EP0088453A1 - Composition lubrifiante - Google Patents

Composition lubrifiante Download PDF

Info

Publication number
EP0088453A1
EP0088453A1 EP83102377A EP83102377A EP0088453A1 EP 0088453 A1 EP0088453 A1 EP 0088453A1 EP 83102377 A EP83102377 A EP 83102377A EP 83102377 A EP83102377 A EP 83102377A EP 0088453 A1 EP0088453 A1 EP 0088453A1
Authority
EP
European Patent Office
Prior art keywords
viscosity
cst
centistokes
molecular weight
fluids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP83102377A
Other languages
German (de)
English (en)
Other versions
EP0088453B1 (fr
Inventor
Raymond Frederick Watts
Frederick Charles Loveless
Walter Nudenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uniroyal Chemical Co Inc
Original Assignee
Uniroyal Chemical Co Inc
Uniroyal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=23402399&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0088453(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Uniroyal Chemical Co Inc, Uniroyal Inc filed Critical Uniroyal Chemical Co Inc
Publication of EP0088453A1 publication Critical patent/EP0088453A1/fr
Application granted granted Critical
Publication of EP0088453B1 publication Critical patent/EP0088453B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M111/00Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential
    • C10M111/04Lubrication compositions characterised by the base-material being a mixture of two or more compounds covered by more than one of the main groups C10M101/00 - C10M109/00, each of these compounds being essential at least one of them being a macromolecular organic compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/10Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/14Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing conjugated diens
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/06Well-defined aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/0206Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/06Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/06Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes
    • C10M2205/063Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/10Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing cycloaliphatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/024Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/2805Esters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/286Esters of polymerised unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/34Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives
    • C10M2207/345Esters having a hydrocarbon substituent of thirty or more carbon atoms, e.g. substituted succinic acid derivatives used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/40Fatty vegetable or animal oils
    • C10M2207/404Fatty vegetable or animal oils obtained from genetically modified species
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • C10M2215/224Imidazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/088Neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/251Alcohol fueled engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2040/28Rotary engines

Definitions

  • This invention relates to compositions useful as lubricating oils having high viscosity index, improved resistance to oxidative degradation and resistance to viscosity losses caused by permanent or temporary shear.
  • a lubricating composition comprising (1) a high viscosity synthetic hydrocarbon such as high viscosity polyalphaolefins, liquid hydrogenated polyisoprenes or ethylene-alphaolefin oligomers; (2) a low viscosity synthetic hydrocarbon, such as alkylated benzene or low viscosity polyalphaolefin; and/or, optionally, (3) a low viscosity ester, such as monoesters, diesters, polyesters and (4) an additive package.
  • a high viscosity synthetic hydrocarbon such as high viscosity polyalphaolefins, liquid hydrogenated polyisoprenes or ethylene-alphaolefin oligomers
  • a low viscosity synthetic hydrocarbon such as alkylated benzene or low viscosity polyalphaolefin
  • a low viscosity ester such as monoesters, diesters, polyesters and (4) an additive package.
  • a further object of the invention is to provide lubricating compositions exhibiting permanent shear stability, superior oxidative stability and excellent temperature-viscosity properties.
  • a further object of the invention is to provide a lubricating composition with properties not obtainable with conventional polymeric thickeners.
  • the viscosity-temperature relationship of a lubricating oil is one of the critical criteria which must be considered when selecting a lubricant for a particular application.
  • the mineral oils commonly used as a base for single and multigraded lubricants exhibit a relatively large change in viscosity with a change in temperature. Fluids exhibiting such a relatively large change in viscisity with temperature are said to have a low viscosity index.
  • the viscosity index of a common paraffinic mineral oil is usually given a value of about 100.
  • Viscosity index (VI) is determined according to ASTM Method D 2770-74 wherein the VI is related to kinematic viscosities measured at 40°C and 100°C.
  • Lubricating oils composed mainly of mineral oil are said to be single graded.
  • SAE grading requires that oils have a certain minimum viscosity at high temperatures and, to be multigraded, a certain maximum viscosity at low temperatures.
  • an oil having a viscosity of 10 cSt. at 100°C would be an SAE 30 and if that oil had a viscosity of 3400 cP. at -20°C, the oil would be graded 10W-30.
  • the viscosity requirements for qualification as multigrade engine oils are described by the SAE Engine Oil Viscosity Classification - SAE J300 DEP80, which became effective April 1, 1982.
  • the low temperature (W) viscosity requirements are determined by ASTM D 2602, Method of Test for Apparent Viscosity of Motor Oils at Low Temperature Using the Cold Cranking Simulator, and the results are reported in centipoise (cP).
  • the higher temperature (100°C) viscosity is measured according to ASTM D445, Method of Test for Kinematic Viscosity of Transparent and Opaque Liquids, and the results are reported in centistyckes (cSt.).
  • the following table outlines the high and low temperature requirements for the recognized SAE grades for engine oils.
  • the 40°C viscosity estimated by linearly connecting the 100°C and -25°C viscosities would be about 70 cst.
  • V.I. improved oils have viscosities at -25°C which are considerably greater than predicted by linear extrapolation of the K.V. 100 and K.V. 40 values. Therefore, even having a V.I. of 180 does not guarantee the blend would be a 5W-40 oil.
  • Polymeric VI improvers are traditionally high molecular weight rubbers whose molecular weights may vary from 10,000 to 1,000,000. Since the thickening power and VI increase are related to the molecular weight of the VI improver, most of these polymers normally have a molecular weight of at least 100,000.
  • Temporary shear is the result of the non-Newtonian viscometrics associated with solutions of high molecular weight polymers. It is caused by an alignment of the polymer chains with the shear field under high shear rates with a resultant decrease in viscosity. The decreased viscosity reduces the wear protection associated with viscous oils. Newtonian fluids maintain their viscosity regardless of shear rate.
  • Certain specific blends of high viscosity synthetic hydrocarbons, low viscosity synthetic hydrocarbons and optionally low viscosity esters form base fluids from which superior crankcase or gear oils can be produced by the addition of the proper additive "packages".
  • the finished oils thus prepared exhibit very high stability to permanent shear and, because of their Newtonian nature, very little, if any, temporary shear and so maintain the viscosity required for proper wear protection.
  • the oils of this invention have remarkably better stability toward oxidative degradation than those of the prior art.
  • the unexpectedly high viscosity indices produced from our base fluid blends permit the preparation of broadly multigraded crankcase fluids, such as 5W-40 and gear oils such as 75W-140.
  • the high viscosity synthetic hydrocarbons having viscosities of 40 to 1000 cSt. may be polyalphaolefins, ethylene-alphaolefin oligomers or hydrogenated polyisoprene oligomers.
  • the high viscosity polyalphaolefins of the present invention have viscosities of from 40 to 1000 cSt., preferably from 40 to 250 cSt., and are conveniently prepared by any of a series of methods described in the literature.
  • the catalysts employed are those commonly referred to as Friedel-Crafts catalysts. Such catalysts cause cationic oligomerization of alphaolefins, such as octene-1 or decene-1 to molecular weights ranging up to several thousand, depending on the catalyst and polymerization conditions employed.
  • Ziegler catalysts such as described in United States Patent No. 3,179,711 to Sun Oil Company can also be used to prepare oligomers in the molecular weight range useful in this invention.
  • Polyalphaolefins can likewise be prepared with peroxide catalysts, BF3 based catalysts and by thermal polymerization. These methods, however, generally produce only low molecular weight oligomers.
  • the high molecular weight polyalphaolefins of this invention are preferably hydrogenated to decrease their level of unsaturation and thereby to increase their stability toward oxidation.
  • the alphaolefins utilized to make the high viscosity oligomers of the invention can range from C 3 (propylene) to C 14 (tetradecene) or any mixtures, although oligomers of octene-1, decene-1 and dodecene-1 are preferred because of their high viscosity indices and low pour points.
  • the high viscosity ethylene-alphaolefin oligomers of this invention are conveniently prepared by Ziegler catalysis. Many references exist covering methods of producing liquid oligomers of ethylene and alphaolefins (particularly propylene).
  • Polymerization is typically performed by subjecting the monomer mixture usually in a solvent to the combination of an organo aluminum compound and a vanadium or titanium compound.
  • the products formed can range from materials having viscosities as low as 20 cSt. to rubbery semi-solids depending on the choice of catalyst, the addition of molecular weight regulating species, temperature of polymerization and, especially, imposed hydrogen pressure.
  • low viscosity oligomers are prepared by the pyrolysis of high viscosity oligomers or rubbery solids.
  • Typical preparations of liquid ethylene-alphaolefin copolymers can be found in references, such as:
  • oligomers of ethylene and at least one other alphaolefin of this invention may be hydrogenated to increase their stability toward oxidation, the proper choice of polymerization catalysts in the presence of hydrogen often produces oligomers having very low levels of unsaturation directly.
  • the alphaolefins which can be used singly or in combinations with ethylene include linear alphaolefins of C 3 (propylene) to e14 (tetradecene) and branches alphaolefins of the same molecular weight range, provided that the branch point is at least in the beta position to the double bond (e.g. 4-methyl pentene-1).
  • propylene and the lower molecular weight olefins are the preferred monomers in the preparation of the oligomers of ethylene and at least one other alphaolefin of this invention.
  • the viscosity of the ethylene-alphaolefin oligomers of this invention is preferably 40 to 1000 cSt. while the ethylene content is preferably 30 to 70 wt.%.
  • oligomeric ethylene-alpha olefin polymers which contain controlled amounts of unsaturation introduced by copolymerization with certain non-conjugated diene such as dicyclopentadiene, ethylidene norbornene and 1,4-hexadiene.
  • certain non-conjugated diene such as dicyclopentadiene, ethylidene norbornene and 1,4-hexadiene.
  • the introduction of unsaturation is sometimes desired if the oligomer is to be treated in any way to produce polar functionality thus giving the oligomer dispersant properties.
  • the oligomeric polyisoprenes of this invention may be prepared by Ziegler or, preferably, anionic polymerization. Such polymerization techniques are described in United States Patent 4,060,492.
  • the preferred method of preparation for the liquid hydrogenated polyisoprenes is by the anionic alkyl lithium catalyzed polymerization of isoprene.
  • alkyl lithium catalysts such as secondary butyl lithium results in a polyisoprene oligomer having a very high (usually greater than 80'-&) 1,4-content, which results in backbone unsaturation.
  • alkyl lithium catalysts are modified by the addition of ethers or amines, a controlled amount of 1,2- and 3,4- addition can take place in the polymerization.
  • Structure A is the preferred structure because of its low Tg and because it has a lower percent of its mass in the pendant grouns (CH3-)' Structure B is deficient in that the tetrasubsti- tuted carbons produced serve as points of thermal instability.
  • Structure C has 60% of its mass in a pendant (isopropyl) group which, if repeated decreases the thickening power of the oligomer for a given molecular weight and also raises the Tg of the resultant polymer. This latter property has been shown to correlate with viscosity index. Optimization of structure A is desired for the best combination of thickening power, stability and V.I. improvement properties.
  • alkyl lithium polymers Another feature of alkyl lithium polymers is the ease with which molecular weight and molecular weight distribution can be controlled.
  • the molecular weight is a direct function of the monomer to catalyst ratio and, taking the proper precautions to exclude impurities, can be controlled very accurately thus assuring good quality control in the production of such polymer.
  • the alkyl lithium catalysts produce very narrow molecular weight distributions such that Mw/Mn ratios of 1.1 are easily gained.
  • V.I. improvers a narrow molecular weight distribution is highly desirable since, at the given molecular weight, thickening power is maximized while oxidative and shear instability are minimized.
  • broad or even polymodal M.W. distributions are easily produced by a variety of techniques well known in the art.
  • Star-shaped or branched polymers can also be readily prepared by the inclusion of multifunctional monomers such as divinyl benzene or by termination of the "living" chains with a polyfunctional coupling agent such as dimethylterephthal
  • isoprene oligomers require hydrogenation to reduce the high level of unsaturation present after polymerization.
  • 90%, and preferably 99% or more of the olefinic linkages should be saturated.
  • the high viscosity synthetic hydrocarbons of this invention should have viscosities ranging from about 40 cSt. to about 1000 cSt.
  • the low viscosity synthetic hydrocarbons of the present invention having viscosities of from 1 to 10 cSt., consist primarily of.oligomers of alphaolefins and alkylated benzenes.
  • Low molecular weight oligomers of alphaolefins from C 8 (octene) to C 12 (dodecene) or mixtures of the olefins can be utilized.
  • Low viscosity alphaolefin oligomers can be produced by Ziegler catalysis, thermal polymerization, free radically catalyzed polymerization and, preferably, BF 3 catalyzed polymerization.
  • a host of similar processes involving BF in conjunction with a cocatalyst is known in the patent literature.
  • a typical polymerization technique is described in United States Patent No. 4,045,508.
  • the alkyl benzenes may be used in the present invention alone or in conjunction with low viscosity polyalphaolefins in blends with high viscosity synthetic hydrocarbons and low viscosity esters.
  • the alkyl benzenes prepared by Friedel-Crafts alkylation of benzene with olefins are usually predominantly dialkyl benzenes wherein the alkyl chain may be 6 to 14 carbon atoms long.
  • the alkylating olefins used in the preparation of alkyl benzenes can be straight or branched chain olefins or combinations. These materials may be prepared as shown in U.S.P. 3,909,432.
  • the low viscosity esters of this invention having viscosities of from 1 to 10 cSt. can be selected from classes of esters readily available commercially, e.g., monoesters prepared from monobasic acids such as pelargonic acid and alcohols; diesters prepared from dibasic acids and alcohols or from diols and monobasic acids or mixtures of acids; and polyol esters prepared from diols, triols (especially trimethylol propane), tetraols (such as pentaerythritol), hexaols (such as dipentaerythritol) and the like reacted with monobasic acids or mixtures of acids.
  • monoesters prepared from monobasic acids such as pelargonic acid and alcohols
  • diesters prepared from dibasic acids and alcohols or from diols and monobasic acids or mixtures of acids
  • esters examples include tridecyl pelargonate, di-2 ethylhexyl adipate, di-2 Ethylhexyl azelate, trimethylol propane triheptanoate and pentaerythritol tetraheptanoate.
  • esters and mixtures of esters derived from natural sources, plant or animal are those esters and mixtures of esters derived from natural sources, plant or animal. Examples of these materials are the fluids produced from jojoba nuts, tallows, safflowers and sperm whales.
  • esters used in our blends must be carefully selected to insure compatibility of all components in finished lubricants of this invention. If esters having a high degree of polarity (roughly indicated by oxygen content) are blended with certain combinations of high viscosity synthetic hydrocarbons and low viscosity synthetic hydrocarbons, phase separation can occur at low temperatures with a resultant increase in apparent viscosity. Such phase separation is, of course, incompatible with long term storage of lubricants under a variety of temperature conditions.
  • the additive "packages" mixed with the recommended base oil blend for the production of multigraded crankcase fluids or gear oils are usually combination of various types of chemical additives so chosen to operate best under the use conditions which the particular formulated fluid may encounter.
  • Additives can be classified as materials which either impart or enhance a desirable property of the base lubricant blend into which they are incorporated. While the general nature of the additives might be the same for various types or blends of the base lubricants, the specific additives chosen will depend on the particular type of service in which the lubrican is employed and the characteristics of the base lubricants.
  • a finished lubricant will contain several and possibly most or all of the above types of additives in what is commonly called an "additive package.”
  • the development of a balanced additive package involves considerably more work than the casual use of each of the additive types. Quite often functional difficulties arising from combinations of these materials show up under actual operating conditions. On the other hand, certain unpredictable synergistic effects of a desirable nature may also become evident. The only methods currently available for obtaining such data are from extensive full scale testing both in the laboratory and in the field. Such testing is costly and time-consuming.
  • Dispersants have been described in the literature as “detergents”. Since their function appears to be one of effecting a dispersion of particulate matter, rather than one of "cleaning up” any existing dirt and debris, it is more appropriate to categorize them as dispersants.
  • Materials of this type are generally molecules having a large hydrocarbon "tail” and a polar group head.
  • the tail section an oleophilic group, serves-as a solubilizer in the base fluid while the polar group serves as the element which is attracted to particulate contaminants in the lubricant.
  • the dispersants include metallic and ashless types.
  • the metallic dispersants include sulfonates (products of the neutralization of a sulfonic acid with a metallic base), thiophosphonates (acidic components derived from the reaction between polybutene and phosphous pentasulfide) and phenates and phenol sulfide salts (the broad class of metal phenates includes the salts of alkylphenols, alkylphenol sulfides, and alkyl phenol aldehyde products).
  • the ashless type dispersants may be categorized into two broad types: high molecular weight polymeric dispersants for the formulation of multigrade oils and lower molecular weight additives for use where viscosity improvement is not necessary.
  • the compounds useful for this purpose are again characterized by a "polar" group attached to a relatively high molecular weight hydrocarbon chain.
  • the "polar” group generally contains one or more of the elements-nitrogen, oxygen, and phosphorus.
  • the solubilizing chains are generally higher in molecular weight than those employed in the metallic types; however, in some instances they may be quite similar.
  • Some examples are N-substituted long chain alkenyl succinimides, high molecular weight esters, such as products formed by the esterification of mono or polyhydric aliphatic alcohols with olefin substituted succinic acid, and Mannich bases from high molecular weight alkylated phenols.
  • the high molecular weight polymeric ashless dispersants have the general formula :
  • an oxidation inhibitor is the prevention of a deterioration associated with oxygen attack on the lubricant base fluid. These inhibitors function either to destroy free radicals (chain breaking) or to interact with peroxides which are involved in the oxidation mechanism.
  • chain breaking e.g., 2,6-di-tert.-butyl para cresol and 4,4' methylenebis(2,6-di-tert.-butylphenol), and the zinc dithiophosphates (peroxide-destroying).
  • Wear is loss of metal with subsequent change in clearance between surfaces moving relative to each other. If continued, it will result in engine or gear malfunction.
  • the principal factors causing wear are metal-to-metal contact, presence of abrasive particulate matter, and attack of corrosive acids.
  • Metal-to-metal contact can be prevented by the addition of film-forming compounds which protect the surface either by physical absorption or by chemical reaction.
  • the zinc dithiophosphates are widely used for this purpose. These compounds were described under anti-oxidant and anti-bearing corrosion additives. Other effective additives contain phosphorous, sulfur or combinations of these elements.
  • Abrasive wear can be prevented by effective removal of particulate matter by filtration while corrosive wear from acidic materials can be controlled by the use of alkaline additives such as basic phenates and sulfonates.
  • conventional viscosity improvers are often used in "additive packages" their use should not be necessary for the practice of this invention since our particular blends of high and low molecular weight base lubricants produce the same effect.
  • These materials are usually oil-soluble organic polymers with molecular weights ranging from approximately 10,000 to 1,000,000. The polymer molecule in solution is swollen by the lubricant. The volume of this swollen entity determines the degree to which the polymer increases its viscosity.
  • an oxidation inhibitor is the prevention of a deterioration associated with oxygen attack on the lubricant base fluid. These inhibitors function either to destroy free radicals (chain breaking) or to interact with peroxides which are invilved in the oxidation mechanism.
  • chain breaking e.g., 2,6-di-tert.-butyl para cresol and 4,4'-methylenebis(2,6-di-tert.-butylphenol), and the zinc dithiophosphates (peroxide-destroying).
  • Wear is loss of metal with subsequent change in clearance between surfaces moving relative to each other. If continued, it will result in engine or gear malfunction.
  • the principal factors causing wear are metal-to-metal contact, presence of abrasive particulate matter, and attack of corrosive acids.
  • Metal-to-metal contact can be prevented by the addition of film-forming compounds which protect the surface either by physical absorption or by chemical reaction.
  • the zinc dithiophosphates are widely used for this purpose. These compounds were described under anti-oxidant and anti-bearing corrosion additives. Other effective additives contain phosphorous, sulfur or combinations of these elements.
  • Abrasive wear can be prevented by effective removal of particulate matter by filtration while corrosive wear from acidic materials can be controlled by the use of alkaline additives such as basic phenates and sulfonates.
  • conventional viscosity improvers are often used in "additive packages" their use should not be necessary for the practice of this invention since our particular blends of high and low molecular weight base lubricants produce the same effect.
  • These materials are usually oil-soluble organic polymers with molecular weights ranging from approximately 10,000 to 1,000,000. The polymer molecule in solution is swollen by the lubricant. The volume of this swollen entity determines the degree to which the polymer increases viscosity.
  • pour point depressants prevent the congelation of the oil at low temperatures. This phenomenon is associated with the crystallization of waxes from the lubricants. Chemical structures of representative commercial pour point depressants are:
  • Chemicals employed as rust inhibitors include sulfonates, alkenyl succinic acids, substituted imidazolines, amines, and amine phosphates.
  • the anti-foam agents include the silicones and miscellaneous organic copolymers.
  • Additive packages known to perform adequately for their recommended purpose are prepared and supplied by several major manufacturers. The percentage and type of additive to be used in each application is recommended by the suppliers. Typically available packages are:
  • a typical additive package for an automotive gear lubricant would normally contain antioxidant, corrosion inhibitor, anti-wear agents, anti-rust agents, extreme pressure agent and foam inhibitor.
  • a typical additive package for a crankcase lubricant would normally be comprised of a dispersant, antioxidant, corrosion inhibitor, anti-wear agent, anti-rust agent and foam inhibitor.
  • An additive package useful for formulating a compressor fluid would typically contain an anti-oxidant, anti-wear agent, an anti-rust agent and foam inhibitor.
  • This invention describes blends of high viscosity synthetic hydrocarbons, having a viscosity range of 40 to 1000 cSt. with one or more synthetic hydrocarbon fluids having viscosities in the range of 1 to 10 cSt. and/or one or more compatible ester fluids having a viscosity range of 1 to 10 cSt.
  • Such blends when treated with a properly chosen additive "package" can be formulated in multi- graded crankcase or gear oils having superior shear stability, superior oxidative stability, and Newtonian viscometric properties.
  • the blends of this invention also find uses in certain applications where no additive need be employed.
  • the high viscosity synthetic hydrocarbon provides thickening and VI improvement to the base oil blend.
  • blends of high viscosity synthetic hydrocarbons with low viscosity synthetic hydrocarbons produce fluids having much greater oxidative stability than low viscosity synthetic hydrocarbons alone. This is illustrated in Example 7.
  • the VI improvement produced by high viscosity synthetic hydrocarbon in blends with low viscosity synthetic hydrocarbons or low viscosity esters is shown in Examples 8 and 9. These improvements persist in blends of high viscosity synthetic hydrocarbons, low viscosity synthetic . hydrocarbons, and low viscosity esters.
  • the low viscosity synthetic hydrocarbon fluid is frequently the main ingredient in the base oil blend, particularly in finished lubricants having an SAE viscosity grade of 30 or 40. While certain low viscosity esters are insoluble in high viscosity synthetic hydrocarbons, the presence of low viscosity synthetic hydrocarbon, being a better solvent for low viscosity esters, permits greater variations in the type of esters used in base oil blends of high viscosity synthetic hydrocarbons, low viscosity synthetic hydrocarbons, and low viscosity esters.
  • Crankcase and gear oils consisting solely of hydrogenated polyisoprene oligomers and low viscosity synthetic hydrocarbons with the proper additives produce synthetic fluids having excellent oxidative and hydrolytic stability.
  • Such fluids are exemplified in Examples 22 and 23.
  • the third optional component, low viscosity esters can be used in combination with hydrogenated polyisoprene oligomers and low viscosity hydrocarbons or alone with hydrogenated polyisoprene oligomers.
  • the proper choice of ester and hydrogenated polyisoprene oligomers can produce crankcase and gear oil formulations having outstanding viscosity indices and low temperature properties. Such three component blends are illustrated in Examples 24 and 25.
  • Two component blends of hydrogenated polyisoprene oligomers and esters can be used to prepare multigraded lubricants having outstanding viscometric properties, detergency, and oxidative stability. While some applications present environments having high moisture levels, which would be deleterious to certain esters, there are other applications such as automotive gear oils where the high ester contents found in the hydrogenated polyisoprene oligomers- ester blends can be used to advantage. Examples 26 and 27 illustrate the formulation of multigrade lubricants with such two component blends.
  • the low viscosity hydrocarbons act as a common solvent for the ethylene-alpha-olefin oligomers and the added ester. Depending on the polarity of the ester, the latter two are frequently somewhat incompatible. Excellent multigraded lubricants can be formulated with or without ester.
  • the third component, low viscosity esters can be added to produce the superior lubricants of this invention.
  • High viscosity synthetic hydrocarbons and low viscosity synthetic hydrocarbons can be used alone to produce multigraded lubricants.
  • the addition of low levels of low viscosity esters, usually 1-25% results in a base oil blend superior to blends of high viscosity synthetic hydrocarbons and low viscosity synthetic hydrocarbons alone in low temperature fluidity.
  • low viscosity esters usually constitute 10-25% of the synthetic base oil blend, more or less can be used in specific formulations. When the final application involves exposure to moisture elimination or limitation of the amount of ester in blends may be advantageous.
  • the components of the finished lubricants of this invention can be admixed in any convenient manner or sequence.
  • An important aspect of the present invention is in the use of the properly constituted base oil blend in combination with the proper compatible additive package to produce finished multigrade lubricants having:
  • the lubricants of this invention when properly formulated, display viscometrics of Newtonian fluids. That is, their viscosities are unchanged over a wide range of shear rates. While some of the high viscosity synthetic hydrocarbons of the invention may, in themselves, display non-Newtonian characteristics, particularly at low temperatures, the final lubricant products utilizing low viscosity oils as diluents are Newtonian. We have observed that synthetic hydrocarbons of up to 300 cSt. are Newtonian at room temperature as shown by the absence of a Weissenberg effect. And while fluids of 500 to 1000 cSt. do show a Weissenberg effect, solutions of such oligomers in quantities commonly used to attain Standard SAE viscosity do not.
  • the thickening fluids of high viscosity synthetic hydrocarbons of this invention all have molecular weights below 5000, and so, it should be obvious that shear thinning of their solutions would be nil. That is, they will display Newtonian character.
  • the shear rates developed in pistons and gears (equal to or greater than 10 6 sec -1) is such that, depending on the polymeric thickener used, the apparent viscosity of the oils approaches that of the unthickened base fluids resulting in loss of hydrodynamic films. Since wear protection of moving parts has been correlated with oil viscosity, it is apparent that the wear characteristics of a lubricant can be downgraded as a result of temporary shear.
  • the Newtonian fluids of the current invention maintain their viscosity under these use conditions and therefore afford more protection to and hence longer lifetime for the machinery being lubricated.
  • Example 10 illustrates the oxidation of a low viscosity fluid thickened with 100 cSt. polyalphaolefin and compares it with the same fluid thickened with a commercial VI improver.
  • Example II further compares the oxidative stability of fully formulated lubricants of this invention with two nearly identical lubricant formulations, except that the latter are thickened with commercial VI improver.
  • lubricating oils of this invention are superior to traditional multi-graded lubricants because of their greater resistance to permanent shear and oxidation.
  • the prolonged "stay in grade” performance of our lubricating fluids offers advances in durability of machinery using such fluids.
  • the advantages a Newtonian fluid brings to such a grading system are obvious to anyone skilled in the art.
  • the viscosity of a Newtonian fluid can be directly extrapolated to 150°C under high shear conditions.
  • a polymer thickened fluid will invariably have a viscosity lower than the extrapolated value, frequently close to the base fluid itself.
  • polymer thickened oils will require a more viscous base fluid.
  • the use of thicker base fluids will produce higher viscosities at low temperature making it more difficult to meet the low temperature (5W for crakcase of 75W for gear oil) requirements for broadly multigraded oils.
  • Viscosity index is determined by low shear viscosity measurements at 40°C and 100°C.
  • the Newtonian lubricants of this invention not only produce high viscosity index multigraded fluids which stay "in grade", but the VI and multigrade rating are realistic since they are not sensitive to shear.
  • This example illustrates the preparation of multigraded gear oils utilizing high viscosity polyalphaolefin (PAO) as a thickener.
  • PAO high viscosity polyalphaolefin
  • the oil For a 75W-90 oil the oil must have a minimum viscosity at 100°C of 13.5 cSt. and a viscosity of 150,000 cP. or less at -40°C.
  • the oil For a 75W-90 oil the oil must have a minimum viscosity at 100°C of 24 cSt. and a viscosity of 150,000 cP. or less at -26°C.
  • This example illustrates the preparation of an ISO VG 460 industrial gear lube which requires a viscosity at 40°C between 414 and 506 cSt.
  • This example illustrates preparation of gasoline and diesel crankcase lubricants.
  • This example illustrates the excellent oxidative stability of gear oils utilizing high molecular weight PAO.
  • a 75W-90 gear oil prepared as in Example I.B.D. was subjected to the CRC L-60 Thermal Oxidation Stability Test. In this test 120 ml of oil are heated to 325° ⁇ 1°F and 11.1 liters/hour of air are passed thru the fluid. The surface of the fluid is agitated by a gear running at 2540 Rpm. A 4 sq. in. copper catalyst is immersed in the fluid. After 50 hours, viscosity change, acid no., benzene and pentane insolubles are determined. The results for this fluid are:
  • This example illustrates the resistance to mechanical shear of gear lubricants thickened with high viscosity PAO.
  • a 75W-140 gear oil as prepared in Example 1.A.B was subjected to the Cannon Shear Test. In this test the fluid is subjected to preloaded tapered roller bearings running at 3450 r.p.m. After 8 hrs. under these conditions this fluid lost less than 0.4% of its viscosity.
  • Example 1A.B A 75W-140 gear oil as prepared in Example 1.A.B was used to fill the drive axle of a Class 8 line haul truck. After 30,000 road miles the viscosity was essentially unchanged.
  • This example illustrates the Newtonian character of gear lubricants and engine lubricants thickened with PAO-100.
  • a gear lubricant as prepared in Example 1.B.D had its viscosity measured at 100°C under no shear conditions (ASTM D-445). The same sample's viscosity was determined at 100°C under a shear rate of 10 6 sec -1 in a Tapered Bearing Simulator and was essentially unchanged.
  • This example illustrates the oxidative stability of blends of 100 cSt. PAO and low viscosity PAO.
  • the low viscosity fluids were 4 and 6 cSt. polydecenes.
  • the blends were stabilized with 0.75 parts per 100 of oil (PHO) of p-nonylphenyl alphanaphthylamine and 0.25 PHO of dilaurylthiodiproprionate. They were subjected to a 370°F temperature for 72 hours while air was passed through the solutions at a rate of 5 liters per hour.
  • the oxidation was performed in the presence of Mg, Fe, Cu, Al and Ag metal specimens. At the end of the test period, the solutions were filtered and the amount of hexane insoluble sludge formed (expressed as mg. per 100 ml.) was determined for each.
  • the results are summarized in the following table.
  • This example illustrates the viscosity index improvement achieved by blending the high viscosity synthetic hydrocarbons (represented by 100 cSt. PAO) and low viscosity synthetic hydrocarbons (represented by 4 and 6 cSt. polydecene) of this invention.
  • Example 8 This example is similar to Example 8, but illustrates V.I. enhancement achieved by blending high viscosity PAO (100 cSt.) with each of two different esters.
  • This example compares directly the oxidative stability of a base fluid thickened with a commercial V.I. improver (ECA 7480 from Paramin's Division of Exxon) to that of the same base fluid thickend with a high viscosity synthetic hydrocarbon (100 cSt. PAO).
  • the base fluid chosen as the medium to be thickend was a poly-decene having KV 210°F of 5.96 cSt. and a V.I. of 136.
  • the solutions were stabilized with 0.5 PHO of phenyl alphanaphthyl amine and 0.25 PHO of dilauryl thiodipropionate.
  • the oxidation test was performed as described in Example 7. A comparison of the solutions before and after testing is summarized in the following table.
  • composition A the polymeric thickener decomposed drastically.
  • the viscosity after testing was nearly equivalent to that of the starting base fluid.
  • the viscosity index of composition A decreased to that of the base fluid, illustrating that oxidation, as well as shear, destroys the V.I. improvement gained by the use of high molecular weight polymeric additives.
  • compositions B. and C. experienced minimal change in viscosity and viscosity index, illustrating the oxidative stability of blends of the high and low viscosity synthetic hydrocarbon of this invention.
  • Ingredients A, B and C represent the thickeners of this invention.
  • Ingredients D and E represent commercial high molecular weight V.I. improvers.
  • the fluids of this invention (11-A, 11-B and 11-C) can be seen to be far more stable to oxidation than nearly identical fluids prepared using commercial V.I. improvers.
  • the inherent instability of 11-D and 11-E is evidenced by the large changes in viscosity and large decrease in viscosity index suffered by these fluids.
  • the example compares the oxidative stability of a low viscosity fluid thickened with a variety of ethylene-propylene polymers, each having a different viscosity and molecular weight.
  • the low viscosity fluid chosen was a commercial polydecene oligomer having a kinematic viscosity at 100°C (K.V. 100 ) of 3.83 cSt.
  • K.V. 100 kinematic viscosity at 100°C
  • One hundred ml. of each fluid was heated to 370°F for 72 hrs. Air was bubbled through the samples at a rate of 5 liters per hours.
  • Metal washers (Mg, Fe, Ag, Cu, and Al), each having a surface area of 5cm2 were suspended in the fluids as oxidation catalysts and as specimens to determine corrosivity of the oxidized fluids (by weight change). Each sample was protected with exactly the same proprietary antioxidant. Separate studies have shown t'at the poly- decene base fluid is extremely well protected by the antioxidant used. After oxidation, the amount of particulates (sludge) formed was weighed, the acid number of the oils was measured, the viscosity changes of the samples were determined and any weight changes in the metal specimens were measured. A zero change in all these parameters indicates no oxidative degradation.
  • the following tables outline the oils tested and the results of the oxidation test. Where:
  • the thickeners of this invention are much more stable to viscosity and viscosity index losses from oxidation than the current commercial thickener (D).
  • the viscosity losses observed in this test increase as the molecular weight of the thickener increases and decrease when at a given molecular weight, the amount of thickener used decreases.
  • Sample D actually contains only about 2-3% high molecular weight thickener, but the molecular weight is so high relative to A, B and C that its degradation produces much more severe viscosity losses.
  • sample A is quite low molecular weight and so suffers very little change in viscosity despite the large amount of thickener used in its blend.
  • the fluids of this patent having viscosities up to 1000 cSt. at 100°C are shown to have outstanding resistance to oxidative breakdown when compared with currently available thickeners.
  • the relative resistance toward oxidation of the blends is illustrated by the acid developed (measured by acid number) during aging, the oarticulates (sludge) formed during the test area and by weight change of the metal specimens.
  • the following table features data on these parameters:
  • This example illustrates the thickening power and V.I. , improvement of the oligomers of this invention.
  • One way of comparing thickening power is to ascertain the viscosity increase caused by the addition of a certain percentages of thickener to a common base stock.
  • Thickeners A, B, C, and D are ethylene-propylene oligomers of this invention.
  • Thickener E is Lubrizol 7010, a commercial "OCP" thickener consisting of an oil solution of a rubbery high molecular weight ethylene-propylene copolymer.
  • OCP oil solution of a rubbery high molecular weight ethylene-propylene copolymer.
  • the viscosity of Lubrizol 7010 is given as about 1000 cSt. at 100°C.
  • Another way of examining thickeners is to compare how much additive is required to increase the viscosity of a fluid to a given value.
  • the low viscosity polydecene was thickened to 13 cSt. and 24 cSt. with each of the thickeners listed above.
  • One again fluids of this invention can be so chosen as to require smaller amounts to thicken low viscosity fluids to a given higher viscosity (D vs. E). While thickeners A, B and C require higher treat levels than E, they are surprisingly efficient thickeners for their viscosity and as stated earlier produce a more stable blend.
  • This example describes the preparation of an SAE viscosity grade 10W-40 diese crankcase oil using a liquid ethylene propylene oligomer having a kinematic viscosity at 100°C of 432 cSt.
  • the lubricant has the following properties -
  • This example describes the preparation of an SAE viscosity grade 75W-140 automotive gear oil using a liquid ethylene propylene oligomer having a kinematic viscosity at 100°C of 432 cSt.
  • the lubricant has the properties shown:
  • This example describes the preparation of an SAE viscosity grade 10W-40 diesel crankcase lubricant using an ethylene propylene oligomer having a kinematic viscosity at 100°C of 945 cSt.
  • the lubricant has the properties shown:
  • This example illustrates the preparation of an automotive gear lubricant SAE viscosit) grade 75W-140 using a liquid ethylene-propylene oligomer having a kinematic viscosity at 100°C of 265 cSt.
  • the lubricant has the properties shown:
  • This example illustrates the preparation of a diesel crankcase lubricant SAE viscosity grade 10W-40 using a liquid ethylene-propylene oligomer having a kinematic viscosity at 100°C of 945 cSt.
  • the lubricant has the properties shown:
  • This example illustrates the preparation of an ISO VG 460 industrial gear lubricant from an ethylene-propylene oligomer having a kinematic viscosity at 100°C of 945 cSt.
  • the lubricant has the properties shown :
  • Each sample contained a low viscosity polydecene and equal amounts of ester and additive package. After oxidation, the changes in viscosity and viscosity index were determined as well as the weight changes in the metal specimens. The following tables outline the formulations and their unaged viscometrics as well as the changes wrought by oxidation.
  • the low viscosity synthetic hydrocarbon (SHC) in the blends was a polydecene having a K.V. 100°C of 3.83 cSt.
  • the ester was di-2-Ethylhexyl azelate and the package was Lubrizol 4856.
  • composition of the present invention (A), is superior in oxidative stability to prior art B, C and D. As can be seen, composition A suffered no loss in viscosity and minimal change in viscosity index. These features predict much greater "stay-in-grade" performance for the compositions of this invention.
  • composition A was found to produce less corrosion to Cu and Ag than the other compositions.
  • the following table outlines the weight change observed (in mg/cm 2 ) in the Cu and Ag metal specimens for the tested formulations.
  • This example compares the thickening power of the hydrogenated polyisoprene oligomers of this invention with a commercial "OCP" thickener, Lubrizol 7010, which is a solution of high molecular weight ethylene-propylene rubber in oil. Solutions made by dissolving varying amounts of different thickeners in a low viscosity (3.83 cSt. at 100°C) polydecene. The dependence of thickening power and viscosity of the thickener is clearly seen.
  • E is Lubrizol 7010 as described in Example I.
  • the thickening power of A, B, C and D (the oligomers of this invention) is seen to correlate with the viscosity of the oligomer.
  • Thickener E having a viscosity of about 1000 cSt. at 100°C (greater than even E of the invention) is not as effective in increasing viscosity of the base fluid as are the higher viscosity fluids of the invention. This finding is unexpected.
  • the hydrogenated polyisoprene oligomers (HPO) of this invention act as viscosity index improvers.
  • the following data show the viscosity index of a low viscosity polydecene (3.83 cSt.) after thickening to 24 cSt. with A, B, C and D.
  • This example illustrates the preparation of an SAE viscosity grade 75W-140 automotive gear lubricant using a hydrogenated polyisoprene oligomer of 245 cSt. at 100°C.
  • the lubricant had the following properties:
  • This example illustrates the preparation of an SAE viscosity grade 10W-40 diesel crankcase lubricant from a hydrogenated polyisoprene with a kinematic viscosity of 245 cSt. at 100°C.
  • the lubricant had the following properties:
  • This example illustrates the preparation of SAE viscosity grade 10W-40 diesel crankcase oils using hydrogenated polyisoprene oligomers having the kinematic viscosities 100°C shown.
  • the lubricants had the properties shown:
  • This example illustrates the reparation of an SAE viscosity grade 75W-140 automotive gear lubricant using hydrogenated polyisoprene oligomers having the kinematic viscosities at 100°C shown.
  • the lubricants had the properties shown:
  • the example describes the preparation of an SAE 10W-40 diesel crankcase lubricant using a hydrogenated polyisoprene oligomer having a kinematic vicsocity of 245 cSt. at 100°C.
  • This example illustrates the preparation of an SAE viscosity grade 75W-140 automotive gear oil using a hydrogenated polyisoprene oligomer having a kinematic viscosity at 100°C of 245 cSt.
  • the lubricant had the following properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)
EP83102377A 1982-03-10 1983-03-10 Composition lubrifiante Expired EP0088453B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US35666582A 1982-03-10 1982-03-10
US356665 1982-03-10

Publications (2)

Publication Number Publication Date
EP0088453A1 true EP0088453A1 (fr) 1983-09-14
EP0088453B1 EP0088453B1 (fr) 1987-05-13

Family

ID=23402399

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83102377A Expired EP0088453B1 (fr) 1982-03-10 1983-03-10 Composition lubrifiante

Country Status (6)

Country Link
EP (1) EP0088453B1 (fr)
JP (1) JPS5989397A (fr)
AU (1) AU572449B2 (fr)
CA (1) CA1208196A (fr)
DE (1) DE3371537D1 (fr)
ZA (1) ZA831659B (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0119069A2 (fr) * 1983-03-09 1984-09-19 Uniroyal, Inc. Composition lubrifiante comprenant un copolymère d'éthylène-alphaoléfine
EP0119071A2 (fr) * 1983-03-09 1984-09-19 Uniroyal, Inc. Composition lubrifiante de polyisoprène hydrogéné
EP0119070A2 (fr) * 1983-03-09 1984-09-19 Uniroyal, Inc. Composition lubrifiante comprenant un copolymère d'éthylène-alphaoléfine
EP0119792A2 (fr) * 1983-03-09 1984-09-26 Uniroyal, Inc. Composition lubrifiante de polyisoprène hydrogéné
EP0281060A2 (fr) * 1987-03-02 1988-09-07 Idemitsu Kosan Company Limited Compositions d'huile lubrifiante pour mécanismes de traction
EP0480644A1 (fr) * 1990-10-10 1992-04-15 Ethyl Petroleum Additives, Inc. Compositions synthétiques de base sans cendres ou à faible teneur en cendres et additifs pour celles-ci
WO1993003126A1 (fr) * 1991-07-31 1993-02-18 Exxon Chemical Patents Inc. Reduction des degagements de matieres particulaires par les moteurs diesel
EP0607553A1 (fr) * 1993-01-09 1994-07-27 Hüls Aktiengesellschaft Utilisation de polyméthylalcanes comme huiles de base biodégradables dans des lubrifiants et des fluides fonctionnels
WO1997016511A1 (fr) * 1995-11-03 1997-05-09 Exxon Chemical Patents Inc. Huile pour transmission automatique a pouvoir de transmission de puissance ameliore
US6399550B1 (en) 1993-08-31 2002-06-04 Cognis Corporation Extreme pressure lubricant
WO2003076555A1 (fr) * 2002-03-05 2003-09-18 Exxonmobil Research And Engineering Company Composition lubrifiante mixte
WO2003091369A1 (fr) * 2002-04-26 2003-11-06 Exxonmobil Chemical Patents Inc. Fluides lubrifiants a efficacite et durabilite ameliorees
WO2004026797A2 (fr) 2002-09-23 2004-04-01 Exxon Mobil Chemical Patents Inc. A Corporation Of The State Of Delaware Production de composes alkylaromatiques
WO2005028599A1 (fr) * 2003-09-13 2005-03-31 Exxonmobil Chemical Patents Inc. Compositions lubrifiantes pour engrenages automobiles
EP1669436A1 (fr) * 2004-12-08 2006-06-14 Afton Chemical Corporation Compositions d'huile à engrenages résistantes à l'oxydation
WO2006083632A1 (fr) 2005-02-04 2006-08-10 Exxonmobil Chemical Patents Inc. Fluides lubrificateurs a faibles caracteristiques de traction
WO2007005094A1 (fr) * 2005-06-29 2007-01-11 Exxonmobil Chemical Patents Inc. Hvi-pao dans des compositions de graisses et de lubrifiants industriels
US7615598B2 (en) 2002-04-22 2009-11-10 Chevron Phillips Chemical Company Lp Method for manufacturing high viscosity polyalphaolefins using ionic liquid catalysts
US7951889B2 (en) 2003-10-31 2011-05-31 Chevron Phillips Chemical Company Lp Method and system to add high shear to improve an ionic liquid catalyzed chemical reaction
US8318993B2 (en) 2002-03-05 2012-11-27 Exxonmobil Research And Engineering Company Lubricant blend composition
WO2012166999A1 (fr) * 2011-06-01 2012-12-06 Exxonmbil Research And Engineering Company Composition lubrifiante à haute efficacité
CN106833835A (zh) * 2016-12-20 2017-06-13 广西北海玉柴马石油高级润滑油有限公司 一种超低温柴油机油

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555284B2 (ja) * 1987-05-14 1996-11-20 出光興産株式会社 温度特性改良潤滑油組成物
JPH0813982B2 (ja) * 1987-06-12 1996-02-14 出光興産株式会社 内燃機関用潤滑油基油組成物
JP2503536B2 (ja) * 1987-10-19 1996-06-05 三井石油化学工業株式会社 潤滑油組成物
JP2546320B2 (ja) * 1988-02-26 1996-10-23 三井石油化学工業株式会社 潤滑油用増粘剤および潤滑油
JPH0288698A (ja) * 1988-09-26 1990-03-28 Honda Motor Co Ltd 良好な極圧性能を有する低粘度エンジン油
JPH0637629B2 (ja) * 1988-10-04 1994-05-18 新日鐵化学株式会社 ギヤ油組成物
US6858767B1 (en) * 2000-08-11 2005-02-22 Uniroyal Chemical Company, Inc. Process for producing liquid polyalphaolefin polymer, metallocene catalyst therefor, the resulting polymer and lubricant containing same
US6713439B2 (en) * 2002-06-05 2004-03-30 Infineum International Ltd. Energy conserving power transmission fluids
CN100390256C (zh) * 2004-11-26 2008-05-28 三井化学株式会社 合成润滑油和润滑油组合物
WO2006133293A1 (fr) 2005-06-07 2006-12-14 Exxonmobil Research And Engineering Company Nouveaux melanges lubrifiants de stock de base pour une protection contre les micro-piqures renforcee
JP5062650B2 (ja) * 2005-07-29 2012-10-31 東燃ゼネラル石油株式会社 ギヤ油組成物
US8299007B2 (en) 2006-06-06 2012-10-30 Exxonmobil Research And Engineering Company Base stock lubricant blends
US8921290B2 (en) 2006-06-06 2014-12-30 Exxonmobil Research And Engineering Company Gear oil compositions
US8834705B2 (en) 2006-06-06 2014-09-16 Exxonmobil Research And Engineering Company Gear oil compositions
US8535514B2 (en) 2006-06-06 2013-09-17 Exxonmobil Research And Engineering Company High viscosity metallocene catalyst PAO novel base stock lubricant blends
US8501675B2 (en) 2006-06-06 2013-08-06 Exxonmobil Research And Engineering Company High viscosity novel base stock lubricant viscosity blends
JP5363723B2 (ja) * 2006-12-27 2013-12-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 潤滑油組成物
JP5324748B2 (ja) * 2007-02-26 2013-10-23 出光興産株式会社 潤滑油組成物
JP5241122B2 (ja) * 2007-03-27 2013-07-17 Jx日鉱日石エネルギー株式会社 銀含有材料と接触する潤滑油組成物
JP5715321B2 (ja) * 2008-06-09 2015-05-07 出光興産株式会社 潤滑油組成物
US8394746B2 (en) 2008-08-22 2013-03-12 Exxonmobil Research And Engineering Company Low sulfur and low metal additive formulations for high performance industrial oils
MX2011003154A (es) * 2008-09-25 2011-08-15 Cognis Ip Man Gmbh Composiciones lubricantes.
US8247358B2 (en) 2008-10-03 2012-08-21 Exxonmobil Research And Engineering Company HVI-PAO bi-modal lubricant compositions
US8716201B2 (en) 2009-10-02 2014-05-06 Exxonmobil Research And Engineering Company Alkylated naphtylene base stock lubricant formulations
US8748362B2 (en) 2010-02-01 2014-06-10 Exxonmobile Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed gas engines by reducing the traction coefficient
US8759267B2 (en) 2010-02-01 2014-06-24 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8728999B2 (en) 2010-02-01 2014-05-20 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
US8642523B2 (en) 2010-02-01 2014-02-04 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low and medium speed engines by reducing the traction coefficient
WO2011094562A1 (fr) * 2010-02-01 2011-08-04 Exxonmobil Research And Engineering Company Procede pour ameliorer le rendement energetique de compositions d'huile de moteur pour de gros moteurs a regime bas, moyen et eleve par reduction du coefficient de traction
US8598103B2 (en) 2010-02-01 2013-12-03 Exxonmobil Research And Engineering Company Method for improving the fuel efficiency of engine oil compositions for large low, medium and high speed engines by reducing the traction coefficient
JP5638256B2 (ja) * 2010-02-09 2014-12-10 出光興産株式会社 潤滑油組成物
US20120135903A1 (en) * 2010-05-11 2012-05-31 Mitsui Chemicals, Inc. Lubricating oil composition
JPWO2013062008A1 (ja) * 2011-10-28 2015-04-02 出光興産株式会社 潤滑油組成物
FR3034100B1 (fr) * 2015-03-23 2017-04-28 Total Marketing Services Composition lubrifiante
JP2019527278A (ja) * 2016-07-20 2019-09-26 エクソンモービル ケミカル パテンツ インコーポレイテッド 剪断安定な(shear−stable)油組成物およびその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1963455A1 (de) * 1968-12-20 1970-07-02 British Petroleum Co Stoffgemische mit Schmierwirkung
DE2005755A1 (en) * 1970-02-09 1971-08-19 Technochemie GmbH Verfahrenstechnik, 6901 Dossenheim Multi-range lubricating oils
GB1246880A (en) * 1969-06-30 1971-09-22 Exxon Research Engineering Co Ethylene/alpha-olefin polymers and lubricating oils containing them
FR2187894A1 (en) * 1972-06-12 1974-01-18 Inst Francais Du Petrole Lubricants for 2-stroke and rotary engines - contg high-viscosity simple, complex or ether esters as base lubricant
FR2312556A1 (fr) * 1975-05-26 1976-12-24 Sumitomo Chemical Co Procede de production d'huiles saturees synthetiques par hydrogenation de polyisoprene a faible poids moleculaire et nouveaux produits ainsi obtenus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207196A (en) * 1978-12-07 1980-06-10 The B. F. Goodrich Company Stabilized compositions of polymers in oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1963455A1 (de) * 1968-12-20 1970-07-02 British Petroleum Co Stoffgemische mit Schmierwirkung
GB1246880A (en) * 1969-06-30 1971-09-22 Exxon Research Engineering Co Ethylene/alpha-olefin polymers and lubricating oils containing them
DE2005755A1 (en) * 1970-02-09 1971-08-19 Technochemie GmbH Verfahrenstechnik, 6901 Dossenheim Multi-range lubricating oils
FR2187894A1 (en) * 1972-06-12 1974-01-18 Inst Francais Du Petrole Lubricants for 2-stroke and rotary engines - contg high-viscosity simple, complex or ether esters as base lubricant
FR2312556A1 (fr) * 1975-05-26 1976-12-24 Sumitomo Chemical Co Procede de production d'huiles saturees synthetiques par hydrogenation de polyisoprene a faible poids moleculaire et nouveaux produits ainsi obtenus

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0119069A2 (fr) * 1983-03-09 1984-09-19 Uniroyal, Inc. Composition lubrifiante comprenant un copolymère d'éthylène-alphaoléfine
EP0119071A2 (fr) * 1983-03-09 1984-09-19 Uniroyal, Inc. Composition lubrifiante de polyisoprène hydrogéné
EP0119070A2 (fr) * 1983-03-09 1984-09-19 Uniroyal, Inc. Composition lubrifiante comprenant un copolymère d'éthylène-alphaoléfine
EP0119792A2 (fr) * 1983-03-09 1984-09-26 Uniroyal, Inc. Composition lubrifiante de polyisoprène hydrogéné
EP0119792A3 (fr) * 1983-03-09 1986-07-16 Uniroyal, Inc. Composition lubrifiante de polyisoprène hydrogéné
EP0119070A3 (fr) * 1983-03-09 1986-07-16 Uniroyal, Inc. Composition lubrifiante comprenant un copolymère d'éthylène-alphaoléfine
EP0119069A3 (fr) * 1983-03-09 1986-07-16 Uniroyal, Inc. Composition lubrifiante comprenant un copolymère d'éthylène-alphaoléfine
EP0119071A3 (fr) * 1983-03-09 1986-07-16 Uniroyal, Inc. Composition lubrifiante de polyisoprène hydrogéné
EP0281060A2 (fr) * 1987-03-02 1988-09-07 Idemitsu Kosan Company Limited Compositions d'huile lubrifiante pour mécanismes de traction
EP0281060A3 (en) * 1987-03-02 1988-12-07 Idemitsu Kosan Company Limited Lubricating oil compositions for traction drive
EP0480644A1 (fr) * 1990-10-10 1992-04-15 Ethyl Petroleum Additives, Inc. Compositions synthétiques de base sans cendres ou à faible teneur en cendres et additifs pour celles-ci
US5360562A (en) * 1990-10-10 1994-11-01 Ethyl Petroleum Additives, Inc. Ashless or low-ash synthetic base compositions and additives therefor
WO1993003126A1 (fr) * 1991-07-31 1993-02-18 Exxon Chemical Patents Inc. Reduction des degagements de matieres particulaires par les moteurs diesel
EP0607553A1 (fr) * 1993-01-09 1994-07-27 Hüls Aktiengesellschaft Utilisation de polyméthylalcanes comme huiles de base biodégradables dans des lubrifiants et des fluides fonctionnels
US6399550B1 (en) 1993-08-31 2002-06-04 Cognis Corporation Extreme pressure lubricant
WO1997016511A1 (fr) * 1995-11-03 1997-05-09 Exxon Chemical Patents Inc. Huile pour transmission automatique a pouvoir de transmission de puissance ameliore
AU717241B2 (en) * 1995-11-03 2000-03-23 Exxon Chemical Patents Inc. Automatic transmission fluids with improved transmission performance
WO2003076555A1 (fr) * 2002-03-05 2003-09-18 Exxonmobil Research And Engineering Company Composition lubrifiante mixte
US8318993B2 (en) 2002-03-05 2012-11-27 Exxonmobil Research And Engineering Company Lubricant blend composition
AU2003213706B2 (en) * 2002-03-05 2008-06-19 Exxonmobil Research And Engineering Company Lubricant blend composition
US7615598B2 (en) 2002-04-22 2009-11-10 Chevron Phillips Chemical Company Lp Method for manufacturing high viscosity polyalphaolefins using ionic liquid catalysts
WO2003091369A1 (fr) * 2002-04-26 2003-11-06 Exxonmobil Chemical Patents Inc. Fluides lubrifiants a efficacite et durabilite ameliorees
WO2004026797A2 (fr) 2002-09-23 2004-04-01 Exxon Mobil Chemical Patents Inc. A Corporation Of The State Of Delaware Production de composes alkylaromatiques
WO2005028599A1 (fr) * 2003-09-13 2005-03-31 Exxonmobil Chemical Patents Inc. Compositions lubrifiantes pour engrenages automobiles
US7585823B2 (en) 2003-09-13 2009-09-08 Exxonmobil Chemical Patents Inc. Lubricating fluids with enhanced energy efficiency and durability
US7951889B2 (en) 2003-10-31 2011-05-31 Chevron Phillips Chemical Company Lp Method and system to add high shear to improve an ionic liquid catalyzed chemical reaction
US8163856B2 (en) 2003-10-31 2012-04-24 Chevron Phillips Chemical Company Lp Method and system to add high shear to improve an ionic liquid catalyzed chemical reaction
EP1669436A1 (fr) * 2004-12-08 2006-06-14 Afton Chemical Corporation Compositions d'huile à engrenages résistantes à l'oxydation
US7732389B2 (en) 2005-02-04 2010-06-08 Exxonmobil Chemical Patents Inc. Lubricating fluids with low traction characteristics
WO2006083632A1 (fr) 2005-02-04 2006-08-10 Exxonmobil Chemical Patents Inc. Fluides lubrificateurs a faibles caracteristiques de traction
AU2006266482B2 (en) * 2005-06-29 2009-08-20 Exxonmobil Chemical Patents Inc. HVI-PAO in industrial lubricant and grease compositions
WO2007005094A1 (fr) * 2005-06-29 2007-01-11 Exxonmobil Chemical Patents Inc. Hvi-pao dans des compositions de graisses et de lubrifiants industriels
US8399390B2 (en) 2005-06-29 2013-03-19 Exxonmobil Chemical Patents Inc. HVI-PAO in industrial lubricant and grease compositions
WO2012166999A1 (fr) * 2011-06-01 2012-12-06 Exxonmbil Research And Engineering Company Composition lubrifiante à haute efficacité
US9127231B2 (en) 2011-06-01 2015-09-08 Exxonmobil Research And Engineering Company High efficiency lubricating composition
CN106833835A (zh) * 2016-12-20 2017-06-13 广西北海玉柴马石油高级润滑油有限公司 一种超低温柴油机油

Also Published As

Publication number Publication date
AU1234283A (en) 1983-09-15
AU572449B2 (en) 1988-05-12
CA1208196A (fr) 1986-07-22
ZA831659B (en) 1983-11-30
EP0088453B1 (fr) 1987-05-13
DE3371537D1 (en) 1987-06-19
JPH0238632B2 (fr) 1990-08-31
JPS5989397A (ja) 1984-05-23

Similar Documents

Publication Publication Date Title
EP0088453B1 (fr) Composition lubrifiante
US4956122A (en) Lubricating composition
JP2555284B2 (ja) 温度特性改良潤滑油組成物
US5180865A (en) Base oil for shear stable multi-viscosity lubricants and lubricants therefrom
AU2006266482B2 (en) HVI-PAO in industrial lubricant and grease compositions
US3691078A (en) Oil compositions containing ethylene copolymers
US3772196A (en) Lubricating compositions
US4776967A (en) Lubricating oil composition
US5436379A (en) Base oil for shear stable multi-viscosity lubricants and lubricants therefrom
US3923669A (en) Antiwear hydraulic oil
EP0119069A2 (fr) Composition lubrifiante comprenant un copolymère d'éthylène-alphaoléfine
US6303548B2 (en) Partly synthetic multigrade crankcase lubricant
EP0561335B1 (fr) Composition améliorant l'indice de viscosité pour huile lubrifiante
US3915871A (en) Composition comprising naphthenic distillate, hydro-cracked lube and an antioxidant
JP2546795B2 (ja) 潤滑油組成物
CA1225082A (fr) Lubrifiant au polyisoprene hydrogene
CA2022997A1 (fr) Huile multigrade synthetique a base d'hydrocarbures, pour moteur
JPS6128592A (ja) 潤滑組成物
US3939082A (en) Soap thickened lubricant composition
EP0817823B1 (fr) Huile de graissage pour moteurs a deux temps
US6300290B1 (en) Two-cycle lubricating oil
EP0119070A2 (fr) Composition lubrifiante comprenant un copolymère d'éthylène-alphaoléfine
US5807815A (en) Automatic transmission fluid having low Brookfield viscosity and high shear stability
JPH01104695A (ja) 潤滑油組成物
CA1225081A (fr) Lubrifiant au poly-isoprene hydrogene

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19840228

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 3371537

Country of ref document: DE

Date of ref document: 19870619

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: RESPINTO X FUORI TERMINE PROV. 10.5.88;DE DOMINICI

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: MOBIL OIL CORPORATION

Effective date: 19880211

26 Opposition filed

Opponent name: EXXON CHEMICAL PATENTS INC.

Effective date: 19880212

Opponent name: MOBIL OIL CORPORATION

Effective date: 19880211

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: MOBIL OIL CORPORATION * 880212 EXXON CHEMICAL PATE

Effective date: 19880211

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: UNIROYAL CHEMICAL COMPANY, INC.

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911030

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911223

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920302

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920331

Year of fee payment: 10

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19920602

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state
REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

EUG Se: european patent has lapsed

Ref document number: 83102377.5

Effective date: 19920930

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO