EP0096650B1 - Tragsäule für eine Überwasserplattform und Verfahren zu ihrer Herstellung - Google Patents

Tragsäule für eine Überwasserplattform und Verfahren zu ihrer Herstellung Download PDF

Info

Publication number
EP0096650B1
EP0096650B1 EP83710015A EP83710015A EP0096650B1 EP 0096650 B1 EP0096650 B1 EP 0096650B1 EP 83710015 A EP83710015 A EP 83710015A EP 83710015 A EP83710015 A EP 83710015A EP 0096650 B1 EP0096650 B1 EP 0096650B1
Authority
EP
European Patent Office
Prior art keywords
supporting column
concrete
casing
column
concrete column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83710015A
Other languages
English (en)
French (fr)
Other versions
EP0096650A1 (de
Inventor
Günter Dipl.-Ing. Sander
Helmut Dr.-Ing. Lausberg
Heinz Link
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Gutehoffnungshutte GmbH
Original Assignee
MAN Gutehoffnungshutte GmbH
MAN Maschinenfabrik Augsburg Nuernberg AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Gutehoffnungshutte GmbH, MAN Maschinenfabrik Augsburg Nuernberg AG filed Critical MAN Gutehoffnungshutte GmbH
Publication of EP0096650A1 publication Critical patent/EP0096650A1/de
Application granted granted Critical
Publication of EP0096650B1 publication Critical patent/EP0096650B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B35/4406Articulated towers, i.e. substantially floating structures comprising a slender tower-like hull anchored relative to the marine bed by means of a single articulation, e.g. using an articulated bearing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/02Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor placed by lowering the supporting construction to the bottom, e.g. with subsequent fixing thereto
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B2021/501Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers by means of articulated towers, i.e. slender substantially vertically arranged structures articulated near the sea bed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0095Connections of subsea risers, piping or wiring with the offshore structure

Definitions

  • the invention relates to a support column for a surface platform, in particular for the extraction of oil or natural gas in deep water, consisting of a tubular jacket welded together watertight from sheet steel parts and an annular stiffener arranged in the interior of the jacket.
  • the invention relates to a method for erecting such a support column from a floating platform.
  • a support column of this type is e.g. B. from DE-GM 76 29 303 known. It is used to directly connect a surface platform rigidly to a foundation anchored on the seabed and to support the weight of the platform on the foundation.
  • the support column is generally designed with a circular cylindrical cross section and an annular stiffening arranged on the inside.
  • the support column must also be able to withstand extremely high axial bending moments. Although you can reduce these bending moments in part by articulately connecting the support column to the foundation, remarkably high bending moments remain, especially at higher water depths, which must be taken into account in the structural design and dimensioning of the support column.
  • Support columns made of sheet steel of the type mentioned at the outset with a waterproof welded sheet steel jacket do not have these disadvantages.
  • the jacket in order to remain within the framework of workable sheet thicknesses, the jacket must be stiffened by sufficiently dimensioned steel stiffeners, which give it the necessary buckling and buckling stability against the external water pressure and axial compressive stresses.
  • the production and the welding of the steel strips requires a lot of work and costs.
  • the bracing causes undesirable stress concentrations in the steel sheet cylinder as a result of the changing wall rigidity.
  • the object of the invention is to provide a sufficiently deformation-resistant support column of the type mentioned at the beginning with simple and inexpensive means.
  • bracing consists of a concrete column extending over the length of the support column, which absorbs the compressive forces in the axial direction and is not positively connected to the jacket in the axial direction.
  • the sheet steel jacket essentially only has to absorb tensile stresses in the axial direction and circumferential direction, while the annular reinforcement made of concrete, which extends uniformly over the height of the support column, both the radial reinforcement of the ring cross section and the transmission and absorption of the axially directed compressive forces, such as they also occur in the case of axial bending moments on the inside of the bend.
  • a friction-reducing and / or elastically flexible layer is preferably even arranged between the concrete column and the inner surface of the casing, e.g. B. a smear layer of a flowable, preferably viscous material, such as. B. Bitumen. It is also advantageous if, by grinding the weld seams, the inside surface of the jacket is as smooth as possible free of irregularities.
  • the concrete pillar is advantageously composed of individual ring elements arranged one above the other, it being advantageous if these ring elements are butted one above the other and without an absorbing connection.
  • Elastic intermediate layers can preferably be arranged between the ring elements.
  • the ring elements can be installed as prefabricated parts or as in-situ concrete using an internal formwork. Each ring element can be composed of individual segments in the circumferential direction.
  • the concrete rings mainly absorb only part of the external water pressure. They also act as a homogeneous stiffening of the steel sheet jacket and prevent its bulging in this property. As a result, the sheet steel jacket can be made relatively thin-walled. Due to the elimination of steel bracing, the costs for the production of the support column according to the invention are lower than those of a support column made of steel.
  • the concrete column consisting of concrete rings can have different wall thicknesses in sections, whereby the weight and center of gravity of the support column can be influenced in a simple manner.
  • the steel sheet jacket and the inner concrete column are conical in one or more vertical sections of the support column. This bridges support column sections of different diameters.
  • the stability of the articulated support column requires the lowest possible center of gravity. This can be achieved according to the invention in a particularly cost-effective manner if the support column closed at the bottom is ballasted, e.g. B. with a liquid which has at least the specific weight of the water. With regard to a liquid with a higher specific weight than water, for example, a clay suspension should be considered.
  • the support column according to the invention for an overwater platform can be produced either vertically in sufficiently deep water or on land or in a floating dock in a horizontal position.
  • the vertical erection of the support column appears to be particularly advantageous. It takes place from a floating platform and through it by assembling individual shots into a support column in the lowering process.
  • the support column is lowered by increasing the liquid ballast in the support column section closed at the bottom in time with the progressive extension of the support column.
  • the individual shots are always grown at the same distance from the platform surface.
  • a steel sheet jacket finish is welded watertight to the already completed column part.
  • Sheet steel jacket embedded or inserted as in-situ concrete
  • the support column can also, as is known per se in the case of such columns, be erected from individual shots by assembly on land or in a dock. It is advantageous if the assembly sequence is carried out simultaneously on both sides from a middle steel sheet jacket section. This saves time.
  • the individual sheet steel jacket sections are braced with concrete rings.
  • the petroleum transfer station shown in Fig. 1 has a water platform 1, the z. B. is designed as a helicopter station 2 and has a boom 3 for the oil transfer to a (not shown) tanker.
  • the above-water platform 1 is connected via the support column 4 to a foundation 6, which is located on the sea floor.
  • the connection between the support column 4 and the foundation 6 takes place via a joint, e.g. a known ball joint 7.
  • a petroleum riser line 5 leads to the boom 3 via a pump station (not shown). Furthermore, within the support column 4 there is a ladder (not shown) or an elevator for inspection and maintenance work.
  • the support column 4 consists, as can be seen from FIGS. 2 to 7, of a steel sheet jacket 8 composed of watertight welded shots, which has a circular cross-section and, for example. (ISe for a 150 m high support column, a sheet thickness of 3 to 4 cm.
  • the thickness of the individual concrete rings can be between 40 and 60 cm for the above-mentioned height of the support column.
  • a lubricating layer 10 is present between the inner wall of the steel sheet jacket 8 and the outer wall of the concrete column 9, which expediently z. B. is applied in the form of bitumen to the inner wall of the steel sheet jacket. This layer allows a free longitudinal expansion of the casing 8 and the concrete column 9, which consist of different materials.
  • the concrete rings of the concrete column 9 can additionally be reinforced. They can be used in the form of finished parts as closed rings or as ring segments. It is also possible to manufacture the concrete rings using appropriate formwork with in-situ concrete.
  • Fig. 4 shows a support column section with concrete rings 9 of different wall thickness. This makes it easy to influence the weight and center of gravity of the support column.
  • the sheet steel jacket 8 absorbs the bending tensile stresses practically only.
  • the joints between the butt-mounted concrete rings 9 open on the tension side.
  • the axial stresses transmitted into the concrete on the pressure side can be reduced by elastic inserts 11 placed between the concrete rings.
  • a relatively small column diameter will be chosen for the support column 4, in order to offer the smallest possible surface area for the wave forces, while a larger column diameter is necessary in greater water depth to absorb the bending moment.
  • 6 shows the transition area between the support column section of smaller column diameter to the section of larger diameter, which is bridged by a section 12 with a conical outer surface.
  • FIG. 7 shows the section of the support column which brings the center of gravity to a position as deep as possible with a solid ballast body 13 and within the cavity of the support column with a ballast liquid 14.
  • FIG. 8 The erection of the support column 4 in a vertical manufacturing method on the sea or better in a deep protected bay is shown in FIG. 8. From a floating platform 16 equipped with floating bodies 15, the manufacture of the column 4 takes place by widening in sections by means of a lifting device 17 upwards. Liquid ballasting 14 ensures that the construction of the individual shots 18 with the height h can always take place at the same distance d from the platform surface 19.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Revetment (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

  • Die Erfindung betrifft eine Tragsäule für eine Überwasserplattform, insbesondere für die Erdöl-oder Erdgasgewinnung in tiefem Wasser, bestehend aus einem rohrförmigen, aus Stahlblechteilen wasserdicht zusammengeschweißten Mantel und einer im Inneren des Mantels angeordneten ringförmigen Aussteifung. Die Erfindung betrifft ein Verfahren zur Errichtung einer derartigen Tragsäule von einer schwimmenden Plattform aus.
  • Eine Tragsäule dieser Art ist z. B. aus DE-GM 76 29 303 bekannt. Sie dient dazu, eine Überwasserplattform unmittelbar biegesteif mit einem auf dem Meeresboden verankerten Fundament zu verbinden und das Gewicht der Plattform auf dem Fundament abzustützen.
  • Derartige Tragsäulen sind extrem hohen Beanspruchungen durch Windkräfte, Meeresströmung und insbesondere Wellenkräfte ausgesetzt. Außerdem muß die Tragsäule den in der Tiefe wachsenden Ruhewasserdruck aufnehmen. Zur Erzielung der notwendigen Verformungssteifigkeit führt man die Tragsäule in der Regel mit kreiszylindrischem Querschnitt und einer im Inneren angeordneten ringförmigen Versteifung aus.
  • Darüberhinaus muß die Tragsäule aber auch je nach Wellengang und Wassertiefe - wobei an Wassertiefen bis mehr als 250 m gedacht werden kann - extrem hohe axiale Biegemomente aushalten können. Obwohl man diese Biegemomente teilweise dadurch herabsetzen kann, daß man die Tragsäule mit dem Fundament gelenkig verbindet, bleiben trotzdem, insbesondere bei höherer Wassertiefe, beachtlich hohe Biegemomente übrig, die bei der konstruktiven Gestaltung und Bemessung der Tragsäule berücksichtigt werden müssen.
  • Bekannt sind z. B. aus DE-PS 25 49 859 und DE-PS 25 50 621 Tragsäulen aus Stahlbeton. Diese müssen in axialer Richtung vorgespannt werden, um die auftretenden großen Biegemomente aufnehmen zu können. Trotz dieser Vorspannung müssen solche Säulen sehr dickwandig ausgeführt sein. Die Entstehung von Haarrissen in Beton als Folge der wechselnden Beanspruchung und die Bildung von Arbeitsfugen bei der Herstellung langer Tragsäulen sind nicht mit Sicherheit auszuschließen. Die Wasserdichtigkeit von Tragsäulen aus Stahlbeton kann daher auf lange Sicht nicht gewährleistet werden.
  • Tragsäulen aus Stahlblech der eingangs genannten Art mit einem wasserdicht geschweißten Stahlblechmantel haben diese Nachteile nicht. Um aber im Rahmen verarbeitbarer Blechdicken zu bleiben, muß der Mantel durch ausreichend bemessene Stahlsteifen ausgesteift werden, die ihm die notwendige Beul- und Knickstabilität gegen den Außenwasserdruck und axiale Druckspannungen verleihen. Die Herstellung und das Anschweißen der Stahlsteifen erfordert einen hohen Arbeits-und Kostenaufwand. Außerdem verursachen die Aussteifungen unerwünschte Spannungskonzentrationen im Stahlblechzylinder als Folge der wechselnden Wandsteifigkeit.
  • Aufgabe der Erfindung ist es, mit einfachen und kostengünstigen Mitteln eine ausreichend verformungssteife Tragsäule der eingangs genannten Art zu schaffen.
  • Diese Aufgabe wird erfindungsgemäß bei einer Tragsäule der eingangs genannten Art dadurch gelöst, daß die Aussteifung aus einer sich über die Länge der Tragsäule erstreckenden, die Druckkräfte in Axialrichtung aufnehmenden Betonsäule besteht, die mit dem Mantel nicht in Axialrichtung formschlüssig verbunden ist.
  • Bei der erfindungsgemäßen Konstruktion hat der Stahlblechmantel im wesentlichen nur Zugspannungen in Axialrichtung und Umfangsrichtung aufzunehmen, während die ringförmige, gleichförmig über die Höhe der Tragsäule sich erstreckende Aussteifung aus Beton sowohl die radiale Aussteifung des Ringquerschnitts als auch die Übertragung und Aufnahme der axial gerichteten Druckkräfte, wie sie insbesondere auch im Fall von axialen Biegemomenten auf der Biegungsinnenseite auftreten, übernimmt.
  • Um größere axiale Zugspannungen im Beton bei einer Biegung derTragsäule zu verhindern, wird auf eine Verbundsicherung zwischen Stahl und Beton durch Anker, Dübel od. dgl. bewußt verzichtet. Vorzugsweise ist sogar zwischen der Betonsäule und der Innenfläche des Mantels eine reibungsmindernde und/oder elastisch nachgiebige Schicht angeordnet, z. B. eine Schmierschicht aus einem fließfähigen, vorzugsweise viskosen Material, wie z. B. Bitumen. Auch ist es vorteilhaft, wenn durch Abschleifen der Schweißnähte für eine möglichst glatte von Unregelmäßigkeiten freie Innenfläche des Mantels gesorgt wird.
  • Die Betonsäule ist vorteilhafterweise aus einzelnen, übereinander angeordneten Ringelementen zusammengesetzt, wobei es vorteilhaft ist, wenn diese Ringelemente stumpf und ohne zugaufnehmende Verbindung übereinandergesetzt sind. Zwischen den Ringelementen können vorzugsweise elastische Zwischenschichten angeordnet sein. Die Ringelemente können als vorgefertigte Teile oder als Ortbeton mit Hilfe einer Innenschalung eingebracht werden. Jedes Ringelement kann in Umfangsrichtung aus einzelnen Segmenten zusammengesetzt sein.
  • Bei einer Krümmung der Tragsäulenachse werden bei der erfindungsgemäßen Konstruktion die Biegezugspannungen praktisch allein vom Stahlblechmantel aufgenommen. Die Fugen zwischen den einzelnen Betonringen öffnen sich auf der Zugseite. Die auf der Druckseite auftretenden Spannungen werden vom Beton in Axialrichtung übertragen, wobei örtliche Spannungskonzentrationen an den Stoßfugen zwischen den Betonringen durch die elastischen Zwischenschichten verringert werden.
  • Als Folge dieser Maßnahmen nehmen die Betonringe in der Hauptsache nur einen Teil des äußeren Wasserdrucks auf. Sie wirken ferner als homogene Aussteifung des Stahlblechmantels und verhindern in dieser Eigenschaft sein Einbeulen. Infolgedessen kann der Stahlblechmantel relativ dünnwandig hergestellt werden. Wegen des Wegfalls von Stahlaussteifungen sind die Kosten für die Herstellung der er-findungsgemäßen Tragsäule geringer als die einer in reiner Stahlbauweise hergestellten Tragsäule.
  • Nach einem weiteren Merkmal der Erfindung kann die aus Betonringen bestehende Betonsäule abschnittsweise unterschiedliche Wandstärken aufweisen, wodurch sich Gewicht und Schwerpunktlage der Tragsäule auf einfache Weise beeinflussen lassen.
  • Die Wellenkräfte auf die Tragsäule verringern sich mit abnehmendem Säulendurchmesser und mit zunehmendem Abstand von der Wasseroberfläche. Ein möglichst kleiner Säulendurchmesser im oberen Wasserbereich ist daher zweckmäßig. In größerer Wassertiefe ist meistens zur Aufnahme des Biegemoments ein größerer Säulendurchmesser erforderlich. Nach einem Merkmal der Erfindung sind in einem oder mehreren Höhenabschnitten der Tragsäule der Stahlblechmantel und die innere Betonsäule konisch gestaltet. Damit werden Tragsäulenabschnitte unterschiedlicher Durchmesser überbrückt.
  • Die Stabilität der gelenkig gelagerten Tragsäule erfordert einen möglichst tiefliegenden Gewichtsschwerpunkt. Dies kann erfindungsgemäß besonders kostengünstig dadurch erreicht werden, wenn die unten geschlossene Tragsäule ballastiert ist, z. B. mit einer Flüssigkeit, die mindestens das spezifische Gewicht des Wassers aufweist. Hinsichtlich einer Flüssigkeit mit höherem spezifischen Gewicht als Wasser ist beispielsweise an eine Tonsuspension zu denken.
  • Die Herstellung der erfindungsgemäßen Tragsäule für eine Überwasserplattform kann entweder in ausreichnd tiefem Wasser senkrecht oder an Land bzw. in einem Schwimmdock in horizontaler Lage erfolgen.
  • Die senkrechte Errichtung der Tragsäule erscheint besonders vorteilhaft. Sie geschieht von einer schwimmenden Plattform aus und durch diese hindurch durch Zusammensetzen einzelner Schüsse zu einer Tragsäule im Absenkverfahren. Erfindungsgemäß wird die Tragsäule durch Erhöhung des Flüssigkeitsballasts im unten geschlossenen Tragsäulenabschnitt im Takt mit der fortschreitenden Verlängerung der Tragsäule abgesenkt. Der Anbau der einzelnen Schüsse vollzieht sich also stets im gleichen Abstand von der Plattformoberfläche. Dabei wird zunächst ein Stahlblechmantelabschluß mit dem bereits fertiggestellten Säulenteil wasserdicht verschweißt. Dann werden Betonringe bzw. Betonringsegmente als Fertigteile in den
  • Stahlblechmantel eingelassen bzw. als Ortbeton eingebracht.
  • Die Tragsäule läßt sich auch, wie an sich bei derartigen Säulen bekannt, durch Zusammenbau an Land oder in einem Dock liegend aus einzelnen Schüssen errichten. Vorteilhaft ist es, wenn die Zusammenbaufolge von einem mittleren Stehlblechmantelschuß aus nach beiden Seiten gleichzeitig erfolgt. Dies verringert den Zeitaufwand. Die einzelnen Stahlblechmantelschüsse werden mit Betonringen ausgesteift. Ist die Tragsäule fertiggestellt, so wird sie aufs Meer gefahren und in an sich bekannter Weise durch Ballastierung aufgerichtet und an dem am Meeresgrund verankerten Fundament über ein Gelenk befestigt.
  • In der Zeichnung ist ein Ausführungsbeispiel der Erfindung schematisiert dargestellt, das nachstehend erläutert wird. Es zeigen:
    • Fig. 1 einen Längsschnitt durch einen Erdölübergabeturm,
    • Fig. 2 einen vergrößerten Ausschnitt A gemäß Fig. 1,
    • Fig. 3 einen vergrößerten Ausschnitt gemäß Fig. 2 mit einer Schmierschicht zwischen Mantel-und Betonsäule,
    • Fig. 4 einen vergrößerten Ausschnitt gemäß Fig. 3 mit Betonringen unterschiedlicher Wandstärke,
    • Fig. 5 einen vergrößerten Ausschnitt gemäß Fig. 3 mit elastischen Zwischenlagen zwischen den Betonringen,
    • Fig. 6 einen vergrößerten Ausschnitt gemäß Fig. 2 mit konisch gestaltetem Tragsäulenabschnitt,
    • Fig. 7 einen Längsschnitt des unteren Tragsäulenabschnitts mit Ballastierung und
    • Fig. 8 Einzelheiten des Herstellungsverfahrens der Tragsäule von einer schwimmenden Plattform aus.
  • Die in Fig. 1 dargestellte Erdölübergabestation weist eine Vberwasserplattform 1 auf, die z. B. als Hubschrauberplatz 2 ausgebildet ist und einen Ausleger 3 für die Ölübergabe an einen (nicht dergestellten) Tanker besitzt.
  • Die Überwasserplattform 1 ist über die Tragsäule 4 mit einem Fundament 6, das sich auf dem Meeresboden befindet, verbunden. Die Verbindung von Tragsäule 4 und Fundament 6 geschieht über ein Gelenk, z.B. ein bekanntes Kugelgelenk 7.
  • Innerhalb der Tragsäule 4 führt eine Erdölsteigleitung 5 über eine (nicht dargestellte) Pumpstation zum Ausleger 3. Ferner befindet sich innerhalb der Tragsäule 4 eine (nicht dargestellte) Steigleiter oder ein Aufzug für Inspektions- und Wartungsarbeiten.
  • Die Tragsäule 4 besteht, wie aus den Fig. 2 bis 7 ersichtlich ist, aus einem aus wasserdicht geschweißten Schüssen zusammengesetzten Stahlblechmantel 8, der einen kreiszvlindrischen Querschnitt und beispiels.. (ISe für eine 150 m hohe Tragsäule eine Blechd,cke,von 3 bis 4 cm hat.
  • Innerhalb des Stahlblechmantels 8 befindet
  • sich eine aus Betonringen 9 gebildete Betonsäule. Die Dicke der einzelnen Betonringe kann bei der oben angegebenen Höhe der Tragsäule zwischen 40 und 60 cm liegen.
  • Entsprechend den Fig. 3 bis 5 ist zwischen der Innenwandung des Stahlblechmantels 8 und der Außenwand der Betonsäule 9 eine Schmierschicht 10 vorhanden, die zweckmäßigerweise z. B. in Form von Bitumen auf die Innenwandung des Stahlblechmantels aufgetragen ist. Diese Schicht läßt eine freie Längsdehnung von Mantel 8 und Betonsäule 9, die aus unterschiedlichem Material bestehen, zu.
  • Die Betonringe der Betonsäule 9 können zusätzlich armiert sein. Sie können in Form von Fertigteilen als geschlossene Ringe oder als Ringsegmente verwendet werden. Auch ist es möglich, die Betonringe unter Verwendung entsprechender Schalungen mit Ortbeton herzustellen.
  • Fig. 4 zeigt einen Tragsäulenabschnitt mit Betonringen 9 unterschiedlicher Wanddicke. Damit lassen sich Gewicht und Schwerpunktlage der Tragsäule auf einfache Weise beeinflussen.
  • Wird die Tragsäulenachse durch Strömungskräfte gekrümmt, so nimmt der Stahlblechmantel 8 praktisch allein die Biegezugspannungen auf. Dabei öffnen sich auf der Zugseite die Fugen zwischen den stumpf aufeinandergesetzten Betonringen 9. Die auf der Druckseite in den Beton übertragenen axialen Spannungen lassen sich durch zwischen die Betonringe gelegte elastische Einlagen 11 verringern.
  • Im oberen Wasserbereich wird man für die Tragsäule 4 einen relativ kleinen Säulendurchmesser wählen, um den Wellenkräften eine möglichst geringe Angriffsfläche zu bieten, während in größerer Wassertiefe zur Aufnahme des Biegemoments ein größerer Säulendurchmesser notwendig ist. Fig. 6 zeigt den Übergangsbereich zwischen dem Tragsäulenabschnitt kleineren Säulendurchmessers zum Abschnitt größe-ren Durchmessers, der durch einen Abschnitt 12 mit konischer Mantelfläche überbrückt ist.
  • Fig. 7 zeigt den Abschnitt der Tragsäule, der den Gewichtsschwerpunkt mit einem festen Ballastkörper 13 und innerhalb des Hohlraums der Tragsäule mit einer Ballastflüssigkeit 14 auf eine möglichst tiefe Lage bringt.
  • Die Errichtung der Tragsäule 4 in senkrechter Herstellungsweise auf dem Meer oder besser in einer tiefen geschützten Bucht geht aus Fig. 8 hervor. Von einer mit Schwimmkörpern 15 ausgerüsteten schwimmenden Plattform 16 aus findet die Herstellung der Säule 4 durch schußweise Verlängerung mittels Hebezeug 17 nach oben statt. Dabei wird durch Flüssigkeitsballastierung 14 dafür gesorgt, daß sich der Aufbau der einzelnen Schüsse 18 mit der Höhe h stets im gleichen Abstand d von der Plattformoberfläche 19 vollziehen kann.

Claims (14)

1. Tragsäule (4) für eine Überwasserplattform (1), insbesondere für Erdöl- oder Erdgesgewinnung, bestehend aus einem rohrförmigen, aus Stehlblechteilen wasserdicht zusammen-geschweißten Mantel (8) und einer im Inneren des Mantels angeordneten ringförmigen Aussteifung, (9) dadurch gekennzeichnet, daß die Aussteifung aus einer sich über die Länge der Tragsäule erstreckenden, die Druckkräfte in Axialrichtung aufnehmenden Betonsäule (9) besteht, die mit dem Mantel nicht in Axielrichtung formschlüssig verbunden ist.
2. Tragsäule nach Anspruch 1, dadurch gekennzeichnet, daß die Betonsäule (9) aus einzelnen, übereinander angeordneten Ringelementen zusammengesetzt ist.
3. Tragsäule nach Anspruch 2, dadurch gekennzeichnet, daß die Ringelemente der Betonsäule stumpf und ohne zugübertragende Verbindung übereinander gesetzt sind.
4. Tragsäule nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zwischen der Betonsäule (9) und der Innenfläche des Mantels (8) eine reibungsmindernde und/oder elastisch nachgiebige Schicht (10) angeordnet ist.
5. Tragsäule nach Anspruch 4, dadurch gekennzeichnet, daß die Schicht (10) als Schmierschicht aus einem fließfähigen, insbesondere viskosen Material ausgebildet ist.
6. Tragsäule nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Innenfläche des Mantels (8) insbesondere an den Schweißnähten geglättet ist.
7. Tragsäule nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß zwischen den Ringelementen der Betonsäule (9) elastische Zwischenschichten (11) angeordnet sind.
8. Tragsäule nach Anspruch 2, dadurch gekennzeichnet, daß jedes Ringelement der Betonsäule (9) in Umfangsrichtung aus mehreren Ringsegmenten zusammengesetzt ist.
9. Tragsäule nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Betonsäule (9) eine über die Höhe der Tragsäule (4) ungleiche Wanddicke hat.
10. Tragsäule nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß der Mantel (8) und die Betonsäule (9) in einem oder mehreren Höhenabschnitten der Tragsäule (4) einen konischen Verlauf haben.
11. Tragsäule nach einem der Ansprüche 1 bis 10 dadurch gekennzeichnet, daß die Tragsäule im unteren Bereich eine Ballastfüllung (13, 14) aufweist.
12. Tragsäule nach Anspruch 11, dadurch gekennzeichnet, daß die Ballastfüllung mindestens teilweise aus einer Flüssigkeit mit höherem spezifischem Gewicht als Wasser besteht.
13. Verfahren zur Erstellung einer Tragsäule nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß von einer schwimmenden Plattform aus der Mantel (8) durch Aufeinandersetzen und Zusammenschweißen von einzelnen vorgefertigten Abschnitten zusammengesetzt und nach jedem Aufsetzen eines Abschnitts durch teilweises Fluten derart schrittweise abgesenkt wird, daß der Abstand der Arbeitshöhe über dem Wasserspiegel im wesentlichen gleich bleibt, und daß nach jedem Aufgetzen eines Abschnitts des Mantels und vor dem Absenken das oder die den Abschnitt aussteifenden Ringelemente der Betonsäule (9) eingebracht werden.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß jedes Ringelement der Betonsäule in Ortbeton mittels einer Schalung in den Mantel eingegossen wird.
EP83710015A 1982-06-02 1983-03-31 Tragsäule für eine Überwasserplattform und Verfahren zu ihrer Herstellung Expired EP0096650B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3220754 1982-06-02
DE3220754A DE3220754C2 (de) 1982-06-02 1982-06-02 Tragsäule für eine Überwasserplattform und Verfahren zu ihrer Herstellung

Publications (2)

Publication Number Publication Date
EP0096650A1 EP0096650A1 (de) 1983-12-21
EP0096650B1 true EP0096650B1 (de) 1986-02-26

Family

ID=6165095

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83710015A Expired EP0096650B1 (de) 1982-06-02 1983-03-31 Tragsäule für eine Überwasserplattform und Verfahren zu ihrer Herstellung

Country Status (3)

Country Link
EP (1) EP0096650B1 (de)
DE (2) DE3220754C2 (de)
NO (1) NO831974L (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3506123A1 (de) * 1985-02-22 1986-08-28 MAN Gutehoffnungshütte GmbH, 4200 Oberhausen Unterwasserstation mit gelenkturm fuer erdoel-, erdgasproduktion, meeresbergbau o.dgl.
NO162206C (no) * 1987-09-03 1989-11-22 Norske Stats Oljeselskap Fremgangsmaate til bygging av betongskaft for plattform eller liknende konstruksjon, samt seksjon til bruk ved samme.
NO167679C (no) * 1989-07-14 1991-11-27 Offshore Innovation Ltd A S Oppjekkbar oljerigg og hjoernesoeyle for fremstilling av samme.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3348382A (en) * 1965-04-21 1967-10-24 Pan American Petroleum Corp Offshore platform for ice conditions
FR1482137A (fr) * 1966-04-12 1967-05-26 Appareil pour travaux de forage ou de fondation à l'air libre sur fonds marins ou fluviaux
GB1502900A (en) * 1975-09-18 1978-03-08 Brown D Vosper Ltd Offshore product loading terminal
DE2550621C3 (de) * 1975-11-11 1979-04-19 Bilfinger + Berger Bauaktiengesellschaft, 6800 Mannheim Eine Überwasserplattfocm tragender Pfeiler
NL8200232A (nl) * 1981-07-23 1983-02-16 Veth H Ingbureau Toren voor het vormen van een boor- en/of winningseiland.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PETROLEUM ENGINEER INTERNATIONAL, Band 52, Nr. 15, Dezember 1980, Seiten 66-76, Dallas, Texas, USA, G.W. MORGAN: "Modern production risers. Part 3 - More on the vertical transport section" *

Also Published As

Publication number Publication date
DE3362247D1 (en) 1986-04-03
DE3220754C2 (de) 1985-04-25
NO831974L (no) 1983-12-05
EP0096650A1 (de) 1983-12-21
DE3220754A1 (de) 1983-12-08

Similar Documents

Publication Publication Date Title
EP2360373B1 (de) Off-Shore-Anlage, Fundament einer Off-Shore-Anlage und Verfahren zum Errichten einer Off-Shore-Anlage
DE202021103023U1 (de) Eine gesamte Positionier- und Montagekonstruktion für doppelwandige Stahlkofferdämme und kurze Schutzrohrgruppen
DE2424698A1 (de) Offshore-konstruktion in form eines turms
WO2005005752A1 (de) Gründung für bauwerke
EP2420624A2 (de) Gründungsstruktur für eine Offshore-Windenergieanlage, sowie Verfahren zum Errichten dieser
EP2500473B1 (de) Verfahren zur Herstellung einer Gründung für eine Offshore-Anlage
EP3428345A1 (de) Gründung für eine offshore-windenergieanlage
EP2700750A1 (de) Gründungspfahl für Offshore-Bauwerke sowie Verfahren zur Herstellung eines Gründungspfahls für Offshore-Bauwerke
DE102017118375A1 (de) Offshore Bauwerk
DE10239278B4 (de) Gründung für Wasserbauwerke
DE2559498A1 (de) Verfahren zum herstellen einer turmkonstruktion
EP0096650B1 (de) Tragsäule für eine Überwasserplattform und Verfahren zu ihrer Herstellung
DE2457536A1 (de) Offshore-plattform
DE10256421A1 (de) Verfahren und Vorrichtung zum Herstellen eines Tunnels oder eines Troges
DE3524253C1 (de) Verfahren und Vorrichtung zur Herstellung eines Schachtes, insbesondere für den Bergbau
DE102010035025A1 (de) Gündungsstruktur für ein Wasserbauwerk und Verfahren zum Errichten einer Gründungsstruktur
DE3718436A1 (de) Verfahren zur herstellung von turmartigen bauwerken
DE3205561C1 (de) Vorrichtung zur Verwendung bei einem Verfahren zum Installieren einer kuenstlichen Insel
DE4002457C2 (de)
DE2550621C3 (de) Eine Überwasserplattfocm tragender Pfeiler
DE3900432A1 (de) Konstruktion und verfahren zur herstellung von langgestreckten bauwerken bzw. bauwerksteilen in hohlkoerperform mit vertikaler oder horizontaler laengsachse aus stahl und beton
DE2105432C3 (de) Verfahren zur Herstellung eines in Längsrichtung vorgespannten Verbundpfahles
DE2942428A1 (de) Verfahren zum ausbau von hafenanlagen o.dgl.
DE1167777B (de) Betonringausbau fuer Schaechte
DE1150627B (de) Verfahren und Vorrichtung zum Errichten eines Bauwerks im Wasser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19840223

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB NL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19860331

Year of fee payment: 4

REF Corresponds to:

Ref document number: 3362247

Country of ref document: DE

Date of ref document: 19860403

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MAN GUTEHOFFNUNGSHUETTE GMBH

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: MAN GUTEHOFFNUNGSHUETTE GMBH TE OBERHAUSEN, BONDSR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19871001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19871130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19871201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881122