EP0099858A1 - Procédé de purification d'aluminium - Google Patents

Procédé de purification d'aluminium Download PDF

Info

Publication number
EP0099858A1
EP0099858A1 EP83810310A EP83810310A EP0099858A1 EP 0099858 A1 EP0099858 A1 EP 0099858A1 EP 83810310 A EP83810310 A EP 83810310A EP 83810310 A EP83810310 A EP 83810310A EP 0099858 A1 EP0099858 A1 EP 0099858A1
Authority
EP
European Patent Office
Prior art keywords
sodium
aluminum
separation column
contaminated
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP83810310A
Other languages
German (de)
English (en)
Inventor
Tibor Kugler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Alusuisse Holdings AG
Schweizerische Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Holdings AG, Schweizerische Aluminium AG filed Critical Alusuisse Holdings AG
Publication of EP0099858A1 publication Critical patent/EP0099858A1/fr
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining
    • C22B21/066Treatment of circulating aluminium, e.g. by filtration
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/06Obtaining aluminium refining

Definitions

  • the invention relates to a method for cleaning aluminum contaminated with at least one metal from groups II b, III b, IV b and V b of the periodic system of the chemical elements with sodium by liquid extraction in a separation column in the temperature range between the melting point of aluminum and Aluminum alloys and the boiling point of sodium.
  • US Pat. No. 2,239,277 proposes a process for cleaning molten aluminum or aluminum alloys which contain up to 1% of at least one of the contaminants antimony, bismuth, lead and tin. This is achieved by adding 0.1 to 1% sodium to the melt and stirring it. This allows the slag to rise to the surface of the melt and be removed.
  • the sodium is preferably added according to the stoichiometry of the respective intermetallic compound between sodium and the corresponding metal. With this process it is possible, for example, to reduce the lead content in an aluminum alloy from 0.94% to 0.28%. However, this content is far above the permitted limit of 50 ppm lead in aluminum, which has made it impossible to use this process industrially.
  • DE-OS 24 38 064 describes a cleaning process for metallic aluminum and in particular the removal and extraction of bismuth, cadmium, gallium, mercury and tin. These can be present in metallic aluminum in amounts that are unacceptable for aluminum of normal commercial purity.
  • the molten aluminum is coated with an alkali metal such as sodium or potassium. As with the above U S- P S 2 239 277, the alkali metal is added in an amount which corresponds to the stoichiometry of the intermetallic compound formed.
  • the inventor has therefore set itself the task of creating a method for cleaning aluminum contaminated with at least one metal of groups II b, III b, IV b and V b of the periodic system of chemical elements, which can be carried out with simple devices and is low in energy consumption is.
  • the metals of groups II b, III b, IV b and V b of the periodic system of the chemical elements are in particular Cadmium, mercury, gallium, tin, lead, antimony and bismuth.
  • the method according to the invention is of particular importance for the removal of lead and tin from aluminum or from aluminum alloys.
  • sodium is ge in amounts of contaminated aluminum g planar, which is a multiple higher than the stoichiometric composition of sodium-rich intermetallic compound.
  • the mass of sodium is preferably at least 10 times, but in particular at least 30 times, higher than that of the contaminating metal.
  • molten aluminum floats a layer several centimeters thick from a likewise molten salt, which is heavier than sodium.
  • a salt can consist, for example, of a mixture of sodium chloride and potassium chloride.
  • the two metals are separated from each other by the salt layer, i.e. have no common surface, no backmixing can take place.
  • the countercurrent process in the separation column preferably takes place at a temperature between 650 and 750 ° C.
  • the pure sodium is fed from below and the contaminated aluminum from above into the appropriately vertically arranged separation column.
  • the cleaned aluminum is drawn off in the lowest area of the separation column. In practice, it usually contains 100 to 500 pm sodium, depending on parameters such as temperature and type of impurities. The excess sodium burns on the surface, further it can be removed by fluxing, chlorination or distillation, the latter in particular in a vacuum. In addition to sodium, the removed, cleaned aluminum preferably contains at most 50 ppm of contaminating metals. Typical measured values have shown that lead up to a residual content of 20 to 30 ppm can be removed in the separation column.
  • the sodium doped with little contaminating metal which flows out of the separation column, is in a heat Exchanger cooled by pure 150 ° C pure sodium flowing in countercurrent.
  • the pure sodium used as the cooling medium in turn flows to the separation column and thus closes the cycle. In this way, only small amounts are required for heating the pure sodium.
  • a solid phase of sodium and the metals contaminating the aluminum are formed. At this relatively low temperature, it is possible to perform a sharper separation of the liquid and solid phases using known technical means, without having to access the known measures required at higher temperatures.
  • the solid phase is separated from the liquid sodium by a separation device known per se.
  • a separation device e.g. a filter, filter candles, Raschig rings, a centrifuge or a cyclone are used.
  • a device for carrying out the method according to the invention is shown schematically with the aid of the drawing.
  • a separation column 10 is fed with contaminated aluminum via a feed line 12. As shown in the drawing, this can open into the upper end face of the separation column 10 or else into the upper region of its outer surface.
  • the feed line 14 of the sodium circuit leads to the bottom of the separation column 10, so the pure sodium introduced rises and forms a countercurrent with respect to the contaminated aluminum.
  • U boar an outlet pipe 16 the purified aluminum be withdrawn.
  • the sodium doped with contaminating metal flows via a connecting line 18 into the upper end region of the heat exchanger 20.
  • the separation column 10 consists, for example, of a container made of chromium-nickel steel, which is lined on the inside with silicon carbide at least up to the maximum level of the contaminated aluminum.
  • the layer of molten salt which separates the two metals is preferably located in this boundary region.
  • the sodium doped with contaminating metal is cooled to approximately 150 ° C., at the same time a solid phase is precipitated.
  • a drain pipe 22 embedded in the bottom surface of the heat exchanger 20 leads to the solid-state separator 24, from where the solid phase is discharged via a drain pipe 26
  • the now pure sodium flows via a connecting pipe 28 and a pump 30 to the storage container 32.
  • the pure sodium is fed into the bottom region of the heat exchanger 20 by means of a pump 34 through a connecting line 36.
  • the pure sodium cools the sodium doped with contaminating metal and is itself heated.
  • the pure sodium has almost reached the operating temperature when it enters the supply line 14, and only a little energy has to be supplied.
  • An aluminum alloy containing 1 wt .-% of lead is a D urchpoundrate of 20 kg / h performed by a drawing corresponding experimental apparatus.
  • the liquid extraction in the separation column takes place at a temperature of 700 ° C.
  • sodium is introduced into the separation column at a flow rate of 1 kg / h.
  • the sodium doped with contaminating lead is cooled to 150 ° C. in the heat exchanger.
  • the analysis of the cleaned aluminum showed a lead content of 0.3% by weight and a sodium content of 0.01% by weight.
  • Aluminum with such a high lead content can only be used for certain purposes, for example as a hardenable machine material.
  • the analysis of the cleaned aluminum showed a lead content of 0.003% by weight and a sodium content of 0.03% by weight. Virtually the entire lead content was deposited as Na 15 Pb 4 on a metal mesh used as a solid-state separator after the heat exchanger.
  • An alloy of 60% by weight aluminum and 40% by weight tin is passed through the separation column at the same speed as in Example 1. 80 kg / h of sodium are introduced into the separation column in countercurrent. The tin-doped sodium is cooled to 150 ° C in the heat exchanger.
  • the analysis of the cleaned aluminum shows a tin content of 0.002% by weight and a sodium content of 0.05% by weight.
  • the filter cake of the solid-state separator formed by candle filters has the composition Na 4 Sn.
  • the amount of sodium in the sodium circuit has decreased by 8 kg / h.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
EP83810310A 1982-07-23 1983-07-07 Procédé de purification d'aluminium Ceased EP0099858A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH451082 1982-07-23
CH4510/82 1982-07-23

Publications (1)

Publication Number Publication Date
EP0099858A1 true EP0099858A1 (fr) 1984-02-01

Family

ID=4277442

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83810310A Ceased EP0099858A1 (fr) 1982-07-23 1983-07-07 Procédé de purification d'aluminium

Country Status (3)

Country Link
US (1) US4511398A (fr)
EP (1) EP0099858A1 (fr)
JP (1) JPS5935641A (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256039U (fr) * 1985-09-30 1987-04-07
US5015288A (en) * 1989-11-29 1991-05-14 Gas Research Institute Gas-fired aluminum melter having recirculating molten salt bath and process
JPH03199314A (ja) * 1989-12-27 1991-08-30 Masanori Iwase 鉄屑脱銅法
DE4122319A1 (de) * 1991-07-05 1993-01-14 Vaw Ver Aluminium Werke Ag Verfahren zum gattieren von reaktiven schmelzen und vorrichtung zur durchfuehrung des verfahrens
NL1004824C2 (nl) 1996-12-18 1998-06-19 Tno Werkwijze en inrichting voor het scheiden van metalen en/of metaallegeringen met verschillende smeltpunten.
US6969417B2 (en) * 2000-06-19 2005-11-29 Hydrogen Energy America, Llc Catalytic alloy for the dissociation of water into hydrogen and oxygen and method of making

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2239277A (en) * 1941-04-22 thomas
FR976205A (fr) * 1948-10-02 1951-03-15 Alais & Froges & Camarque Cie Procédé d'élimination des impuretés métalliques dans des métaux ou des alliages, en particulier dans des alliages d'aluminium
FR979569A (fr) * 1948-12-03 1951-04-27 Alais & Froges & Camarque Cie Procédé d'élimination des éléments d'alliage indésirables ou des impuretés métalliques dans les métaux ou les alliages, en particulier dans les alliages d'aluminium
FR2240297A1 (en) * 1973-08-07 1975-03-07 Alcan Res & Dev Purifying aluminium contg. bismuth - cadmium, gallium, mercury or tin by treating melt with sodium or potassium
AT331527B (de) * 1974-05-14 1976-08-25 Barth & Co Ohg Erich Verfahren zum veredeln von aluminium-silizium-legierungen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014687A (en) * 1976-01-13 1977-03-29 E. I. Du Pont De Nemours And Company Process for making magnesium metal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2239277A (en) * 1941-04-22 thomas
FR976205A (fr) * 1948-10-02 1951-03-15 Alais & Froges & Camarque Cie Procédé d'élimination des impuretés métalliques dans des métaux ou des alliages, en particulier dans des alliages d'aluminium
FR979569A (fr) * 1948-12-03 1951-04-27 Alais & Froges & Camarque Cie Procédé d'élimination des éléments d'alliage indésirables ou des impuretés métalliques dans les métaux ou les alliages, en particulier dans les alliages d'aluminium
FR2240297A1 (en) * 1973-08-07 1975-03-07 Alcan Res & Dev Purifying aluminium contg. bismuth - cadmium, gallium, mercury or tin by treating melt with sodium or potassium
AT331527B (de) * 1974-05-14 1976-08-25 Barth & Co Ohg Erich Verfahren zum veredeln von aluminium-silizium-legierungen

Also Published As

Publication number Publication date
JPS5935641A (ja) 1984-02-27
US4511398A (en) 1985-04-16

Similar Documents

Publication Publication Date Title
EP0029182B1 (fr) Procédé semi-continu de fabrication de silicium pur
DE1912887C3 (de) Verfahren zur Entfernung von mindestens einem Teil von Verunreinigungen aus geschmolzenen metallischen Aluminiummaterialien
DE69508498T2 (de) Verfahren zur Raffination von Silicium
DE2725894C2 (de) Verfahren zur Raffination eines geschmolzenen Metalls, insbesondere Zink oder Aluminium sowie eine Zelle zur Durchführung des Verfahrens
DE2543340C2 (fr)
DE975587C (de) Verfahren und Anordnung zur Herstellung von Titan in einer Elektrolysezelle
DE2034385C3 (de) Verfahren zur Gewinnung von schwerschmelzbaren Metallen in kompakter Form aus deren Oxiden
DE1213627B (de) Verfahren zur Raffination von unreinem Silicium und Germanium durch Schmelzflusselektrolyse
EP1171385A1 (fr) Dispositif et procede destines a la production de sels fondus et leur utilisation
DE2442192A1 (de) Verfahren zum reinigen von silicium
EP0099858A1 (fr) Procédé de purification d'aluminium
EP0028811B1 (fr) Procédé de purification de silicium brut
DE4135146A1 (de) Verfahren und vorrichtung zum umschmelzen und veredeln von magnesium und magnesiumlegierungen
DE69400571T2 (de) Verfahren zum herstellen von elektrolytisch gereinigten aluminium mit niedrigen gehalten an uran, thorium und seltenen erdmetallen
DE2340399A1 (de) Gewinnung von kupfer und zink aus billigen nichteisenschrotten
DE2711508C3 (fr)
CH493637A (de) Verfahren zur Herstellung von Aluminium oder Aluminium-Legierungen
DE2252567C2 (de) Verfahren zur Herstellung von Mangan aus Manganhalogeniden durch Reduktion mit schmelzflüssigem Aluminium
DE1147761B (de) Verfahren und Vorrichtung zur Herstellung von Titan durch Reduktion von Titantetrachlorid mit auf dem Wege der Schmelzflusselektrolyse erzeugtem fluessigem Magnesium
DE2200466C3 (de) Verfahren zur Gewinnung von Aluminiummetall aus Krätze oder gebrauchten Glastuchfiltern
DE584399C (de) Verfahren zur elektrolytischen Herstellung von Blei-Calcium-Legierungen
EP0335147B1 (fr) Procédé et appareil d'obtention du chlorure de gallium à partir de composés contenant du gallium
AT221282B (de) Verfahren zur Gewinnung von gereinigtem Aluminium aus einem körnigen aluminiumhältigen Metall
DE1558417C3 (de) Verfahren zur Gewinnung von Molybdän und Wolfram und ihrer Legierungen über die Amalgame
DE823347C (de) Verfahren zur Raffination von Zink

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19840623

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19860915

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUGLER, TIBOR