EP0095398A1 - Elektrischer Transformator mit aus Modulen bestehenden, selektiv gespeisten Primärkreisen - Google Patents

Elektrischer Transformator mit aus Modulen bestehenden, selektiv gespeisten Primärkreisen Download PDF

Info

Publication number
EP0095398A1
EP0095398A1 EP83400904A EP83400904A EP0095398A1 EP 0095398 A1 EP0095398 A1 EP 0095398A1 EP 83400904 A EP83400904 A EP 83400904A EP 83400904 A EP83400904 A EP 83400904A EP 0095398 A1 EP0095398 A1 EP 0095398A1
Authority
EP
European Patent Office
Prior art keywords
winding
module
modules
voltage
transformer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83400904A
Other languages
English (en)
French (fr)
Other versions
EP0095398B1 (de
Inventor
Louis Barthelemy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT83400904T priority Critical patent/ATE31589T1/de
Publication of EP0095398A1 publication Critical patent/EP0095398A1/de
Application granted granted Critical
Publication of EP0095398B1 publication Critical patent/EP0095398B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F2038/006Adaptations of transformers or inductances for specific applications or functions matrix transformer consisting of several interconnected individual transformers working as a whole

Definitions

  • the present invention relates to a variable voltage transformer.
  • the secondary has several output terminals and a switch is applied selectively to one or other of these terminals to give a variable operating voltage depending on the height of the secondary to which the socket is located.
  • Magnetic amplifiers or "transducers” include a magnetic circuit and a choke coil, which makes it possible to obtain an adjustment without moving mechanical part, because one acts by saturating and desaturating the magnetic circuit by causing a phase shift.
  • the present invention overcomes all these drawbacks as will be seen below, since a transformer according to the invention knows no power limit, operates with a pure sinusoidal regime, has a constant cosine ⁇ , does not cause breakage load and allows an adjustment of a finesse as large as is desired because the pitch of this adjustment can be practically insensitive.
  • the invention relates to an electrical transformer intended to deliver an adjustable electrical quantity, in particular for regulation purposes, characterized in that it comprises on the one hand at least two modules which each comprise at least one primary circuit winding and which are independent and, on the other hand, a single secondary circuit winding common to all the modules, each of these being associated with means making it possible to neutralize its individual electrical induction in the winding of the common secondary circuit, while retaining the activity of the corresponding magnetic circuit.
  • a transformer according to the invention can include, as here, two modules which each include a single primary winding respectively 1 and 2 each associated with a magnetic circuit respectively 3 and 4, these two primary circuits being associated with a single secondary circuit winding 5 common to the two modules 1 and 2.
  • Each primary winding 1 and 2 is independently connected to a nominally constant voltage source 6, for example 220 Volts.
  • switch respectively 7 and 8 which can occupy two positions in one of which it establishes the normal circuit (connector 8 in Figures 1 and 2) while in the other (connector 7 in Figure 1), it puts the corresponding winding in short circuit.
  • the single secondary circuit 5 has a voltage which corresponds either to that which results from the winding 1 only, or to that which results from the winding 2 only, that is to say that which results from the action of the two windings 1 and 2 at the same time.
  • a complete installation comprising a transformer according to the invention is equipped with a control device, possibly programmed, and acting on all the connectors to act selectively on the individual supply of each primary module.
  • a simple version consists in providing a plurality of modules all equal to each other.
  • the modules have a nominal voltage which is established to provide, with a given current, a power which is different for each module.
  • the total of these individual powers is substantially equal to the maximum admissible power for the single secondary circuit.
  • the modules are regular decreasing fractions of the total power and are established according to a binary code.
  • the denominator of each fraction is an integer power of 2 so that the most powerful module is equal to half of the total power P, i.e. , the other modules having a power equal respectively to , , , , , etc ...
  • the adjustment step, or minimum jump is equal to the smallest fraction of P provided in the transformer.
  • module N ° 1 When the requested power is equal to , we only activate module N ° 1. If you want to increase it by , we also activate module No. 8. To further increase it by module N ° 7 is activated by simultaneously neutralizing module N ° 8 etc ...
  • N-1 being the fraction of the power of the last module of a given set.
  • each primary module is not very bulky and that the passage from an adjustment to the to a setting at requires only the addition of an additional transformer of very small dimensions.
  • FIG. 3 there is an electrical diagram of a transformer according to the invention comprising six identical modules 10 to 15 and, of course, always a single circuit winding secondary 16.
  • Each module comprises a coil 17 to 22 associated with an individual magnetic circuit 23 to 28.
  • the AC voltage source 30 is connected to two main lines 31 and 32 to which the individual power supplies of each primary module are connected respectively 33 to 38 and 39 to 44.
  • each module 10 to 15 is associated with a connector 45 to 50 respectively movable between two positions corresponding to the power supply normal or when each winding 17 to 22 is short-circuited.
  • the voltage of the secondary is a function of the number of modules under voltage and that it can, therefore, vary from 0 to 100 per 100 by modifying the ratio of the number of turns of the primary windings the number of turns of the secondary winding, taking the precaution of shunting the windings of the non-activated modules to give them zero impedance, which is indeed the case since the secondary then becomes conductive.
  • the single transformer according to the invention functions, in a way, like a series of transformers, the secondaries of which are all in series.
  • each module comprises only one primary winding, but with the use of head-to-tail thyristors to act selectively on the induction produced by the primary winding.
  • Each module includes a primary circuit winding 54 and 55 respectively and an individual magnetic circuit 56 and 57.
  • Each module is supplied from a voltage source 58 connected to two main lines 59 and 60 to each of which are connected the terminals of the two windings 54 and 55.
  • Each of these terminals 54a and 54b on the one hand, 55a and 55b on the other hand leads to a branch with two branches on each of which is a thyristor, which are mounted head to tail for the same branches: 61 and 62-63 and 64-65 and 66-67 and 6a
  • thyristors are controlled by any known electronic means such that in the same given primary winding is sent a current either in one direction or in the other.
  • the single secondary winding 70 is the seat of a voltage which, if necessary, is added to the other voltages arising from the other modules, while in the other case no voltage is induced in the secondary winding.
  • the magnetization of the magnetic circuits is permanent, whatever the effective direction of the current.
  • the magnetic circuits are always supplied, but the voltage in the secondary winding is either effectively induced or zero.
  • each module comprises two primary circuit windings.
  • FIG. 5 shows a complete module 71 and the start of a second 72 with, as always, a single secondary circuit winding 73.
  • Each module includes a magnetic circuit 74 and two coils of the same pitch, respectively 75 and 76.
  • a voltage source 77 is connected to two lines 78 and 79, the latter directly leading to one of the terminals 76a of the winding 76 and to the terminal 80a of a connector 80.
  • Line 78 leads to a branch with two branches, one of which leads to terminal 76b of the winding 76 and the other is connected on the one hand to terminal 75a of the winding 75 and on the other hand, to terminal 81a d a coil 81 whose pitch is opposite to that of the coil 75 and whose second terminal 81b can be connected to line 79, like terminal 75b, depending on the position of the connector 80.
  • the induced voltage in the secondary winding 73 is no longer added to but subtracted from the voltage induced from the primary winding 76 so that, ultimately, the secondary winding 73 is traversed either by the nominal voltage of the module 71 or by a zero voltage for the same module 71.
  • the secondary winding 73 is traversed, if necessary, by the only voltages induced by the other modules.
  • FIG. 6 we can see an assembly which also includes two primary windings for each module but, here, the neutralization of each module is obtained by different means.
  • Each of these two modules comprises a primary winding 93 and 94 associated with a magnetic circuit 95 and 96 and the terminals of which are permanently connected to two lines 97 and 98 supplied by a source 99.
  • each of these modules comprises a second winding respectively 100 and 101 associated with a magnetic circuit 102 and 103, all the modules corresponding, as always, to a single secondary winding 104.
  • inverters 105 and 106 are interposed between the lines 97 and 98 on the one hand and the terminals of the windings 100 and 101 on the other hand.
  • the voltage across the secondary winding 104 is therefore the result of an addition of the voltages of each activated module.
  • This graph tends to show visually that one can easily reach an extreme fineness of adjustment since one could, whatever the power P, provide a last module of power equal to or even or etc ...
  • This graph also shows that the obtaining of this finesse is done by means of an extremely compact and therefore inexpensive module whereas generally the increase in a given performance is proportionally much more complicated and expensive than the performance itself.
  • FIG 8 there is shown schematically a transformer according to the invention comprising four modules of the type according to which each of these comprises two primary windings and two magnetic circuits.
  • Each module has a binary function, 0 and 1, obtained by inverting the field of one primary with respect to the other.
  • FIG. 9 shows an example of application of the invention to the regulation of a transformer.
  • FIG. 10 represents a diagram of a variant according to which a branch is connected in the middle of one of the two windings of each module and constitutes the supply of the corresponding winding of the following module.
  • the module 140 is supplied with 220 Volts from the source 141 by two main lines 142 and 143. This voltage is applied to the winding 144 associated with a counterpart 145.
  • winding 144 From the middle of winding 144, leads a branch 146 which leads to the end of the corresponding winding 147 associated with a counterpart 148 of the following module 149.
  • the other end of winding 147 is connected directly to line 142 of so that the supply voltage for winding 147 is only 110 volts.
  • the winding 150 associated with the winding 151 of the module 152 is supplied with 55 Volts and so on, the secondary 153 being always unique and common to all the modules.
  • the first module 140 has a power of ; with a current of for a nominal current of i.
  • Module 149 has and .
  • Module 152 has and etc ...
  • the number of turns of the primary windings is constant for all modules, regardless of their power. In this way, a standardization is achieved which leads to a saving in labor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Control Of Electrical Variables (AREA)
  • Magnetic Treatment Devices (AREA)
  • Ac-Ac Conversion (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Relay Circuits (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
EP83400904A 1982-05-25 1983-05-05 Elektrischer Transformator mit aus Modulen bestehenden, selektiv gespeisten Primärkreisen Expired EP0095398B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83400904T ATE31589T1 (de) 1982-05-25 1983-05-05 Elektrischer transformator mit aus modulen bestehenden, selektiv gespeisten primaerkreisen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8208998 1982-05-25
FR8208998A FR2527832A1 (fr) 1982-05-25 1982-05-25 Transformateur electrique a circuits primaires modulaires alimentes selectivement

Publications (2)

Publication Number Publication Date
EP0095398A1 true EP0095398A1 (de) 1983-11-30
EP0095398B1 EP0095398B1 (de) 1987-12-23

Family

ID=9274274

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83400904A Expired EP0095398B1 (de) 1982-05-25 1983-05-05 Elektrischer Transformator mit aus Modulen bestehenden, selektiv gespeisten Primärkreisen

Country Status (6)

Country Link
US (1) US4678986A (de)
EP (1) EP0095398B1 (de)
JP (1) JPS58213409A (de)
AT (1) ATE31589T1 (de)
DE (1) DE3375052D1 (de)
FR (1) FR2527832A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762446A1 (de) * 1994-05-27 1997-03-12 Nariisa Imoto Elektrishe stellvorrichtung
WO2011029251A1 (zh) * 2009-09-08 2011-03-17 武汉泰普变压器开关有限公司 一种变压器用无励磁笼形调压分接开关

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837497A (en) * 1987-12-29 1989-06-06 Gregory Leibovich Variable transformer, reactor and method of their control
US5177460A (en) * 1990-01-04 1993-01-05 Dhyanchand P John Summing transformer for star-delta inverter having a single secondary winding for each group of primary windings
JPH05128324A (ja) * 1991-11-07 1993-05-25 Mitsubishi Electric Corp 非接触カード、非接触カード用端末機及び非接触伝送システム
US5355296A (en) * 1992-12-10 1994-10-11 Sundstrand Corporation Switching converter and summing transformer for use therein
GB2284939A (en) * 1993-08-15 1995-06-21 Aziz Fawzy Mekaiel Fanouse Voltage regulating transformer
US6340851B1 (en) 1998-03-23 2002-01-22 Electric Boat Corporation Modular transformer arrangement for use with multi-level power converter
US6212430B1 (en) 1999-05-03 2001-04-03 Abiomed, Inc. Electromagnetic field source with detection of position of secondary coil in relation to multiple primary coils
US6664881B1 (en) 1999-11-30 2003-12-16 Ameritherm, Inc. Efficient, low leakage inductance, multi-tap, RF transformer and method of making same
US6806803B2 (en) * 2002-12-06 2004-10-19 Square D Company Transformer winding
US6867987B2 (en) * 2003-06-13 2005-03-15 Ballard Power Systems Corporation Multilevel inverter control schemes
KR101432047B1 (ko) * 2007-09-20 2014-08-20 삼성전자주식회사 디지털-아날로그 컨버터
DK2654878T3 (da) 2010-12-20 2019-07-22 Abiomed Inc Transkutant energioverførselssystem med en flerhed af sekundære spoler
US9220826B2 (en) 2010-12-20 2015-12-29 Abiomed, Inc. Method and apparatus for accurately tracking available charge in a transcutaneous energy transfer system
WO2012087819A2 (en) 2010-12-20 2012-06-28 Abiomed, Inc. Transcutaneous energy transfer system with vibration inducing warning circuitry
ES2717653T3 (es) 2011-04-14 2019-06-24 Abiomed Inc Bobina de transferencia de energía transcutánea con antena de radiofrecuencia integrada
US9002468B2 (en) 2011-12-16 2015-04-07 Abiomed, Inc. Automatic power regulation for transcutaneous energy transfer charging system
US9564266B2 (en) 2014-10-31 2017-02-07 Raytheon Company Power converter magnetics assembly
US9730366B2 (en) 2015-02-10 2017-08-08 Raytheon Company Electromagnetic interference suppressing shield
US10270356B2 (en) 2016-08-09 2019-04-23 Raytheon Company High voltage high frequency power converter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195038A (en) * 1961-05-15 1965-07-13 Brentford Electric Ltd Voltage or current regulator apparatus
FR1422650A (fr) * 1965-01-26 1965-12-24 Dispositif pour le branchement d'éléments électriques, tels que résistance, capacité, self ou autre, ainsi que les ensembles pourvus d'un dispositif de branchement,conforme à l'invention
DE2150946A1 (de) * 1971-10-13 1973-04-19 Maecker Elan Schaltelemente Vorrichtung zur erzeugung verschiedener einstellbarer wechselspannungen hoher genauigkeit mittels eines induktiven teilers
FR2155839A1 (de) * 1971-10-08 1973-05-25 Alsthom
FR2406908A1 (fr) * 1977-10-19 1979-05-18 Sirven Pierre Dispositif de regulation du courant alternatif par commutation electronique d'enroulements de transformateurs
GB2063572A (en) * 1979-11-06 1981-06-03 Westinghouse Electric Corp Tap changer for electrical inductive apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50497Y1 (de) * 1970-08-13 1975-01-09
FR2179507B1 (de) * 1972-04-10 1975-03-21 Drusch Gaston
JPS5232625B2 (de) * 1973-03-29 1977-08-23
US4011499A (en) * 1976-02-11 1977-03-08 The Bendix Corporation Low loss a.c. voltage regulator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3195038A (en) * 1961-05-15 1965-07-13 Brentford Electric Ltd Voltage or current regulator apparatus
FR1422650A (fr) * 1965-01-26 1965-12-24 Dispositif pour le branchement d'éléments électriques, tels que résistance, capacité, self ou autre, ainsi que les ensembles pourvus d'un dispositif de branchement,conforme à l'invention
FR2155839A1 (de) * 1971-10-08 1973-05-25 Alsthom
DE2150946A1 (de) * 1971-10-13 1973-04-19 Maecker Elan Schaltelemente Vorrichtung zur erzeugung verschiedener einstellbarer wechselspannungen hoher genauigkeit mittels eines induktiven teilers
FR2406908A1 (fr) * 1977-10-19 1979-05-18 Sirven Pierre Dispositif de regulation du courant alternatif par commutation electronique d'enroulements de transformateurs
GB2063572A (en) * 1979-11-06 1981-06-03 Westinghouse Electric Corp Tap changer for electrical inductive apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762446A1 (de) * 1994-05-27 1997-03-12 Nariisa Imoto Elektrishe stellvorrichtung
EP0762446A4 (de) * 1994-05-27 1997-08-20 Nariisa Imoto Elektrishe stellvorrichtung
CN1055562C (zh) * 1994-05-27 2000-08-16 井本成勋 电气调节器
WO2011029251A1 (zh) * 2009-09-08 2011-03-17 武汉泰普变压器开关有限公司 一种变压器用无励磁笼形调压分接开关

Also Published As

Publication number Publication date
DE3375052D1 (en) 1988-02-04
EP0095398B1 (de) 1987-12-23
ATE31589T1 (de) 1988-01-15
JPS58213409A (ja) 1983-12-12
FR2527832B1 (de) 1984-11-23
FR2527832A1 (fr) 1983-12-02
US4678986A (en) 1987-07-07

Similar Documents

Publication Publication Date Title
EP0095398B1 (de) Elektrischer Transformator mit aus Modulen bestehenden, selektiv gespeisten Primärkreisen
FR2471702A1 (fr) Circuit bipolaire et a effet de champ a autocontrole de la commutation
CH688952B5 (fr) Circuit d'alimentation pour une feuille électroluminescente.
FR2584858A1 (fr) Interrupteur de circuit sans formation d'arc
FR2575324A1 (fr) Dispositif de commutation de courant electrique pouvant fonctionner de maniere synchrone, permettant de commuter des circuits multiples et/ou de reduire la resistance de contact
EP0638160B1 (de) Minenräumvorrichtung
FR2727586A1 (fr) Circuit de commande pour un interrupteur a semi-conducteur
CA3051790C (fr) Machine electrique alimentee en basse tension et chaine de traction multicellulaire associee
CH648708A5 (fr) Dispositif d'alimentation de courant continu a tension reglable comprenant un transformateur variable.
CH651990A5 (fr) Installation de modulation pour l'alimentation secteur d'organes de puissance.
CA2455352C (fr) Dispositif de conversion d'energie
FR2557399A1 (fr) Amplificateur de puissance lineaire
EP0233425B1 (de) Regelverfahren für einen bürstenlosen Synchrongenerator und Vorrichtung zur Durchführung des Verfahrens
EP1022855B1 (de) Steuerungsvorrichtung und -verfahren einer vertikalen Ablenkschaltung eines einen Bildschirm abtastenden Punktes, insbesondere für Fernsehen oder Computermonitor
FR2477760A1 (fr) Transformateur pour impulsions
CH649024A5 (fr) Machine pour usiner par decharges electriques erosives.
FR2481530A1 (fr) Procede et dispositif de production d'impulsions electriques pour le pompage d'un laser
FR2510836A1 (fr) Moteur electrique a repulsion sans collecteur
EP0032335A1 (de) Generator mit hoher Leistung für elektrische Signale
FR2559320A1 (fr) Montage pour la regulation et la transformation de la tension, en particulier d'un generateur solaire
FR2710689A1 (fr) Générateur d'allumage haute énergie notamment pour turbine à gaz.
WO2021259649A1 (fr) Gradateur électronique
CH477128A (fr) Circuit générateur d'impulsions
FR2500232A1 (fr) Convertisseur continu-continu regule par reaction
CH456745A (fr) Dispositif de réglage pour moteur électrique à collecteur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840526

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19871223

Ref country code: AT

Effective date: 19871223

REF Corresponds to:

Ref document number: 31589

Country of ref document: AT

Date of ref document: 19880115

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871231

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

REF Corresponds to:

Ref document number: 3375052

Country of ref document: DE

Date of ref document: 19880204

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880505

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880531

Ref country code: LI

Effective date: 19880531

Ref country code: CH

Effective date: 19880531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: BARTHELEMY LOUIS

Effective date: 19880531

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890531