (2, 11, 24, 25, 48, 49) en particulier sous forme de bande formé par des fils de réseau flexibles, lequel consiste en une matière plastique et/ou est entouré par celle-ci, et en ce qu'une conduite d'alimentation en courant (3) est associée au réseau, conduite qui s'étend longitudinalement par rapport au corps de support ou au réseau sous forme de bande (2, 11, 24, 25, 48, 49) et qui est en contact avec celui-ci, et qui comporte des matériaux de support (20) sous forme de fils, et qui est reliée à un pôle positif (28) d'un dispositif d'alimentation en tension (31, 45) pour une installation électrocinétique (37), et en ce que le réseau forme une anode.
2. Elément de renforcement ou de support selon la revendication 1, caractérisé en ce que la conduite d'alimentation en courant (3) est formée par des bandes en lame (4) constituées par plusieurs torons individuels flexibles (7).
3. Elément de renforcement ou de support selon l'une des revendications 1 ou 2, caractérisé en ce que la conduite d'alimentation en courant (3) est formée par des files de carbone (17) ou des fils métalliques (8, 16), par exemple en titane ou analogue intégrés dans les fils du réseau et de préférence recouverts d'argent.
4. Elément de renforcement ou de support selon l'une des revendications 1 à 3, caractérisé en ce que la conduite d'alimentation en courant (3) est disposée à peu près au milieu entre les bords longitudinaux (6) du réseau.
5. Elément de renforcement ou de support selon l'une des revendications 1 à 4, caractérisé en ce que la matière plastique conductrice de la conduite d'alimentation en courant (3) et/ou du réseau (2, 11, 24, 25, 48, 49) est une matière plastique sensiblement dépourvue d'ions comme une résine thermo-durcissable avec une construction macromoléculaire, par exemple un acrylate, avec des polymères réticulés au moins en partie et présente une grande rugosité superficielle ainsi qu'une faible teneur en plastifiant et en ce qu'elle est de préférence dopée par un métal réducteur de l'oxygène, par exemple le titane ou le bore.
6. Elément de renforcement ou de support selon l'une des revendications 1 à 5, caractérisé en ce que la matière plastique (9, 15) entourant la conduite d'alimentation en courant et le matériau de support sous forme de fils (20) présente des propriétés semiconductrices ainsi qu'une teneur en carbone relativement faible, les fractions de carbone (21) étant disposées librement dans la matière plastique (9, 15).
7. Elément de renforcement ou de support selon l'une des revendications 1 à 6, caractérisé en ce que la dimension des mailles est adaptée à l'élément de construction (32) entourant le réseau (2, 11, 24, 25, 48, 49) et présente de préférence dans le cas de la réalisation en tant que support d'enduit une dimension de maille de 5 mm.
8. Elément de renforcement ou de support selon l'une des revendications 1 à 7, caractérisé en ce que le réseau (2, 22, 24, 25, 48, 49) est élastique et dépourvu de retour élastique et est en particulier en une matière plastique souple (9, 15).
9. Elément de renforcement ou de support pour éléments de construction, qui est sous forme d'électrode pour installations de déshumidifica- tion électro-osmotiques, avec un corps de support en forme de réseau, qui présente au moins sur sa surface une matière plastique conductrice, en particulier selon l'une des revendications 1 à 8, caractérisé en ce que le corps (1, 10) est sous forme d'un réseau flexible (2, 11, 24, 25, 48, 49) qui consiste en une matière plastique conductrice et/ou qui est entouré par celle-ci, et auquel sont associés des matériaux de support (20) sous forme de fils, et en ce que le réseau (2, 11, 24, 25, 48, 49) forme une cathode (36, 47) et/ou une anode (35, 46) d'un dispositif d'alimentation en tension (31, 45) pour une installation électrocinétique (37) et en ce que les deux réseaux (2, 11, 24, 25, 48, 49) sont disposés l'un au-dessus de l'autre en direction verticale, le réseau (2, 11, 25, 49) proche du sol (39) étant relié au pôle négatif (29) d'une source de tension continue (30, 60) et l'autre réseau (2, 11, 24, 48) étant relié à un pôle positif (28), et en ce qu'entre le réseau (2, 11, 24, 48) relié au pôle positif (28) et la source de tension continue (30,60) est disposé un élément de commutation du pôle opposé (44, 52).
10. Elément de renforcement ou de support selon la revendication 9, caractérisé en ce que l'élément de commutation du pôle opposé (44, 52) présente un commutateur à impulsions (55) parallèle aux diodes de lissage (51) d'un circuit redresseur (54), dont une entrée (59) est reliée au pôle négatif (29) d'une source de tension continue (30, 60) et dont la sortie (61) est reliée par l'intermédiaire d'un conducteur (62) à l'anode (35, 46), un contact de fermeture (63) du commutateur à impulsions (55) étant alimenté par l'intermédiaire d'un relais temporisateur (53).
11. Procédé pour le déplacement électrocinétique de liquides polaires dans des solides poreux (murs ou analogues) par application d'une tension électrique entre des électrodes en utilisant des corps de support sous forme de réseau d'un élément de renforcement ou de support pour éléments de construction, en particulier selon l'une des revendications 1 à 10, caractérisé en ce que le corps de support sous forme de réseau flexible consiste en une matière plastique conductrice et/ou est entouré par celle-ci et en ce que des matériaux de support sous forme de fils lui sont associés, et en ce que deux corps de support sont disposés l'un au-dessus de l'autre en direction verticale sur le corps solide et en ce que la tension appliquée à ceux-ci est une tension alternative entre un potentiel positif et un potentiel négatif, dans laquelle l'intégrale de temps de la tension à potentiel positif est supérieur à l'intégrale de temps de la tension à potentiel négatif, la tension à potentiel positif étant avantageusement supérieure à la tension à potentiel négatif.
12. Procédé selon la revendication 11, caractérisé en ce que la durée de la tension appliquée à potentiel positif est supérieure à celle de la tension appjiquée à potentiel négatif.
13. Procédé selon l'une des revendications 11 ou 12, caractérisé en ce que la tension alternative représente une tension sinusoidale à la fréquence du réseau, la tension de la période négative étant diminuée, en particulier la pointe de tension de la période négative étant coupée.
14. Procédé selon la revendication 13, caractérisé en ce qu'au cours de la période négative, seule la partie (68) de la tension sinusoidale dépassant une tension déterminée est appliquée et en ce que de préférence la tension sinusoidale (67) de la demi-onde positive est supérieure à 6 volts.
15. Procédé selon l'une des revendications 11 à 14, caractérisé en ce que le réseau (2, 11, 24, 25, 48, 49) est relié à un corps de construction (22) par l'intermédiaire de matériaux (26) résistants du point de vue chimique ou électrochimique et en ce qu'ensuite un matériau de construction (32), en particulier un mortier d'enduit (33) est appliqué sur le réseau (2, 11, 24, 25, 48, 49), et en ce que le réseau est incorporé entre le côté externe (34) du matériau de construction (32) et le corps de construction (22), après quoi le réseau (2, 11, 24, 25, 48, 49) est relié à la source de tension continue (30, 60) par l'intermédiaire de l'élément de commutation du pôle opposé (44, 52) et est soumis à la tension alternative entre le potential positif et le potentiel négatif.
EP83106099A 1982-08-16 1983-06-22 Elément de renforcement ou élément porteur pour matériaux de construction, en particulier électrode Expired EP0100845B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT3101/82 1982-08-16
AT0310182A AT375709B (de) 1982-08-16 1982-08-16 Verfahren zur elektroosmotischen trockenlegung von mauerwerk od. dgl.

Publications (3)

Publication Number Publication Date
EP0100845A2 EP0100845A2 (fr) 1984-02-22
EP0100845A3 EP0100845A3 (en) 1984-12-19
EP0100845B1 true EP0100845B1 (fr) 1988-12-07

Family

ID=3545321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83106099A Expired EP0100845B1 (fr) 1982-08-16 1983-06-22 Elément de renforcement ou élément porteur pour matériaux de construction, en particulier électrode

Country Status (5)

Country Link
US (2) US4500410A (fr)
EP (1) EP0100845B1 (fr)
AT (2) AT375709B (fr)
DE (1) DE3378644D1 (fr)
HU (1) HU189319B (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2568485B1 (fr) * 1984-08-06 1990-03-23 Rhone Poulenc Rech Appareil de fractionnement par electrophorese de solutions contenant des proteines, utilisable notamment pour le fractionnement du plasma humain
AT387990B (de) * 1985-01-14 1989-04-10 Nogler & Daum Eltac Korrosionsschutzverfahren fuer in einem schutzmantel eingebettete metallteile und vorrichtung zur durchfuehrung des verfahrens
US4678554A (en) * 1985-02-21 1987-07-07 Eltac Nogler & Daum Kg Method and installation for generating an electrical field in the soil
DE3610388A1 (de) * 1986-03-27 1987-10-01 Bernhard Dr Wessling Stabile elektroden auf basis makromolekularer werkstoffe und verfahren zu ihrer verwendung
AT396700B (de) * 1986-05-07 1993-11-25 Nogler & Daum Eltac Anlage zum entfeuchten (austrocknen) von bauwerken unter verwendung von elektroden
AT392108B (de) * 1986-07-18 1991-01-25 Fuerhacker Erich Vorrichtung zum entfeuchten und trockenhalten von mauerwerk mittels elektroosmose
US5015351A (en) * 1989-04-04 1991-05-14 Miller John B Method for electrochemical treatment of porous building materials, particularly for drying and re-alkalization
DE3736576A1 (de) * 1987-10-28 1989-05-11 Manfred Hilleberg Kunststoffelektrode
NO891034L (no) * 1989-03-10 1990-09-11 Elcraft As Fremgangsmaate og anordning til styring av den relative fuktighet i betong- og murkonstruksjoner.
US5092974A (en) * 1990-01-25 1992-03-03 Shinko Pantec Co., Ltd. Electrode and method for compressive and electro-osmotic dehydration
AT404270B (de) * 1992-09-01 1998-10-27 Nogler & Daum Eltac Vorrichtung und verfahren zur entfeuchtung von bauwerken
US5396744A (en) * 1993-10-25 1995-03-14 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Electrically induced radon barriers
NO303820B1 (no) * 1995-07-19 1998-09-07 Elektro Puls Teknologier As FremgangsmÕte og anordning til regulering og optimering ved transport av vµske
US5755945A (en) * 1996-10-11 1998-05-26 Electro Pulse Technologies Of America, Inc. Method for dehydrating capillary materials
KR19980080170A (ko) * 1997-04-10 1998-11-25 리챠드 더글라스 산다나사미 수직 드레인
US6117295A (en) * 1998-04-15 2000-09-12 Drytronic, Inc. Method for dehydrating a porous material
FR2809426A1 (fr) * 2000-05-25 2001-11-30 Thierry Patrice Allain Appareil electrique permettant d'assecher les materiaux de construction soumis aux remontees capillaires et infiltrations laterales d'eau a l'aide de l'action d'electrocapillarite
DE10058507A1 (de) * 2000-11-24 2002-06-06 Dutkewitz Wolfgang Vorrichtung zum induzierten, gerichteten Molekül- und Ionentransport in nichtkapillaren sowie insbesondere kapillaren Stoffen mittels dispergierter Elektroden und netzunabhängiger Solarstromversorgung (Sicco-Plan-System)
US6916411B2 (en) * 2002-02-22 2005-07-12 Lynntech, Inc. Method for electrically controlled demolition of concrete
DE102005019220A1 (de) * 2005-04-22 2006-10-26 Egbert Nensel Verfahren und Anordnung zur Trockenlegung von Mauer- und Bauwerk mittels Elektroosmose
EP1813735A1 (fr) * 2006-01-27 2007-08-01 Harald Schürer Procédé destiné à la déshumidification d'une bâtisse
FR2933721B1 (fr) * 2008-07-09 2012-09-28 Freyssinet Procede de traitement de sel dans une structure poreuse et dispositif correspondant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3523884A (en) * 1968-05-10 1970-08-11 Systron Donner Corp Method and apparatus for making wall structure impervious to moisture
US4145270A (en) * 1977-05-23 1979-03-20 Institutul De Cercetari In Constructii Si Economia Constructiilor Method of, and apparatus for drying damp basements
US4154430A (en) * 1977-07-15 1979-05-15 Anchor Post Products, Inc. Conductive insulation electrical grounding or charging system for insulation coated chain link fabric
US4208696A (en) * 1977-09-06 1980-06-17 Minnesota Mining And Manufacturing Company Electrically conductive web
DE2927049A1 (de) * 1979-07-04 1981-01-08 Meisel Jun Curt Anlage und system zum austrocknen von bauwerken

Also Published As

Publication number Publication date
ATA310182A (de) 1984-01-15
HU189319B (en) 1986-06-30
AT375709B (de) 1984-09-10
ATE39149T1 (de) 1988-12-15
DE3378644D1 (en) 1989-01-12
US4500410A (en) 1985-02-19
EP0100845A3 (en) 1984-12-19
US4600486A (en) 1986-07-15
EP0100845A2 (fr) 1984-02-22

Similar Documents

Publication Publication Date Title
EP0100845B1 (fr) Elément de renforcement ou élément porteur pour matériaux de construction, en particulier électrode
DE69931662T2 (de) Elektrokinetische, geosynthetische struktur
DE69924716T2 (de) Verfahren und vorrichtung zur entwässerung von porösem material
DE69632327T2 (de) Verfahren zur durchführung einer flüssigkeitsströmung in porösen materialien
AT404270B (de) Vorrichtung und verfahren zur entfeuchtung von bauwerken
EP1470299B1 (fr) Procede et ensemble pour deshumidifier un mur
EP0427840B1 (fr) Dispositif pour le dessalage electrocinetique de ma onneries
DE3690002C1 (de) Korrosionsschutzverfahren für in einem Schutzmantel eingebettete Metallteile sowie Vorrichtung dazu
AT298006B (de) Elektrode für das elektroosmotische Austrocknen von feuchtem Mauerwerk
DE4400503C2 (de) Elektrochemische Feuchtigkeitssperre
DE1904223C3 (de) Bandförmige Elektrode aus einer elektrisch leitfähigen, Graphit enthaltenden Masse
DE3430449A1 (de) Elektrodenanordnung zur elektrochemischen entsalzung und trocknung von mauerwerk
DE2706172A1 (de) Elektroden zur durchfuehrung elektro- physikalischer verfahren
DE2722985A1 (de) Verfahren und vorrichtung zur trockenlegung und trockenhaltung unterirdischer bauwerke bzw. bauwerksteile durch elektrodraenage
DE19609892C2 (de) Behälter für eine Flüssigkeit mit Schutzelektrode
WO1992011399A1 (fr) Procede pour la renovation d'ouvrages avec des elements metalliques inseres dans ces derniers
DE10058507A1 (de) Vorrichtung zum induzierten, gerichteten Molekül- und Ionentransport in nichtkapillaren sowie insbesondere kapillaren Stoffen mittels dispergierter Elektroden und netzunabhängiger Solarstromversorgung (Sicco-Plan-System)
DE3541656A1 (de) Verfahren und vorrichtung zum aufbau eines elektrischen gleichfeldes
EP0111306B1 (fr) Procédé de séchage utilisé en maçonnerie et de protection contre l'humidité ultérieure
DD246334B1 (de) Verfahren zur entsalzung, trockenlegung und trockenenthaltung von mauerwerk
AT387251B (de) Einrichtung zur elektroosmotischen trockenlegung von mauerwerk
AT395033B (de) Einrichtung zum trockenlegen und trockenhalten von bauwerken
WO2011017728A2 (fr) Procédé permettant d’enlever les anions corrosifs contenus dans les solutions des pores de corps solides poreux en utilisant du zinc
AT504728B1 (de) Verfahren und vorrichtung für die überwachung und steuerung von kathodischen korrosionsschutzanlagen
DD210323A1 (de) Anordnung zum trockenlegen und trockenhalten von bauwerken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19830622

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19881207

REF Corresponds to:

Ref document number: 39149

Country of ref document: AT

Date of ref document: 19881215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3378644

Country of ref document: DE

Date of ref document: 19890112

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890630

Year of fee payment: 8

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ELCOPOL GMBH

Effective date: 19890905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900411

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900719

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900811

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910412

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910430

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19910615

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO