EP0087634B1 - Tube centrifugé en fonte à graphite sphéroidal et son procédé de fabrication - Google Patents

Tube centrifugé en fonte à graphite sphéroidal et son procédé de fabrication Download PDF

Info

Publication number
EP0087634B1
EP0087634B1 EP83101259A EP83101259A EP0087634B1 EP 0087634 B1 EP0087634 B1 EP 0087634B1 EP 83101259 A EP83101259 A EP 83101259A EP 83101259 A EP83101259 A EP 83101259A EP 0087634 B1 EP0087634 B1 EP 0087634B1
Authority
EP
European Patent Office
Prior art keywords
tube
cast iron
shell
temperature
spheroidal graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83101259A
Other languages
German (de)
English (en)
Other versions
EP0087634A1 (fr
Inventor
Rio Bellocci
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pont a Mousson SA
Original Assignee
Pont a Mousson SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pont a Mousson SA filed Critical Pont a Mousson SA
Priority to AT83101259T priority Critical patent/ATE17375T1/de
Publication of EP0087634A1 publication Critical patent/EP0087634A1/fr
Application granted granted Critical
Publication of EP0087634B1 publication Critical patent/EP0087634B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron

Definitions

  • the present invention relates to the manufacture of spheroidal graphite cast iron tubes by centrifugal casting and more particularly to a heat treatment subsequent to centrifugal casting aimed at providing the centrifuged tube with a structure allowing its lightening.
  • the tubes - that is to say the cylindrical pipes of constant thickness - made of spheroidal graphite cast iron currently have, after casting by centrifugation and heat treatment, a ferritic structure which has two advantages: on the one hand, this structure gives them good mechanical characteristics (elastic resistance and ductility); on the other hand, this ferritic structure is easily obtained by heat treatment after centrifugal casting, either in a shell provided internally with a thick coating of a pulverulent mixture of silica and bentonite suspended in water (coating called " wet-spray ”), or in a shell without such a coating.
  • wet-spray a pulverulent mixture of silica and bentonite suspended in water
  • the tube In the case of the presence of a coating of “wet-spray” on the shell, the tube, extracted from its shell and quickly introduced into an oven before it is too strongly cooled, is subjected to a so-called heat treatment. of "maintaining ferritization" at a temperature of the order of 750 ° C., for a time of the order of 20 to 25 minutes, then it is allowed to cool naturally.
  • the pipe In the absence of a “wet-spray” coating on the shell, the pipe is extracted from its casting shell and it is quickly introduced into an oven where it is subjected to graphitization annealing at a temperature of l 'order of 950 ° C for a time of the order of 20 to 25 minutes, then maintaining ferritization at a temperature of the order of 750 ° C for a time of the order of 15 to 20 minutes.
  • the Applicant has posed the problem of economically obtaining cast iron tubes poured by centrifugation which are lighter than current tubes, without appreciable loss of mechanical characteristics.
  • the Applicant sought to obtain this result by conferring on the spheroidal graphite cast iron tube, instead of the usual ferritic structure, a bainitic structure, which has a tensile strength and an elongation characteristic as well as a resilience characteristic. equal to or greater than that of the ferritic structure.
  • the ferritic structure is obtained in spheroidal graphite cast iron pipes according to patent FR 2 337 765 by centrifuging a cast iron containing, in particular by weight, 3.4% of carbon, 2.6% of silicon, 0.4% of manganese. and 0.04% magnesium, by allowing the centrifuged pipe to cool in its centrifugation mold to a temperature above 800 ° C, by transporting the centrifugation mold containing the still red pipe to a processing station.
  • the bainitic structure of spheroidal cast iron has already been sought for cast iron parts cast in a shell, in particular for mechanical components of automobiles, as shown for example by patent FR 1 056 330, because of the good mechanical characteristics conferred by such a structure.
  • the Applicant has on the contrary posed the problem of obtaining centrifuged tubes in bainitic cast iron with spheroidal graphite without the addition of expensive special elements in small quantities, such as molybdenum.
  • the subject of the invention is a centrifuged tube made of spheroidal graphite cast iron, of the type whose cast iron has the following composition by weight: this cast iron having a bainitic structure.
  • this cast iron is poured into a centrifuge shell provided with a refractory coating and cooled externally by l water, the centrifuged tube is allowed to cool in the shell to a temperature of the order of 800 to 1000 ° C to acquire an austenitic structure, then, according to the invention still in the shell, it is cooled vigorously and uniformly over its entire length by spraying water or an air and water mixture on its internal wall, up to about 250 to 450 ° C, so as to give it an austenitic or bainitic structure, then the tube is removed from the shell and placed inside an oven maintained between 250 and 450 ° C in order to create or to maintain a bainitic structure, and the tube is removed from the oven to allow it to cool in air.
  • the tube according to the invention has a substantially reduced unit weight and a significantly increased operating pressure, at the cost of a higher ovalization under the actual weight of the tube, but remaining within acceptable limits.
  • the invention is applied to the manufacture of spheroidal graphite cast iron tubes by centrifugal casting.
  • the process according to the invention consists in starting from a composition of spheroidal graphite cast iron which is as follows, in percentage by weight:
  • This composition of cast iron was modified compared to that which is usually used for the manufacture of pipe in cast iron with spheroidal graphite with ferrito-perlitic structure compared to elements Ni and Cu which did not exist and by contribution, preferably, of a notable supplement of Mn, the usual basic cast iron containing only 0.1 to 0.2% thereof.
  • the elements Ni, Cu, Mn have the property of improving the hardenability of the cast iron.
  • This spheroidal graphite cast iron composition is poured by centrifugation into a centrifuge machine shown diagrammatically in FIGS. 1 to 3.
  • This machine essentially comprises a carriage A movable in translation by means of a jack B.
  • This carriage A carries a metal shell 1 for centrifugation, of axis XX approximately horizontal, by means of rollers C of which at least one is driven by a motor M.
  • the shell 1 offers a cylindrical molding cavity of the same diameter from one end to the other in order to obtain a tube T of constant diameter and wall thickness over its entire length, therefore without interlocking.
  • Lu tube T has for example a length of 6 to 8 m for an internal diameter which can range from 60 mm to 2000 mm depending on the centrifuge machine and the shell 1 used.
  • the machine is provided, as known, with an external cooling device for the shell 1. It can be water spraying ramps distributed around the shell 1, inside a casing or a body wrapping this shell, or a water envelope flowing from one end to the other of the shell, and outside of the latter, in a closed circuit.
  • the external cooling device for the shell 1 whatever it may be, being known per se, has not been shown.
  • the invention applies preferably, but not exclusively, to the manufacture of cast iron tubes of large diameters, that is to say diameters greater than 700 mm and up to 2000 mm, there is shown next to the machine, to the right of FIG. 1, a human silhouette S to clearly show the large diameter of the shell 1 into which the tube T is to be cast.
  • this method is also applicable to the manufacture of cast iron tubes of small and medium diameters, it is that is, diameters between about 50 and 600 mm.
  • a pouring channel E provided upstream with a weir G supplied with liquid iron by a tilting pocket H.
  • the whole of the channel E and of its overflow G is mounted cantilevered on a carriage 2 movable transversely relative to the axis XX, that is to say in an end direction relative to the plane of FIG . 1.
  • the transverse carriage 2 also carries a long rigid pipe or cantilever 3 for spraying water connected to a pressure water supply, not shown.
  • the rigid pipe 3 has a length corresponding to that of the channel E, therefore of the shell 1, and is also approximately parallel to the axis XX of the shell 1. It is mounted on the transverse carriage 2 with an offset with respect to to the channel E by a transverse distance such that by transverse displacement of the carriage 2, when the channel E is inside the shell 1, the rigid pipe 3 is outside and vice versa.
  • the rigid pipe or ramp 3 is provided over its entire length with pairs of twin nozzles 4 for spraying water.
  • Nozzles 4, op nozzles placed two by two, have adjustable sections and adjusted so as to each provide an appropriate flow of water according to the thickness of the tube, which is substantially constant above all the length of the tube T.
  • the means of adjusting the sections of the nozzles nozzles 4, known per se, are not shown.
  • the shell 1 is provided, before each casting, with a refractory coating called "wet-spray", that is to say a mixture of silica powder and bentonite suspended in water.
  • This coating has for example a thickness between 0.05 and 0.8 mm.
  • the constituents of this coating mixture are in the following proportions: 500 to 3000 g of silica powder with a particle size between 40 and 100 microns and 10 to 40 g of bentonite per liter of water.
  • the spraying members of this coating known per se, have not been shown.
  • a tube T is poured by centrifugation by introducing the casting channel E into the shell and then pouring cast iron through this channel while gradually extracting it from the shell.
  • a quantity of cast iron is poured into the centrifugation shell 1 capable of giving a centrifuged tube of thickness much smaller than the usual thickness, taking into account the diameter (see below the table of numerical values).
  • the following heat treatment which consists of a stepped quenching carried out partly inside the centrifuge shell 1 and partly in a holding oven, in view to obtain and maintain a bainitic structure while avoiding the formation of perlite.
  • the shell 1 is cooled externally, and the tube T is allowed to rotate on itself, the latter cools slowly from a to b and from b to c, that is to say 1300 ° C to 11 50 ° C and from 1150 ° C to 1000 ° C almost homogeneously; around the point of the curve in solid lines in Figs. 5 and 6 and even below this point, for example up to 800 ° C., there is a slight difference in temperature between the internal wall and the external wall, less than 20 ° C. That is to say T at homogeneous temperature which is thus austenitized, that is to say with an austenitic structure at point c, without contribution of calories, but by the cooling which takes place after the pouring at l inside the shell 1.
  • the quenching or rapid cooling heat treatment is carried out inside the centrifugation shell using the spraying boom 3 and the spray nozzles 4, by spraying water or a mixture of air and water.
  • the pouring channel is retracted laterally by moving the carriage 2, the sprinkler boom 3 with nozzles 4 is completely inserted into the centrifuge shell 1, and sprinkling is carried out of the cavity of the tube T which has just been poured, while continuing to rotate the shell 1.
  • the watering rate theoretically constant all along the centrifuged tube, can be adjusted locally, if one notes local irregularities in temperature of the shell 1, although an attempt is made to make the external cooling thereof constant and uniform.
  • the tube T cools homogeneously.
  • This quenching phase is represented by the path c-d on the solid lines of Figs. 5 and 6.
  • the temperature of the tube T thus drops in a few minutes from around 10006C (or less, for example 800 ° C) to around 350 ° C.
  • the spray water is vaporized inside the rotating pipe and evacuated appropriately by means not shown.
  • the end of quenching temperature is between 250 ° C and 450 ° C.
  • the tube T has sufficient rigidity to no longer risk ovalization outside the centrifugation shell.
  • the tube also obtained by the quenching c-d a structure free of perlite. On the curves of Figs. 5 and 6, the region corresponding to the perlite is located to the right of this curve, at a certain distance from the section c-d.
  • the second phase of the heat treatment consists of maintaining the temperature to consolidate or fix the bainitic structure (maintenance of bainitization).
  • the tube T is extracted from the centrifugation shell, either by stopping the rotation of the latter, or by continuing to rotate it during the extraction, according to the extractor device available.
  • the demolished tube T is introduced into a tunnel oven 5 with heating nozzles 6, of known type, adjusted so as to maintain the pipe at a constant temperature between 250 ° C and 450 ° C, for example at 350 ° C, for 5 to 120 minutes (section of the quenching turbine of FIGS. 5 and 6), this holding time being approximately the same for all the diameters of tubes, to within 10 minutes.
  • the temperature retention time aims to obtain a homogeneous bainitic structure offering the optimal mechanical characteristics indicated below.
  • the tube T is carried in the furnace 5 by a conveyor chain 7 which can be of a type ensuring simultaneously the rotation of the tube around its axis.
  • the last phase of the heat treatment consists of rapid cooling in the open air: at the end of the bainitisation holding time, the tube T is removed from the holding oven 5 and allowed to cool in the open air according to the section ef of the curves in solid line of FIGS. 5 and 6, which causes rapid cooling, approximately in about ten minutes, approximately to room temperature.
  • the set of sections c-d-e-f of the cooling curve in solid lines represents the stepped quenching of the tube.
  • Figs. 5 and 6 illustrate the advantages of the heat treatment according to the invention, represented by the curves in solid lines, compared to the known prior treatments, represented by the curves in broken lines. We see a significant saving of time, but it is not the only advantage.
  • the conventional treatment for obtaining a bainitic structure of a statically molded part comprises a section hjk-1 simular to the section cdef of the process of the invention, but offset in the time of approximately one to two hours due to the two preliminary phases 0-g of austenitization heating, which can last from 20 minutes to 2 hours depending on the applications, and gh of maintaining austenitization at a temperature of approximately 1000 ° C, more generally between 800 and 1000 ° C.
  • the known prior treatment therefore requires a supply of calories to bring the treated parts to the austenitization temperature instead of treating the parts in the mold, immediately after their casting. It is therefore clear that the process of the invention, by saving the austenitization heating, brings a significant energy saving compared to such a treatment.
  • the heat treatment of the invention is compared with the prior technique of heat treatment of ferritization (annealing).
  • the prior heat treatment (broken line curve) has in common the section a-b-c with the solid line curve of the invention.
  • the rest of the curve c-m-n-p-q is substantially different from the curve c-d-e-f of the process of the invention.
  • the tube is left inside its centrifugation shell along the abcm curve: this corresponds to cooling at moderate speed, due to the external cooling of the centrifugation shell and the natural internal cooling of the tube centrifugal. From a to c, the austenitic structure is formed.
  • the bainitic structure makes it possible to reduce the wall thickness, and therefore the unit weight, of the tubes thanks to its good mechanical properties.
  • This appreciable reduction in thickness is also advantageous for the homogeneity of the cooling during the abcd phases, and in particular for the quenchability: it ensures the effectiveness of this quenching according to the phase cd of the heat treatment curve. , through the entire thickness of the centrifuged tube, without the need to add to the composition of the cast iron expensive metallic elements having a quenching effect, that is to say facilitating quenching, such as molybdenum .
  • the significant reduction in thickness of the centrifuged cast iron tubes brings a significant saving on the composition of the cast iron.
  • Carrying out the heat treatment according to the invention, and more particularly the phase of sprinkling or spraying water inside the cavity of the tube along the section cd, is particularly simple and economical compared to a conventional treatment of quenching in salt bath which would also require transport of the tube out of its shell while it is still hot and a manuten-. Immersion of the tube in a salt bath.
  • the method of the invention saves this ma nutention and avoid at the same time the risk of ovalization it involves.
  • the life of the centrifuge shells which are the most important and expensive components of the centrifuge equipment, must be significantly extended compared to the prior art.
  • the tube of the invention centrifuged in spheroidal graphite cast iron with a bainitic structure, despite its appreciable reduction in thickness, which provides lightening facilitating its handling, retains mechanical characteristics substantially equivalent to those of anterior ferritic tubes at the cost of greater sensitivity to ovalization, sensitivity remaining tolerable however because the tube does not undergo any handling when it is at high temperature subject to ovalization.
  • Fig. 7 represents a bainitic micrographic structure.
  • the black areas that can be seen in the upper and lower left corners are parts of graphite nodules.
  • the elongated forms resembling ferns are zones of ferrite; we can see that they cover most of the surface of the micrograph.
  • the most important white areas correspond to residual austenite; we see that they cover only a small part of the surface of the micrograph. It is the whole of this structure, recognizable only at magnification 1000 and not at magnification 100, which is called "bainitic".

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Centrifugal Separators (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Continuous Casting (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

  • La présente invention est relative à la fabrication de tubes en fonte à graphite sphéroïdal par coulée centrifuge et plus particulièrement à un traitement thermique consécutif é la coulée centrifuge visant à doter le tube centrifugé d'une structure permettant son allègement.
  • Les tubes - c'est-à-dire les tuyaux cylindriques d'épaisseur constante - en fonte à graphite spéroï- dal ont actuellement, après coulée par centrifugation et traitement thermique, une structure ferritique qui présente deux avantages: d'une part, cette structure leur confère de bonne caractéristiques mécaniques (résistance élastique et ductilité); d'autre part, cette structure ferritique est facilement obtenue par traitement thermique après la coulée centrifuge, soit dans une coquille pourvue intérieurement d'un revêtement épais d'un mélange pulvérulent de silice et de bentonite en suspension dans l'eau (revêtement dit «wet-spray»), soit dans une coquille dépourvue d'un tel revêtement.
  • Dans le cas de la présence d'un revêtement de «wet-spray» sur la coquille, on soumet le tube, extrait de sa coquille et rapidement introduit dans un four avant qu'il ne soit trop fortement refroidi, à un traitement thermique dit de «maintien de ferritisation» à une temperature de l'ordre de 750°C, pendant un temps de l'ordre de 20 à 25 minutes, puis on le laisse se refroidir naturellement.
  • Dans la cas d'absence de revêtement de «wet-spray» sur la coquille, on extrait le tuyau de sa coquille de coulée et on l'introduit rapidement dans un four où on lui fait subir un recuit de graphitisation à une température de l'ordre de 950°C pendant un temps de l'ordre de 20 à 25 minutes, puis un maintien de ferritisation à une temperature de l'ordre de 750°C pendant un temps de l'ordre de 15 à 20 minutes.
  • La Demanderesse s'est posé le problème d'obtenir économiquement des tubes en fonte coulés par centrifugation qui soient plus légers que les tubes actuels, sans perte sensible de caractéristiques mécaniques.
  • La Demanderesse a cherché à obtenir ce résultat en conférant au tube en fonte à graphite sphéroidal, au lieu de la structure ferritique habituelle, une structure bainitique, qui présente une résistance à la traction et une caractéristique d'allongement ainsi qu'une caractéristique de résilience égales ou supérieures à celles de la structure ferritique.
  • La structure ferritique est obtenue dans des tuyaux en fonte à graphite sphéroïdal suivant le brevet FR 2 337 765 en centrifugeant une fonte contenant, notamment en poids, 3, 4% de carbone, 2,6% de Silicium, 0,4% de manganèse et 0,04% de magnésium, en laissant le tuyau centrifugé se refroidir dans son moule de centrifugation jusqu'à une température supérieure à 800°C, en transportant le moule de centrifugation contenant le tuyau encore rouge jusqu'à un poste de traitement de recuit où le moule de centrifugation, entraîné en rotation, est obturé à ses extrémités et où le tuyau moulé est soumis à l'action de gaz chauds en trois zones de températures, successivement décroissantes jusqu'à environ 700°C, de manière que le tuyau se refroidisse lentement, et enfin en démoulant le tuyau et en le laissant se refroidir à l'air libre.
  • La structure bainitique de la fonte sphéroïdale a déjà été recherchée pour des pièces en fonte coulées en coquille, notamment pour des organes méchani- ques d'automobiles, comme le montre par exemple le brevet FR 1 056 330, en raison des bonnes caractéristiques mécaniques conférées par une telle structure.
  • Dans un article de la revue «Hommes et Fonderie» n ° 84 d'Avril 1978, est décrit un traitement thermique d'obtention de cette structure bainitique. Le traitement thermique décrit est celui dit de «la trempe étagée» qui permet d'aboutir à la structure bainitique en passant par l'austénitisation par des phases successives de refroidissement à vitesses différentes, dont une trempe, en partant de la pièce chaude, telle qu'elle vient d'être moulée. Ce traitement présente l'avantage de ne pas nécessiter un chauffage initial d'austénitisation.
  • Cependant, suivant la technique décrite dans cet article, étant donné la faible aptitude à la trempe de la fonte à graphite sphéroïdal, non seulement il faut un contrôle très serré des teneurs en carbone, en silicium et en manganèse de la fonte, mais encore, si l'on veut traiter des pièces relativement épaisses, il faut apportér des éléments d'alliages coûteux tels 'que le molybdène, particulièrement efficaces, même en quantités modestes, pour accroïtre l'aptitude à la trempe de la fonte dans une mesure suffisante pour que la trempe étagée évite la formation de perdite et aboutisse à la formation de bainite.
  • La Demanderesse s'est au contraire posé le problème d'obtenir des tubes centrifugés en fonte bainitique à graphite sphéroïdal sans apport d'éléments spéciaux onéreux en faible quantité, tels que le molybdène.
  • A cet effet, l'invention a pour objet un tube centrifugé en fonte à graphite sphéroïdal, du type dont la fonte possède la composition suivante en poids:
    Figure imgb0001
    cette fonte ayant une structure bainitique.
  • Pour réaliser un tel tube, suivant l'invention, on part, comme connu, d'une fonte à graphite sphéroïdal ayant la composition indiquée, on coule cette fonte dans une coquille de centrifugation pourvue d'un revêtement réfractaire et refroidie extérieurement par de l'eau, on laisse le tube centrifugé se refroidir en coquille jusqu'à une température de l'ordre de 800 à 1000°C pour acquérir une structure austénitique, puis, suivant l'invention toujours en coquille, on le refroidit énergiquement et uniformément sur toute sa longueur par pulvérisation d'eau ou d'un mélange air et eau sur sa paroi interne, jusqu'à environ 250 à 450°C, de manière à lui conférer une structure austénitique ou bainitique, puis on démoule le tube de la coquille et on le place à l'intérieur d'un four maintenu entre 250 et 450°C en vue de créer ou de maintenir une structure bainitique, et l'on retire le tube du four pour le laisser refroidir à l'air.
  • L'expérience montre que le tube suivant l'invention possède un poids unitaire sensiblement réduit et une pression de service sensiblement accrue, au prix d'une ovalisation plus élevée sous le poids propre du tube, mais restant dans les limites acceptables.
  • L'invention est exposée ci-après plus en détail à l'aide des dessins annexés, qui en représentent seulement un mode d'exécution. Sur ces dessins:
    • la Fig. 1 est une vue schématique partielle en coupe longitudinale d'une machine à centrifuger des tubes en fonte, équipée d'un dispositif d'arrosage pour la mise en oeuvre du procédé suivant l'invention, la machine étant en position de fin de coulée;
    • la Fig. 2 est une vue analogue à la Fig. 1 de la machine pendant la phase d'arrosage du tube en coquille du procédé suivant l'invention;
    • la Fig. 3 est une vue en coupe transversale suivant la ligne 3-3 de la Fig. 2;
    • la Fig. 4 est une vue schématique en coupe transversale illustrant la phase de maintien de bainitisation, à l'intérieurd'un four, du procédé de l'invention;
    • les Fig. 5 et 6 sont des diagrammes comparatifs du traitement thermique du procédé de l'invention (courbes en trait plein) par rapport à des traitements thermiques antérieurs connus, respectivement pour l'obtention d'une structure bainitique avec chauffage d'austénitisation et pour l'obtention d'une structure ferritique dans la fabrication classique des tubes en fonte centrifugés, ces courbes correspondant à des tubes de diamètre nominal 1600 mm;
    • Les Fig. 7 et 8 sont des micrographies d'une structure de paroi de tubes centrifugés en fonte à graphite sphéroïdal, respectivement à structure bainitique au grossissement 1000, et à structure ferrito-perlitique au grossissement 100.
  • Suivant l'exemple d'exécution des Fig. 1 à 3, l'invention est appliquée à la fabrication de tubes en fonte à graphite sphéroïdal par coulée centrifuge.
  • Le procédé conforme à l'invention consiste à partir d'une composition de fonte à graphite sphéroïdal qui est la suivante, en pourcentage en poids:
    Figure imgb0002
  • Cette composition de fonte a été modifiée par rapport à celle qui sert habituellement à la fabrication de tuyau en fonte à graphite sphéroïdal à structure ferrito-perlitique par rapport des éléments Ni et Cu qui n'existaient pas et par apport, de préférence, d'un notable supplément de Mn, la fonte de base habituelle n'en contenant que 0,1 à 0,2%. Les éléments Ni, Cu, Mn ont la propriété d'améliorer la trempabilité de la fonte.
  • On coule par centrifugation cette composition de fonte à graphite sphéroïdal dans une machine à centrifuger illustré schématiquement aux Fig. 1 à 3.
  • Cette machine comprend essentiellement un chariot A mobile en translation grâce à un vérin B. Ce chariot A porte une coquille métallique 1 de centrifugation, d'axe X-X à peu près horizontal, par l'intermédiaire de galets C dont l'un au moins est entraîné par un moteur M. La coquille 1 offre une cavité de moulage cylindrique de même diamètre d'une extrémité à l'autre en vue d'obtenir un tube T de diamètre et d'épaisseur de paroi constants sur toute sa longueur, donc sans emboîtement. Lu tube T a par exemple une longueur de 6 à 8 m pour un diamètre intérieur qui peut aller de 60 mm à 2000 mm suivant la machine à centrifuger et la coquille 1 utilisées.
  • La machine est pourvue, comme connu, d'un dispositif de refroidissement extérieur de la coquille 1. Il peut s'agir de rampes de pulverisation d'eau réparties autour de la coquille 1, à l'intérieur d'un carter ou d'une carrosserie enveloppant cette coquille, ou bien d'une enveloppe d'eau circulant d'une extrémité à l'autre de la coquille, et à l'extérieur de celle-ci, en circuit fermé. Dans un but de schématisation, le dispositif de refroidissement extérieur de la coquille 1, quel qu'il soit, étant connu en soi, n'a pas été représenté.
  • Par ailleurs, étant donné que l'invention s'applique de préférence, mais non exclusivement, à la fabrication de tubes en fonte de grands diamètres, c'est-à-dire de diamètres supérieurs à 700 mm et pouvant aller jusqu'à 2000 mm, on a représenté à côté de la machine, à droite de la Fig. 1, une silhouette humaine S pour bien montrer le diamètre important de la coquille 1 dans laquelle doit être coulé le tube T.
  • Bien que, pour les raisons exposées plus loin, c'est pour les grands diamètres que le procédé de l'invention est le plus avantageux, ce procédé est également applicable à la fabrication de tubes en fonte de petits et moyens diamètres, c'est-à-dire de diamètres compris entre environ 50 et 600 mm.
  • A l'intérieur de la coquille 1 peut pénétrer à peu près parallèlement à son axe X-X un canal de coulée E muni à l'amont d'un déversoir G alimenté en fonte liquide par une poche basculante H.
  • L'ensemble du canal E et de son déversoir G est monté en porte à faux sur un chariot 2 mobile transversalement par rapport à l'axe X-X, c'est-à-dire suivant une direction de bout par rapport au plan de la Fig. 1. Le chariot transversal 2 porte également en porte à faux une longue conduite rigide ou rampe 3 de pulvérisation d'eau reliée à une alimentation en eau sous pression non représentée. La conduite rigide 3 a une longueur correspondant à celle du canal E, donc de la coquille 1, et est également à peu près parallèle à l'axe X-X de la coquille 1. Elle est montée sur le chariot transversal 2 avec un décalage par rapport au canal E d'une distance transversale telle que par déplacement transversal du chariot 2, lorsque le canal E est à l'intérieur de la coquille 1, la conduite rigide 3 est à l'extérieur et réciproquement.
  • La conduite rigide ou rampe 3 est pourvue sur toute sa longueur de paires de buses jumelées 4 de pulvérisation d'eau. Les ajutages des buses 4, opposés deux à deux, ont des sections réglables et réglées de manière à fournir chacune un débit d'eau approprié en fonction de l'épaisseur du tube, qui est sensiblement constante surtoute la longueur du tube T. Les moyens de réglage des sections des ajutages des buses 4, connus en soi, ne sont pas représentés.
  • La coquille 1 est pourvue, avant chaque coulée, d'un revêtement réfractaire la dit de «wet-spray», c'est-à-dire d'un mélange de poudre de silice et de bentonite en suspension dans l'eau. Ce revêtement a par exemple une épaisseur comprise entre 0,05 et 0,8 mm. Les constituants de ce mélange de revêtement sont dans les proportions suivantes: 500 à 3000 g de poudre de silice de granulométrie comprise entre 40 et 100 microns et 10 à 40 g de bentonite per litre d'eau. Les organes de pulvérisation de ce revêtement, connus en soi, n'ont pas été représentés.
  • Il est à noter qu'à la Fig. 1, ou le canal E se trouve en partie à l'intérieur de la coquille 1, une partie de la conduite 3 à buses 4 n'est pas visible puisque cette conduite est escamotée latéralement. Il faut considérer la Fig. 2 pour voir la conduite 3 avec la totalité de ses buses 4 introduites à l'intérieur de la coquille 1 en position d'arrossage; la canal de coulée E est alors en position escamotée latéralement, devant le plan de la Fig. 2, et n'a été représenté que partiellement, dans un but de clarté. Ceci apparaît bien à la Fig. 3.
  • À l'aide de cette installation, on procède à la coulée d'un tube T par centrifugation en introduisant dans la coquille le canal de coulée E puis en versant de la fonte par ce canal tout en l'extrayant progressivement de la coquille. Conformément à l'invention, on ne verse dans la coquille de centrifugation 1 qu'une quantité de fonte susceptible de donner un tube centrifugé d'épaisseur beaucoup plus faible que l'épaisseur habituelle, compte tenu du diamètre (voir plus loin le tableau de valeur numériques).
  • Lorsque la coulée du tube T est terminée, on fait subir à celui-ci le traitement thermique suivant, qui consiste en une trempe étagée effectuée en partie à l'intérieur de la coquille 1 de centrifugation et en partie dans un four de maintien, en vue d'obtenir et de conserver une structure bainitique en évitant la formation de perlite.
  • Dans une première phase de ce traitement thermique (Fig. 5 et 6, courbe entrait plein), on laisseletube T l'intérieur de la coquille 1 de centrifugation pour lui faire subir une trempe de bainitisation, en passant par l'austénitisation, sans chauffage, en profitant des calories de la coulée. On part donc d'un tube qui vient d'être centrifugé et de se solidifier et est encore à une température de l'ordre de 1150°C (après le passage du point a au point b sur la courbe en trait plein des Fig. 5 et 6).
  • Du fait que la coquille 1 est refroidie extérieurement, et que l'on laisse tourner sur lui-même le tube T, celui-ci se refroidit lentement de a à b et de b à c, c'est-à-dire de 1300 °C à 11 50° C et de 1150°C à 1000°C de manière pratiquement homogène; aux alentours du point de la courbe en trait plein des Fig. 5 et 6 et même en-dessous de ce point, par exemple jusqu'à 800°C, on note un faible écart de température entre la paroi interne et la paroi externe, inférieur à 20°C. C'est-à-dire T à température homogène qui se trouve ainsi austénitisé, c'est-à-dire avec une structure austénitique au point c, sans apport de calories, mais par le refroidissement qui s'opère après la coulée à l'intérieur de la coquille 1.
  • A partir de cet état homogène en température et en structure austénitique, le traitement thermique de trempe ou refroidissement rapide est effectué à l'intérieur de la coquille de centrifugation à l'aide de la rampe d'arrosage 3 et des buses de pulvérisation 4, par pulvérisation d'eau ou d'un mélange d'air et d'eau.
  • A cet effet, immédiatement après la coulée, on escamote latéralement le canal de coulée par déplacement du chariot 2, on introduit entièrement dans la coquille de centrifugation 1 la rampe d'arrosage 3 à buses 4, et l'on procède à l'arrosage de la cavité du tube T qui vient d'être coulé, tout en continuant à faire tournér la coquille 1. Bien entendu, le débit d'arrosage, théoriquement constant tout le long du tube centrifugé, peut être ajusté localement, si l'on constate des irrégularités locales de température de la coquille 1, bien que l'on cherche à rendre constant et uniforme le refroidissement extérieur de celui-ci.
  • En procédant ainsi, lu tube T se refroidit de manière homogène. Cette phase de trempe est représentée par le trajet c-d sur les courbes en trait plein des Fig. 5 et 6. La température du tube T descend ainsi en quelques minutes d'environ 10006C (ou moins, par exemple 800°C) à environ 350°C.
  • L'eau de pulvérisation est vaporisée à l'intérieur du tuyau en rotation et évacuée de façon appropriée par des moyens non représentés.
  • En fait, la température de fin de trempe se situe entre 250°C et 450°C. Dans cette zone de température qui se situe soit un peu au-dessus soit un peu au-dessous de la valeur de 350°C inscrite sur les courbes des Fig. 5 et 6, le tube T a une rigidité suffisante pour ne plus risquer d'ovalisation hors de la coquille de centrifugation. Le tube a également obtenu grâce à la trempe c-d une structure exempte de perlite. Sur les courbes des Fig. 5 et 6, la région correspondant à la perlite est située à droite de cette courbe, à une certaine distance du tronçon c-d.
  • La seconde phase du traitement thermique consiste en un maintien en température pour consolider ou fixer la structure bainitique (maintien de bainitisation). Pour cela, à la suite de la phase de refroidissement rapide ou trempe précédente, on extrait le tube T de la coquille de centrifugation, soit en arrêtant la rotation de celle-ci, soit en continuant de la faire tourner pendant l'extraction, suivant le dispositif extracteur dont on dispose. Comme représenté à la Fig. 4, on introduit le tube T démolé dans un four-tunnel 5 à buses de chauffage 6, de type connu, réglé de manière à maintenir le tuyau à une température constante comprise entre 250°C et 450°C, par exemple à 350°C, pendant 5 à 120 minutes (tronçon d-e de la turbe de trempe des Fig. 5 et 6), ce temps de maintien étant à peu près le même pour tous les diamètres de tubes, à 10 minutes près.
  • Le temps de maintien en température vise à obtenir une structure bainitique homogène offrant les caractéristiques mécaniques optimales indiquées plus loin.
  • Le tube T est porté dans le four 5 par une chaîne transporteuse 7 qui peut être d'un type assurant simultanément la rotation du tube autour de son axe.
  • La dernière phase du traitement thermique consiste en un refroidissement rapide à l'air libre: à l'expiration du temps de maintien de bainitisation, on retire le tube T du four de maintien 5 et on le laisse refroidir à l'air libre suivant le tronçon e-f des courbes en trait plein des Fig. 5 et 6, ce qui provoque un refroidissement rapide, environ en une dizaine de minutes, à peu près jusqu'à la température ambiante. L'ensemble des tronçons c-d-e-f de la courbe de refroidissement en trait plein représente le trempe étagée du tube.
  • Les Fig. 5 et 6 illustrent les avantages du traitement thermique suivant l'invention, représenté par les courbes en trait plein, par rapport aux traitements antérieurs connus, représentés par les courbes en trait interrompu. On voit apparaître un important gain de temps, mais ce n'est pas le seul avantage.
  • Comme le montre la courbe en trait interrompu de la Fig. 5, le traitement classique d'obtention d'une structure bainitique d'une pièce moulée statiquement (qui n'est donc pas un tube centrifugé) comporte un tronçon h-j-k-1 simulaire au tronçon c-d-e-f du procédé de l'invention, mais décalé dans le temps d'environ une à deux heures en raison des deux phases préalables 0-g de chauffage d'austénitisation, qui peut durer de 20 minutes à 2 heures suivant les applications, et g-h de maintien d'austénitisation à une température d'environ 1000°C, plus généralement comprise entre 800 et 1000°C. Le traitement antérieur connu nécessite donc un apport de calories pour amener les pièces traitées à la température d'austénitisation au lieu de traiter les pièces dans le moule, immédiatement après leur coulée. Il est danc clair que le procédé de l'invention, en économisant le chauffage d'austénitisation, apporte une importante économie d'énergie par rapport à un tel traitement.
  • A la Fig. 6, le traitement thermique de l'invention est comparé à la technique antériere de traitement thermique de ferritisation (recuit). Le traitement thermique antérieur (courbe en trait interrompu) possède en commun le tronçon a-b-c avec la courbe en trait plein de l'invention. Ensuite, le reste de la courbe c-m-n-p-q est sensiblement différent de la courbe c-d-e-f du procédé de l'invention. Dans le processus de ferritisation, on laisse le tube à l'intérieur de sa coquille de centrifugation suivant la courbe a-b-c-m: ceci correspond à un refroidissement à vitesse modérée, du fait du refroidissement extérieur de la coquille de centrifugation et du refroidissement interne naturel du tube centrifugé. De a à c, la structure austénitique se forme. Au-delà de c- cette structure n'est pas maintenue, mais le refroidissement continue jusqu'en m, point où l'on procède à l'extraction hors de sa coquille du tube suffisamment refroidi pour éviter une ovalisation notable. Il s'ensuit un refroidissement à l'air un peu plus lent jusqu'à ce que l'on introduise le tube dans un four de recuit de ferritisation à une température de l'ordre de 750°C. Comme on le voit, un apport de calories est nécessaire, à l'intérieur du four de recuit, pour l'obtention de la structure ferritique, suivant la partie ascendante m-n de la courbe, ainsi que pour le maintien en température suivant le tronçon n:2.. Cet apport de calories est sensiblement supérieur à celui qui est nécessaire au maintien de bainitisation suivant le tronçon d-e de la courbe en trait plein, dans le four de maintien 5, et ce d'autant plus que la température de maintien de bainitisation est beaucoup plus basse (350°C environ) que la température de maintien de ferritisation (environ 750°C). On remarque en particulier que la température de maintien de bainitisation est suffisamment basse pour que l'extraction du tube à cette température ne pose aucun problème et qu'il ne soit pas nécessaire de réchauffer ce tube lors de son introduction dans le four 5. En conséquence, par rapport à la technique antérieure de traitement thermique de ferritisation des tubes en fonte centrifugés, le procédé de l'invention permet également une économie sensible d'énergie.
  • Du fait de la rotation du tube pendant qu'il est encore à l'intérieur de la coquille de centrifugation, c'est-à-dire pendant les phases de traitement thermique représentées par les tronçons a-b-c-d des courbes en trait plein des Fig. 5 et 6, donc pendant le refroidissement naturel et pendant la trempe par arrosage, le refroidissement du tuyau est homogène.
  • La structure bainitique permet de réduire l'épaisse- ment de paroi, et donc le poids unitaire, des tubes grâce à ses bonnes propriétés mécaniques. Cette sensible diminution d'épaisseur est en outre avantageuse pour l'homogénéité du refroidissement pendant les phases a-b-c-d, et en particulier pour l'aptitude à la trempe: elle assure l'efficacité de cette trempe suivant la phase c-d de la courbe de traitement thermique, à travers toute l'épaisseur du tube centrifugé, sans qu'il soit nécessaire d'ajouter à la composition de la fonte des éléments métalliques coûteux ayant un effet trempant, c'est-à-dire facilitant la trempe, tels que le molybdène. En d'autres termes, la réduction sensible d'épaisseur des tubes de fonte centrifugés apporte une économie sensible sur la composition de la fonte.
  • On a vu également que le traitement d'austénitisa- tion et de bainitisation suivant les phases b-c-d de la courbe de traitement thermique du tube T à l'intérieur de la coquille de centrifugation évite toute déformation du tube, donc toute ovalisation pendant qu'il est encore à température élevée: en effet, la coquille de centrifugation, servant de support au tube, maintient sa forme parfaitement cylindrique, et ceci malgré la réduction notable d'épaisseur qui augmente sa tendance à l'ovalisation. Cette tendance à l'ovalisation poserait de sérieux problèmes si le tube était extrait de la coquille de centrifugation à une température plus élevée, par exemple au-dessus de 500°C.
  • La réalisation du traitement thermique suivant l'invention, et plus particulièrement de la phase d'arrosage ou de pulvérisation d'eau à l'intérieur de la cavité du tube suivant le tronçon c-d, est particulié- rement simple et économique par rapport à un traitement classique de trempe en bain de sel qui nécessiterait d'ailleurs un transport du tube hors de sa coquille alors qu'il est encore chaud et une manuten- . tion d'immersion du tube dans un bain de sel. Le procédé de l'invention permet d'économiser cette manutention et d'éviter en même temps le risque d'ovalisation qu'elle comporte.
  • Le gain sensible de temps mentionné plus haut permet d'augmenter les cadences de fabrication des tubes centrifugés en fonte à graphite sphéroïdal à structure bainitique. L'arrosage de l'intérieur du tuyau centrifugé pendant la phase de trempe diminue le temps de séjour du tube centrifugé dans la coquille de centrifugation. C'est ce que l'on voit en comparant les deux courbes de la Fig. 6, sur lesquelles l'extraction du tube hors de la coquille se situe au point m dans la technique connue alors qu'elle se situe au point d, 5 à 10 minutes avant, dans le procédé de l'invention.
  • Il en résulte avantageusement pour la coquille de centrifugation une réduction sensible des contraintes thermiques car les calories à évacuer sont inférieures d'environ 30 à 40%, par rapport à la technique antérieure de fabrication des tubes en fonte à structure ferritique, du fait de l'évacuation de chaleur par l'eau d'arrosage et de la diminution de la quantité de fonte versée à l'intérieur de la coquille. En conséquence, la durée de vie des coquilles de centrifugation, qui sont les éléments les plus importants et les plus coûteux du matériel de centrifugation, doit être notablement allongée par rapport à la technique antérieure.
  • Enfin, le tube de l'invention centrifugé en fonte à graphite sphéroïdal à structure bainitique, malgré sa réduction sensible d'épaisseur, qui apporte un allègement facilitant sa manutention, conserve des caractéristiques mécaniques sensiblement équivalentes à celles des tubes antérieurs ferritiques au prix d'une plus grande sensibilité à l'ovalisation, sensibilité restant cependant tolérable du fait que le tube ne subit aucune manutention lorsqu'il est à température élevée sujette à l'ovalisation.
  • En ce qui concerne les caractéristiques mécaniques du tube suivant l'invention, le tableau ci-après donne des exemples numériques de dimensions, de poids, de pression de service garantie et d'ovalisation pour des tubes destinés à être enterrés sous une épaisseur deterre de 4 m et pour des tuyaux de grand diamètre, c'est-à-dire supérieur à 700 mm de diamètre nominal. Les valeurs concernant le tube bainitique de l'invention sont comparées à celles de la technique antérieure concernant un tube ferritique et un tube ferritique allégé. Dans ce tableau, le coefficient K, défini par la norme internationale ISO 2531, caractérise l'épaisseur du tuyau suivant la formule: e = K (0,5 + 0,001 D.N.) dans laquelle:
    • e = épaisseur en mm de la paroi de tube
    • DN = diamètre nominal.
      Figure imgb0003
  • On voit sur le tableau ci-dessus que le gain de poids unitaire que l'invention permet d'obtenir est d'autant plus important que le diamètre du tube est plus grand.
  • A titre comparatif et à l'avantage du tube à structure bainitique de l'invention, les caractéristiques mécaniques obtenues sont les suivantes:
    • - limite élastique 55 à 75 daN/mm2 (au lieu de 30 environ pour la structure ferritique)
    • - allongement supérieur à 10% (comme le tube ferritique);
    • - résistance à la rupture 70 à 110 daN/mm2 (tube ferritique 45 daN/mm2 environ).
  • La Fig. 7 représente une structure micrographique bainitique. Dans cette structure, les plages noires que l'on aperçoit dans les angles supérieur et inférieur de gauche sont des parties de nodules de graphite. Les formes allongées ressemblant à des fougé- res sont des zones de ferrite; on voit qu'elles couvrent la plus grande partie de la surface de la micrographie. Les zonee blanches les plus importantes correspondent à de l'austénite résiduelle; on voit qu'elles ne couvrent qu'une faible partie de la surface de la micrographie. C'est l'ensemble de cette structure, reconnaissable seulement au grossissement 1000 et non au grossissement 100, que l'on appelle «bainitique».
  • A titre comparatif, suivant la micrographie de la Fig. 8 au grossissement 100, à l'attaque au NITAL, il s'agit d'une fonte à graphite sphéroïdal ferrito-perlitique, à 40% de ferrite et à 50% de perlite, le reste étant du graphite sphéroïdal. Les plages noires rondes sont des nodules de graphite. Les nodules sont entourés de zones blanches constituant la ferrite. Les zones grises restantes sont de la perlite. Il s'agit de la structure d'un tube centrifugé de type classique.

Claims (6)

1. Tube centrifugé en fonte à graphite sphéroïdal, du type dont la fonte possède la composition suivante en poids:
Figure imgb0004
cette fonte ayant une structure bainitique.
2. Tube suivant la revendication 1, caractérisé en ce que la fonte a la composition suivante:
Figure imgb0005
le rest étant du fer.
3. Tube suivant l'une des revendications 1 ou 2, caractérisé en ce qu'il correspond au tableau suivant:
Figure imgb0006
4. Procédé de fabrication d'un tube suivant l'une quelconque des revendivations 1 à 3, di type dans lequel on part d'une fonte à graphite sphéroïdal ayant la composition indiquée, on coule cette fonte dans une coquille de centrifugation pourvue d'un revêtement réfractaire et refrioidie extérieurement par de l'eau, et du type dans lequel on laisse le tube centrifugé se refroidir en coquille jusqu'à une température de l'ordre de 800 à 1000°C pour acquérir une structure austénitique, caractérisé en ce que, toujours en coquille, on refroidit énergiquement et uniformément surtoute sa longueur par pulvérisation d'eau ou d'un mélange air et eau sur sa paroi interne, jusqu'à environ 250 à 450°C, de manière à lui conférer une structure austénitique ou bainitique, puis on démoule le tube de sa coquille et on le place à l'intérieur d'un four maintenu entre 250 et 450°C en vue de créer ou de maintenir une structure bainitique, et l'on retire letube du four pour le laisser refroidir à l'air.
5. Procédé suivant la revendication 4, caractérisé en ce que l'on utilise comme revêtement réfractaire de la coquille de centrifugation un mélange aqueux de silice et de bentonite.
5. Procédé suivant la revendication 4, caractérisé en ce que pendant la première phase de refroidissement jusqu'à environ 800 à 1000°C et pendant la phase de refroidissement énergique par pulverisation humide sur la paroi interne du tube de 800-1000°C à 250-450°C, on entraîne celui-ci en rotation au moyen de la coquille de centrifugation.
EP83101259A 1982-03-01 1983-02-10 Tube centrifugé en fonte à graphite sphéroidal et son procédé de fabrication Expired EP0087634B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83101259T ATE17375T1 (de) 1982-03-01 1983-02-10 Schleudergussroehren aus gusseisen mit kugelgraphit und verfahren zur herstellung derselben.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8203327A FR2522291A1 (fr) 1982-03-01 1982-03-01 Tube centrifuge en fonte a graphite spheroidal et son procede de fabrication
FR8203327 1982-03-01

Publications (2)

Publication Number Publication Date
EP0087634A1 EP0087634A1 (fr) 1983-09-07
EP0087634B1 true EP0087634B1 (fr) 1986-01-08

Family

ID=9271434

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83101259A Expired EP0087634B1 (fr) 1982-03-01 1983-02-10 Tube centrifugé en fonte à graphite sphéroidal et son procédé de fabrication

Country Status (24)

Country Link
US (1) US4448610A (fr)
EP (1) EP0087634B1 (fr)
JP (1) JPS58161748A (fr)
KR (1) KR900001096B1 (fr)
AT (2) ATE17375T1 (fr)
AU (1) AU553544B2 (fr)
BE (1) BE896059A (fr)
BR (1) BR8300976A (fr)
CH (1) CH651768A5 (fr)
CS (1) CS272203B2 (fr)
DD (1) DD209124A5 (fr)
DE (1) DE3361739D1 (fr)
EG (1) EG15781A (fr)
ES (1) ES8406918A1 (fr)
FR (1) FR2522291A1 (fr)
GB (1) GB2117000B (fr)
IN (1) IN157332B (fr)
IT (1) IT1158814B (fr)
MX (1) MX161630A (fr)
MY (1) MY8700117A (fr)
PL (2) PL139262B1 (fr)
RO (1) RO87318A (fr)
SE (1) SE8301060L (fr)
YU (1) YU43820B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560559A (zh) * 2020-06-19 2020-08-21 安徽合力股份有限公司合肥铸锻厂 基于等温淬火球铁的避震器毛坯及其生产工艺

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2575683B1 (fr) * 1985-01-04 1987-01-30 Pont A Mousson Procede et installation pour la fabrication continue de tuyaux en fonte a graphite spheroidal a structure controlee
EP0281249A1 (fr) * 1987-03-06 1988-09-07 William H. Moore Procédé de traitement thermique de produits ferreux
FR2697535B1 (fr) * 1992-11-02 1995-01-13 Schissler Jean Marie Procédé amélioré de traitement thermique d'alliages ferreux ou non-ferreux, et son application à l'élaboration de fonte bainitique.
DE19528291C2 (de) * 1995-08-02 1998-06-04 Ald Vacuum Techn Gmbh Verfahren und Vorrichtung zum Herstellen von Partikeln aus gerichtet erstarrten Gußkörpern
US5784851A (en) * 1996-04-23 1998-07-28 Waugh; Tom W. Centrifugally cast pole and method
DE19750144A1 (de) * 1997-11-12 1999-06-02 Krupp Polysius Ag Verfahren zur Herstellung einer Mahlwalze
KR100372011B1 (ko) * 1999-12-15 2003-02-14 사단법인 대학산업기술지원단 오스템퍼드 구상흑연주철 및 그 제조방법
JP4698098B2 (ja) * 2001-09-28 2011-06-08 株式会社クボタ 高強度高耐食性ダクタイル鋳鉄
DE10201218A1 (de) * 2002-01-14 2003-07-24 Fischer Georg Fahrzeugtech Sphärogusslegierung
FR2839727B1 (fr) * 2002-05-14 2004-06-25 Technologica Sarl Procede d'elaboration et de mise en forme de pieces en fonte a graphite spheroidal a caracteristiques mecaniques elevees
US20050189043A1 (en) * 2004-02-12 2005-09-01 Technologica Method of fabricating spheroidal graphite cast iron parts of high precision, geometrically and dimensionally, and having improved mechanical characteristics
FI118738B (fi) * 2005-01-05 2008-02-29 Metso Paper Inc Pallografiittivalurauta ja menetelmä pallografiittivaluraudan valmistamiseksi lujuutta ja sitkeyttä vaativia koneenrakennusosia varten
US8567155B2 (en) 2006-07-19 2013-10-29 Tom W Waugh Centrifugally cast pole and method
FR2918908B1 (fr) * 2007-07-16 2009-10-30 C T I F Ct Tech Des Ind De La Procede de fabrication d'une piece en fonte bainitique
US20120152413A1 (en) * 2010-12-16 2012-06-21 General Electric Company Method of producing large components from austempered ductile iron alloys
US8376024B1 (en) 2011-12-31 2013-02-19 Charles Earl Bates Foundry mold insulating coating
US8524016B2 (en) * 2012-01-03 2013-09-03 General Electric Company Method of making an austempered ductile iron article
US8833433B2 (en) 2013-01-16 2014-09-16 Charles Earl Bates Foundry mold insulating coating
FR3060607B1 (fr) * 2016-12-19 2021-09-10 Saint Gobain Pont A Mousson Objet en fonte a graphite spheroidal, element et procede de fabrication correspondants
CN108326252A (zh) * 2018-01-17 2018-07-27 嘉善超盛五金材料有限公司 一种铜套浇注方法及其浇注装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE148237C (fr) *
US2867555A (en) * 1955-11-28 1959-01-06 Curry Thomas Wetzel Nodular cast iron and process of manufacture thereof
US2855336A (en) * 1957-02-04 1958-10-07 Thomas W Curry Nodular iron process of manufacture
US3549430A (en) * 1967-11-14 1970-12-22 Int Nickel Co Bainitic ductile iron having high strength and toughness
US3702269A (en) * 1971-01-22 1972-11-07 Int Nickel Co Ultra high strength ductile iron
US3860457A (en) * 1972-07-12 1975-01-14 Kymin Oy Kymmene Ab A ductile iron and method of making it
US3784416A (en) * 1972-09-29 1974-01-08 Canron Ltd Manufacture of white cast iron
JPS5522528B2 (fr) * 1974-02-23 1980-06-17
JPS5284118A (en) * 1976-01-06 1977-07-13 Kubota Ltd Heat treatment of ductile cast iron tube made by centrifugal casting
US4157111A (en) * 1976-01-06 1979-06-05 Kubota, Ltd. Method of heat-treating ductile cast iron pipe
FR2382502A1 (fr) * 1977-03-02 1978-09-29 Pont A Mousson Procede et installation de traitement thermique de recuit de tuyaux en fonte a graphite spheroidal ou lamellaire
JPS5836664B2 (ja) * 1978-08-24 1983-08-10 株式会社クボタ 金型遠心力鋳造による耐摩耗薄肉鋳鉄スリ−ブの製造法
DE2853870A1 (de) * 1978-12-13 1980-07-03 Schmidt Gmbh Karl Gusseisen mit kugelgraphit mit austenitisch-bainitischem mischgefuege
JPS55128563A (en) * 1979-03-28 1980-10-04 Nissan Motor Co Ltd Cast iron excellent in wear and seizure resistance
JPS56127747A (en) * 1980-03-08 1981-10-06 Mazda Motor Corp Vibration isolating semispherical graphite cast iron
JPS56130453A (en) * 1980-03-14 1981-10-13 Riken Corp Tough spheroidal graphite cast iron and its heat treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GIESSEREI-PRAXIS, vol. 1, 15 Janvier 1982, BERLIN (DE) K. ROHRIG: "Niedriglegierte Gusseisenwerkstoffe", pages 1-16 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560559A (zh) * 2020-06-19 2020-08-21 安徽合力股份有限公司合肥铸锻厂 基于等温淬火球铁的避震器毛坯及其生产工艺

Also Published As

Publication number Publication date
RO87318A (fr) 1985-08-31
MY8700117A (en) 1987-12-31
SE8301060L (sv) 1983-09-02
FR2522291B1 (fr) 1984-11-16
ES520165A0 (es) 1984-08-16
IT8367229A0 (it) 1983-02-28
DE3361739D1 (en) 1986-02-20
BE896059A (fr) 1983-09-01
ES8406918A1 (es) 1984-08-16
FR2522291A1 (fr) 1983-09-02
JPS6343447B2 (fr) 1988-08-30
AU553544B2 (en) 1986-07-17
ATA62883A (de) 1988-07-15
IN157332B (fr) 1986-03-01
BR8300976A (pt) 1983-11-16
EP0087634A1 (fr) 1983-09-07
PL139257B1 (en) 1987-01-31
ATE17375T1 (de) 1986-01-15
YU47283A (en) 1986-04-30
GB2117000B (en) 1986-03-26
SE8301060D0 (sv) 1983-02-25
KR900001096B1 (ko) 1990-02-26
US4448610A (en) 1984-05-15
DD209124A5 (de) 1984-04-25
EG15781A (en) 1986-12-30
CS272203B2 (en) 1991-01-15
GB2117000A (en) 1983-10-05
YU43820B (en) 1989-12-31
IT1158814B (it) 1987-02-25
GB8304308D0 (en) 1983-03-23
KR840003445A (ko) 1984-09-08
CH651768A5 (fr) 1985-10-15
JPS58161748A (ja) 1983-09-26
MX161630A (es) 1990-11-26
AU1194083A (en) 1983-09-08
CS136983A2 (en) 1989-11-14
PL240787A1 (en) 1983-11-07
PL139262B1 (en) 1987-01-31

Similar Documents

Publication Publication Date Title
EP0087634B1 (fr) Tube centrifugé en fonte à graphite sphéroidal et son procédé de fabrication
CA1106134A (fr) Procede de coulee de metal
CA2030727C (fr) Four a arc rotatif pour le traitement des scories d'aluminium
EP3555335B1 (fr) Procédé de fabrication d'objet en fonte à graphite sphéroïdal
EP0092477B1 (fr) Procédé et dispositif de fabrication d'un lingot d'acier creux
FR2575683A1 (fr) Procede et installation pour la fabrication continue de tuyaux en fonte a graphite spheroidal a structure controlee
WO1997042355A1 (fr) Procede et installation de metallisation de tuyaux en fonte
FR2546783A1 (fr) Procede et dispositif de traitement d'un metal liquide moule sous basse pression, notamment pour l'inoculation de la fonte
CA2142420A1 (fr) Procede et dispositif de coulee continue de fils metalliques de tres faible diametre directement a partir de metal liquide
FR2556996A1 (fr) Procede d'alimentation de moules de fonderie en alliages metalliques sous pression differentielle controlee
FR2547597A1 (fr) Procede et appareil pour le traitement continu de metal en fusion
LU82874A1 (fr) Procede et installation pour la fabrication continue d'ebauches creuses en metal
EP0342082A1 (fr) Procédé de réfroidissement d'un produit métallique coulé en continu
EP0100272B1 (fr) Procédé de fabrication de pièces moulées, dispositif comportant application de ce procédé et pièces moulées ainsi obtenues
BE1000221A6 (fr) Dispositif pour la coulee d'un metal en phase pateuse.
EP1732718A2 (fr) Moule pour la coulee d'un metal liquide et procede correspondant
BE411966A (fr)
BE532569A (fr)
FR2525131A1 (fr) Procede et dispositif de fabrication d'un lingot d'acier creux
EP0240482B1 (fr) Dispositif pour la coulée de l'acier
FR2462221A1 (fr) Procede de fabrication de pieces revetues et composites, notamment bimetalliques
BE436097A (fr)
EP0290423A2 (fr) Dispositif de fabrication en continu d'une bande métallique mince
LU88253A1 (fr) Trou de coulée pour un four à cuve, notamment un haut fourneau
LU83399A1 (fr) Perfectionnements aux procedes de recharge des refractaires des recipients metallurgiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE GB IT LI NL SE

17P Request for examination filed

Effective date: 19830927

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE IT LI NL SE

AK Designated contracting states

Designated state(s): AT BE CH DE IT LI NL SE

REF Corresponds to:

Ref document number: 17375

Country of ref document: AT

Date of ref document: 19860115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3361739

Country of ref document: DE

Date of ref document: 19860220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920114

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920120

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920229

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930211

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19930228

BERE Be: lapsed

Owner name: S.A. PONT-A-MOUSSON

Effective date: 19930228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
EUG Se: european patent has lapsed

Ref document number: 83101259.6

Effective date: 19930912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970122

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970225

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010209

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020903