EP0086399B1 - Mehrreflektorantenne - Google Patents

Mehrreflektorantenne Download PDF

Info

Publication number
EP0086399B1
EP0086399B1 EP83100957A EP83100957A EP0086399B1 EP 0086399 B1 EP0086399 B1 EP 0086399B1 EP 83100957 A EP83100957 A EP 83100957A EP 83100957 A EP83100957 A EP 83100957A EP 0086399 B1 EP0086399 B1 EP 0086399B1
Authority
EP
European Patent Office
Prior art keywords
radiators
reflector
individual
group
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83100957A
Other languages
English (en)
French (fr)
Other versions
EP0086399A1 (de
Inventor
Eberhard Dipl.-Phys. Dr. Frisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Messerschmitt Bolkow Blohm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messerschmitt Bolkow Blohm AG filed Critical Messerschmitt Bolkow Blohm AG
Publication of EP0086399A1 publication Critical patent/EP0086399A1/de
Application granted granted Critical
Publication of EP0086399B1 publication Critical patent/EP0086399B1/de
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface

Definitions

  • the invention relates to a multi-reflector antenna for a geostationary satellite, with a parabolic main reflector, at least one auxiliary reflector and a number of individual emitters which emit on the main reflector in the direction of different target areas on earth, the entirety of the individual emitters being formed into a plurality of adjacent individual emitters Spotlight groups is divided.
  • Multi-reflector antennas which are carried by geostationary communication satellites, are intended to illuminate a coverage area below them on the earth's surface, subject to certain conditions. This is done by a number of radiation lobes. the neighboring target areas are assigned. Each lobe is generated by a single radiator, the radiation of which is directed from the main reflector to the corresponding target area. Each lobe illuminates the generally circular target area assigned to it on the surface of the earth in such a way that the incident radiation intensity falls radially outwards from the center of this target area. Adjacent radiation lobes overlap in their outer areas and are closer to each other the less the drop in intensity at the edges of a target area should be.
  • a multi-reflector antenna in which an intermediate reflector is switched between the individual radiators and the parabolic main reflector, which deflects the radiation of the individual radiators towards the main reflector. Both the main and the intermediate reflector are offset with respect to the parabolic axis, so that shadowing of the radiation emanating from the main reflector is avoided by the intermediate reflector.
  • a central single radiator is directed so that its radiation is centered on the centers of the intermediate and the main reflector and leaves the latter parallel to the parabolic axis assigned to the main reflector.
  • the individual emitters adjacent to this central single emitter are directed such that their radiation after reflection by the intermediate reflector is also centered on the center of the main reflector, but is reflected by the latter in different spatial directions that are not parallel to the parabolic axis.
  • a single antenna for such two-reflector antennas which are assigned to the Cassegrain or Gregory type, are usually used horn antenna.
  • the dimensions of these, in particular with regard to their aperture, depend on the frequency and the reflector diameters. For this reason, the individual radiators cannot be moved as close together as desired. However, this proves to be very cumbersome if the requirement is to be met that the radiation drop at the edges of the adjacent target areas on the earth's surface should not exceed a certain predetermined value.
  • the stricter the requirements in this regard the closer the lobes, the width of which is approximately fixed at a given frequency and diameter of the main reflector, must be close together.
  • the radiation intensity in the target area should not drop by more than 3 dB, for example, this is the case with the arrangement described above far no longer realizable.
  • a multi-reflector antenna of the type mentioned is known.
  • This is also a two-reflector antenna, in which the entirety of the individual radiators directed at the auxiliary reflector is, however, broken down into radiator groups of adjacent individual radiators.
  • the individual emitters of a radiation group are also assigned adjacent radiation lobes or target areas. Since the individual emitters have certain minimum dimensions purely geometrically, the radiation lobes cannot move as close together as desired and thus only overlap to a limited extent. It follows from this that in the target area, with increasing distance from the center of the radiation lobe, the intensity of the received radiation power decreases more and more until the intensity in the area of the neighboring radiation lobe rises again. On the other hand, there is a requirement that the intensity drops in the area of a radiation lobe should be as small as possible.
  • the invention has for its object to provide a multi-reflector antenna of the type mentioned, with which it is possible to illuminate a larger target area on the earth with the help of overlapping radiation lobes so that the occurring drops in intensity can be kept as low as possible.
  • each radiator group is assigned its own auxiliary reflector, which is irradiated by the individual radiators of the group and reflects the radiation towards the main reflector, and the individual radiators are directed to each radiator group in such a way that neighboring target areas are supplied by individual radiators from different radiator groups .
  • auxiliary reflectors are now used, each of which is assigned a radiator group consisting of individual radiators that are adjacent to one another.
  • the individual emitters in a group of emitters no longer need to be aimed at directly adjacent, for example circular, target areas on the earth's surface.
  • the gaps between the radiation lobes of one radiator group that arise with regard to the permissible intensity fluctuations can be supplied by appropriately aligned radiation lobes of other radiator groups. Immediately adjacent circular target areas are therefore served by individual emitters from different emitter groups.
  • auxiliary reflectors When using three auxiliary reflectors, for example, there is a grid of circular, overlapping target areas on the surface of the earth, of which any one is supplied by a single radiator of the first radiator group and is surrounded in a symmetrical manner by six target areas, which alternate between the two other radiator groups are operated, with a total of three individual radiators from the second and the third radiator group being involved.
  • This grid can also be traced back to a regular basic structure, which consists of three mutually displaced networks based on equilateral triangles, the centers of the radiation lobes assigned to the individual emitters each lying in the corner points.
  • the grid from the target areas assigned to the individual radiators can be designed to be as complicated as desired.
  • the spatial directions assigned to the individual radiators of a radiator group can be further apart in terms of angle, the more individual radiators are distributed over the more radiator groups or auxiliary reflectors.
  • the auxiliary reflectors In the further configuration of the multi-reflector antenna according to the invention, it proves to be expedient to equip the auxiliary reflectors with curved reflector surfaces each having two focal points. It is important to ensure that one focal point coincides with the focal point of the parabolic main reflector and that the radiator group assigned to the auxiliary reflector is arranged at its other focal point.
  • the radiator groups are all mapped onto the focal area of the parabolic main reflector.
  • the reflector surfaces of the auxiliary reflectors can, according to the Cassegrain type, be excerpts from rotational hyperboloids or, according to the Gregory type, excerpts from rotational ellipsoids.
  • optical multi-mirror systems instead of auxiliary reflectors, each of which must have two focal points.
  • the invention is preferably applicable to multi-reflector antennas in an offset arrangement.
  • the use of axisymmetric arrangements is also within the scope of the invention, although shadowing by the auxiliary reflectors must be accepted.
  • the focal point axes given by the focal points of the auxiliary reflectors are inclined relative to the axis of the parabolic main reflector.
  • a simple way of orienting several auxiliary reflectors is to arrange their other focal points on a tiny circular line of this type.
  • completely identical reflector surfaces are used, which are only pivoted around different angles of rotation with respect to the axis of the parabolic main reflector.
  • the inclination of the assigned focal axis with respect to the named axis is the same for all auxiliary reflectors.
  • the focal point distances on the focal point axes assigned to the individual auxiliary reflectors can be at least partially different.
  • the reflector surfaces of the individual auxiliary reflectors can therefore be based on differently curved rotational hyperboloids, the auxiliary reflectors can thus be arranged at different distances from the focal point of the parabolic main reflector.
  • the inclinations of the focal axes can be different from the axis of the main reflector.
  • auxiliary reflectors partially overlap each other. Then only care must be taken to ensure that these neighboring auxiliary reflectors are selective for orthogonal polarization directions or different frequency ranges.
  • grid-like structures consisting of rigid or tensioned parallel metal strips can be used. If about three auxiliary reflectors are provided, of which the middle one at its two opposite edges is overlapped by one of the two outer edges, the latter can be designed, for example, for horizontal, the former for vertical polarization.
  • auxiliary reflectors In a similar manner, frequency-selective reflectors known per se can be used as auxiliary reflectors which partially overlap one another.
  • the invention also includes the case that one of the radiator groups resulting from the subdivision of the totality of the individual radiators is not assigned an auxiliary reflector, rather this radiator group is arranged at the focal point of the parabolic main reflector and illuminates it directly.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

  • Die Erfindung betrifft eine Mehrreflektorantenne für einen geostationären Satelliten, mit einem parabolischen Hauptreflektor, mindestens einem Hilfsreflektor und einer Anzahl von Einzelstrahlern, die über den Hauptreflektor in Richtung jeweils unterschiedlicher Zielgebiete auf der Erde abstrahlen, wobei die Gesamtheit der Einzelstrahler in mehrere von jeweils benachbarten Einzelstrahlern gebildete Strahlergruppen unterteilt ist.
  • Mehrreflektorantennen, welche von geostationären Nachrichtensatelliten mitgeführt werden, sollen ein unter ihnen auf der Erdoberfläche gelegenes Versorgungsgebiet unter Einhaltung bestimmter Bedingungen ausleuchten. Dies geschieht durch eine Anzahl von Strahlungskeulen. die benachbarten Zielgebieten zugeordnet sind. Jede Strahlungskeule wird von einem Einzelstrahler erzeugt, dessen Strahlung vom Hauptreflektor auf das entsprechende Zielgebiet gelenkt wird. Jede Strahlungskeule leuchtet das ihr zugeordnete, im allgemeinen kreisförmige Zielgebiet auf der Erdoberfläche aus, und zwar derart, dass die einfallende Strahlungsintensität von der Mitte dieses Zielgebietes radial nach aussen hin abfällt. Benachbarte Strahlungskeulen überlappen sich in ihren Aussenbereichen und liegen um so enger beieinander, je geringer der Intensitätsabfall an den Rändern eines Zielgebietes sein soll.
  • Aus der DE-OS-2 503 594 ist eine Mehrreflektorantenne bekannt, bei der zwischen den Einzelstrahlern und dem parabolischen Hauptreflektor ein Zwischenreflektor eingeschaltet ist, der die Strahlung der Einzelstrahler zum Hauptreflektor hin umlenkt. Sowohl der Haupt- als auch der Zwischenreflektor sind gegenüber der Parabolachse versetzt angeordnet, so dass eine Abschattung der vom Hauptreflektor ausgehenden Strahlung durch den Zwischenreflektor vermieden wird. Ein zentraler Einzelstrahler ist so gerichtet, dass seine Strahlung auf die Mitten des Zwischen- und des Hauptreflektors zentriert ist und letzteren parallel zu der dem Hauptreflektor zugeordneten Parabolachse verlässt. Die diesem zentralen Einzelstrahler benachbarten Einzelstrahler sind so gerichtet, dass ihre Strahlung nach Reflektion durch den Zwischenreflektor ebenfalls auf die Mitte des Hauptreflektors zentriert ist, von diesem aber in unterschiedliche Raumrichtungen reflektiert wird, die zur Parabolachse nicht parallel sind.
  • Ein Einzelstrahler für derartige Zweireflektorantennen, die dem Cassegrain- oder Gregory-Typ zuzuordnen sind, werden gewöhnlich Hornstrahler eingesetzt. Diese richten sich in ihren Abmessungen, insbesondere bezüglich ihrer Apertur, nach der Frequenz sowie den Reflektordurchmessern. Deswegen können die Einzelstrahler nicht beliebig dicht aneinandergerückt werden. Dies erweist sich aber als sehr hinderlich, wenn die Forderung zu erfüllen ist, dass der Strahlungsabfall an den Rändern der einander benachbarten Zielgebiete auf der Erdoberfläche einen bestimmten vorgegebenen Wert nicht überschreiten solle. Je strenger die Anforderungen in dieser Hinsicht sind, desto enger müssen die Strahlungskeulen, deren Breite bei vorgegebener Frequenz und Durchmesser des Hauptreflektors in etwa festliegt, beieinanderliegen. Soll bei einer Frequenz von 20 GHz und einem Durchmesser des Hauptreflektors von 4,2 m, woraus eine Halbwertbreite der Strahlungskeulen von 0,255° folgt, die Strahlungsintensität im Zielgebiet beispielsweise nirgends um mehr als 3 dB absinken, so ist dies mit der oben beschriebenen Anordnung bei weitem nicht mehr realisierbar.
  • Aus der US-A-4 236 161 ist eine Mehrreflektorantenne der eingangs genannten Art bekannt. Auch hier handelt es sich um eine Zweireflektorantenne, bei der die auf den Hilfsreflektor gerichtete Gesamtheit der Einzelstrahler jedoch in Strahlergruppen einander benachbarter Einzelstrahler aufgegliedert ist. Den Einzelstrahlern einer.Strahiergruppe sind auch einander benachbarte Strahlungskeulen bzw. Zielgebiete zugeordnet. Da die Einzelstrahler rein geometrisch gewisse Mindestabmessungen besitzen, können die Strahlungskeulen nicht beliebig dicht aneinander rücken und sich somit nur in begrenztem Ausmass überlappen. Daraus folgt, dass im Zielgebiet mit zunehmender Entfernung vom Zentrum der Strahlungskeule immer stärkere Intensitätsabfälle der empfangenen Strahlungsleistung zu verzeichnen sind, bis die Intensität im Gebiet der benachbarten Strahlungskeule wieder ansteigt. Demgegenüber besteht aber die Forderung, dass die Intensitätsabfälle im Gebiet einer Strahlungskeule möglichst gering sein sollen.
  • Aus der EP-A-0 028 018 (Fig. 7) ist eine Anordnung bekannt, die aus mehreren, direkt aneinandergerückten Zweireflektorantennen besteht. Diese weisen jeweils einen Haupt- und einen Hilfsreflektor auf, welcher wiederum jeweils von einem eigenen Einzelstrahler angestrahlt wird. Hierbei handelt es sich also lediglich um eine Anzahl von Zweireflektorantennen mit jeweils einem Einzelstrahler. Die Einzelstrahler sind relativ weit auseinandergerückt, da zu jedem Hauptreflektor jeweils nur ein Einzelstrahler gehört. Diese Anordnung ermöglicht nicht die Abstrahlung mehrerer Strahlungskeulen über einen einzigen Hauptreflektor und ist insofern wegen ihres verhältnismässig grossen Raumbedarfs kaum für die Anwendung bei Nachrichtensatelliten geeignet.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Mehrreflektorantenne der eingangs genannten Art bereitzustellen, mit der es möglich ist, ein grösseres Zielgebiet auf der Erde mit Hilfe einander überlappender Strahlungskeulen so auszuleuchten, dass die auftretenden Intensitätsabfälle möglichst gering gehalten werden können.
  • Diese Aufgabe ist gemäss der Erfindung dadurch gelöst, dass jeder Strahlergruppe ein eigener, von den Einzelstrahlern der Gruppe angestrahlter und die Strahlung zum Hauptreflektor hin reflektierender Hilfsreflektor zugeordnet ist und die Einzelstrahler einer jeden Strahlergruppe so gerichtet sind, dass benachbarte Zielgebiete von Einzelstrahlern unterschiedlicher Strahlergruppen versorgt werden.
  • Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen und dem einzigen nebengeordneten Anspruch zu entnehmen.
  • Anstelle eines einzigen Zwischenreflektors sind nunmehr mehrere Hilfsreflektoren verwendet, denen jeweils eine Strahlergruppe zugeordnet ist, die aus einander benachbarten Einzelstrahlern besteht. Die Einzelstrahler einer Strahlergruppe brauchen nun nicht mehr auf direkt benachbarte, beispielsweise etwa kreisförmige Zielgebiete auf der Erdoberfläche gerichtet zu sein. Die hinsichtlich der zulässigen Intensitätsschwankungen entstehenden Lücken zwischen den Strahlungskeulen einer Strahlergruppe können durch entsprechend ausgerichtete Strahlungskeulen anderer Strahlergruppen versorgtwerden. Unmittelbar benachbarte kreisförmige Zielgebiete werden also von Einzelstrahlern unterschiedlicher Strahlergruppen bedient. Bei der Verwendung von drei Hilfsreflektoren ergibt sich auf der Erdoberfläche beispielsweise ein Raster von kreisförmigen, sich am Rande überlappenden Zielgebieten, von denen ein beliebiges von einem Einzelstrahler der ersten Strahlergruppe versorgt wird und in symmetrischer Weise von sechs Zielgebieten umgeben ist, die abwechselnd von den beiden anderen Strahlergruppen bedient werden, wobei insgesamtjeweils drei Einzelstrahler der zweiten sowie der dritten Strahlergruppe beteiligt sind. Dieses Raster lässt sich auch auf eine regelmässige Grundstruktur zurückführen, die aus drei gegeneinander verschobenen Netzen auf der Basis gleichseitiger Dreiecke besteht, wobei in den Eckpunkten jeweils die Zentren der den Einzelstrahlern zugeordneten Strahlungskeulen liegen. Durch Vermehrung der Hilfsreflektoren lässt sich das Raster aus den den Einzelstrahlern zugeordneten Zielgebieten beliebig kompliziert gestalten.
  • Die den Einzelstrahlern einer Strahlergruppe zugeordneten Raumrichtungen können winkelmässig umso weiter auseinanderliegen, auf je mehr Strahlergruppen bzw. Hilfsreflektoren die Gesamtheit der Einzelstrahler verteilt wird.
  • Bei der weiteren Ausgestaltung der Mehrreflektorantenne gemäss der Erfindung erweist es sich als zweckmässig, die Hilfsreflektoren mit gewölbten, je zwei Brennpunkte aufweisenden Reflektorflächen auszustatten. Dabei ist darauf zu achten, dass der eine Brennpunkt jeweils mit dem Brennpunkt des parabolischen Hauptreflektors zusammenfällt und die dem Hilfsreflektor jeweils zugeordnete Strahlergruppe an dessen anderem Brennpunkt angeordnet ist. Die Strahlergruppen werden damit sämtlich auf den Brennpunktsbereich des parabolischen Hauptreflektors abgebildet. Die Reflektorflächen der Hilfsreflektoren können, dem Cassegrain-Typ entsprechend, Ausschnitte aus Rotationshyperboloiden oder, dem Gregory-Typ entsprechend, Ausschnitte aus Rotationsellipsoiden sein. Es ist jedoch denkbar, anstelle von Hilfsreflektoren optische Mehrspiegelsysteme zu verwenden, die jeweils zwei Brennpunkte aufweisen müssen.
  • Die Erfindung ist bevorzugt auf Mehrreflektorantennen in Offset-Anordnung anwendbar. Allerdings liegt auch die Verwendung achsensymmetrischer Anordnungen im Bereich der Erfindung, wobei allerdings Abschattungen durch die Hilfsreflektoren in Kauf genommen werden müssen. Es ist vorteilhaft, wenn die durch die Brennpunkte der Hilfsreflektoren jeweils gegebenen Brennpunktachsen gegenüber der Achse des parabolischen Hauptreflektors geneigt sind. Durch Rotation einer derartigen Brennpunktachse um die Achse des parabolischen Hauptreflektors entsteht eine Kegelmantelfläche, deren Spitze vom Brennpunkt des parabolischen Hauptreflektors gebildet wird, der mit dem einen Brennpunkt der Reflektorfläche des Hilfsreflektors zusammenfällt, während der andere Brennpunkt eine koaxial zur Achse des parabolischen Hauptreflektors orientierte Kreislinie durchläuft. Eine einfache Möglichkeit der Orientierung mehrerer Hilfsreflektoren besteht nun darin, deren andere Brennpunkte sämtlich auf einer winzigen derartigen Kreislinie anzuordnen. Es werden in diesem Falle also völlig gleichartige Reflektorflächen verwendet, die lediglich um unterschiedliche Drehwinkel bezüglich der Achse des parabolischen Hauptreflektors herumgeschwenkt sind. Die Neigung der zugeordneten Brennpunktachsen gegenüber der genanten Achse ist jedoch bei allen Hilfsreflektoren dieselbe.
  • Es sind jedoch auch andere, kompliziertere Ausführungsformen denkbar. So ist es möglich, dass die Brennpunktabstände auf den, den einzelnen Hilfsreflektoren zugeordneten Brennpunktachsen zumindest teilweise verschieden sind. Den Reflektorflächen der einzelnen Hilfsreflektoren können also unterschiedlich gekrümmte Rotationshyperboloide zugrundeliegen, die Hilfsreflektoren somit in unterschiedlichen Abständen vom Brennpunkt des parabolischen Hauptreflektors angeordnet sein. Weiterhin können die Neigungen der Brennpunktachsen gegenüber der Achse des Hauptreflektors verschieden sein. Insgesamt ergeben sich somit mannigfache Variationsmöglichkeiten bezüglich der Anordnung der Hilfreflektoren, so dass eine optimale Abstimmung auf den konkreten Anwendungsfall möglich wird. Insbesondere kann durch geschickte Anordnung vermieden werden, dass die Hilfsreflektoren sich gegenseitig stören oder den Strahlungsbereich des Hauptreflektors abschatten.
  • Andererseits kann auch zugelassen werden, dass benachbarte Hilfreflektoren sich gegenseitig teilweise überlappen. Dann muss nur dafür Sorge getragen werden, dass diese benachbarten Hilfsreflektoren für jeweils orthogonale Polarisationsrichtungen oder unterschiedliche Frequenzbereiche selektiv sind. Im ersteren Fall können gitterartige, aus steifen oder gespannten parallelen Metallbändern bestehende Strukturen verwendet werden. Sind etwa drei Hilfsreflektoren vorgesehen, von denen der mittlere an seinen beiden gegenüberliegenden Rändern jeweils von einem der beiden äusseren überlappt wird, so können letztere beispielsweise für horizontale, ersterer für vertikale Polarisation ausgelegt sein.
  • Die einander überlappenden Randbereiche der Hilfsreflektoren wirken dann nicht störend auf die gewünschte Strahlungsreflektion. In ähnlicher Weise können an sich bekannte frequenzselektive Reflektoren als sich gegenseitig teilweise überlappende Hilfsreflektoren eingesetzt werden.
  • Die Erfindung schliesst noch den Fall ein, dass einer der aus der Unterteilung der Gesamtheit der Einzelstrahler hervorgehenden Strahlergruppen kein Hilfsreflektor zugeordnet, diese Strahlergruppe vielmehr am Brennpunkt des parabolischen Hauptreflektors angeordnet ist und diesen direkt anstrahlt.

Claims (8)

1. Mehrreflektorantenne für einen geostationären Satelliten mit einem parabolischen Hauptreflektor, mindestens einem Hilfsreflektor und einer Anzahl von Einzelstrahlern, die über den Hauptreflektor in Richtung jeweils unterschiedlicher Zielgebiete auf der Erde abstrahlen, wobei die Gesamtheit der Einzelstrahler in mehrere, von jeweils einander benachbarten Einzelstrahlern gebildete Strahlergruppen unterteilt ist, dadurch gekennzeichnet, dass jeder Strahlergruppe ein eigener, von den Einzelstrahlern der Gruppe angestrahlter und die Strahlung zum Hauptreflektor hin reflektierender Hilfsreflektor zugeordnet ist und die Einzelstrahler einer jeden Strahlergruppe so gerichtet sind, dass benachbarte Zielgebiete von Einzelstrahlern unterschiedlicher Strahlergruppen versorgt werden.
2. Mehrreflektorantenne nach Anspruch 1, dadurch gekennzeichnet, dass bei Verwendung von drei Hilfsreflektoren die Einzelstrahler so ausgerichtet sind, dass ein beliebiges Zielgebiet auf der Erdoberfläche von einem Einzelstrahler einer ersten Strahlergruppe versorgt wird und in symmetrischer Weise von sechs abwechselnd von den beiden anderen Strahlergruppen bedienten Zielgebieten umgeben ist, wobei insgesamt jeweils drei Einzelstrahler der zweiten sowie der dritten Strahlergruppe beteiligt sind.
3. Mehrreflektorantenne nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Hilfsreflektoren gewölbte Reflektorflächen mit zwei Brennpunkten aufweisen, wobei der eine Brennpunkt jeweils mit dem Brennpunkt des Hauptreflektors zusammenfällt und am anderen Brennpunkt die jeweils zugeordnete Strahlergruppe angeordnet ist.
4. Mehrreflektorantenne nach Anspruch 3, dadurch gekennzeichnet, dass die Reflektorflächen der Hilfsreflektoren Ausschnitte aus Rotationshyperboloiden und/oder -ellipsoiden sind.
5. Mehrreflektorantenne nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die durch die Brennpunkte der Hilfsreflektoren jeweils gegebenen Brennpunktachsen gegenüber der Achse des parabolischen Hauptreflektors geneigt sind.
6. Mehrreflektorantenne nach Anspruch 5, dadurch gekennzeichnet, dass die Brennpunktachsen aller Hilfsreflektoren auf einer Kegelmantelfläche liegen, die durch Rotation der Brennpunktachsen um die Achse des parabolischen Hauptreflektors entsteht.
7. Mehrreflektorantenne nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass benachbarte Hilfsreflektoren sich gegenseitig teilweise überlappen und für jeweils unterschiedliche Polarisationsrichtungen oder Frequenzbereiche selektiv sind.
8. Mehrreflektorantenne für einen geostationären Satelliten mit einem parabolischen Hauptreflektor, mindestens einem Hilfsreflektor und einer Anzahl von Einzelstrahlern, die über den Hauptreflektor in Richtung jeweils unterschiedlicher Zielgebiete auf der Erde abstrahlen, wobei die Gesamtheit der Einzelstrahler in mehrere, von jeweils einander benachbarten Einzelstrahlern gebildete Strahlergruppen unterteilt ist, dadurch gekennzeichnet, dass eine erste Strahlergruppe am Brennpunkt des parabolischen Hauptreflektors, diesen direkt anstrahlend, angeordnet, jeder weiteren Strahlergruppe ein eigener, von den Einzelstrahlern der Gruppe angestrahlter und die Strahlung zum Hauptreflektor hin reflektierender Hilfsreflektor zugeordnet ist und die Einzelstrahler einer jeden Strahlergruppe so gerichtet sind, dass benachbarte Zielgebiete Einzelstrahlern unterschiedlicher Strahlergruppen versorgt werden.
EP83100957A 1982-02-05 1983-02-02 Mehrreflektorantenne Expired EP0086399B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19823204029 DE3204029A1 (de) 1982-02-05 1982-02-05 Mehrreflektorantenne
DE3204029 1982-02-05

Publications (2)

Publication Number Publication Date
EP0086399A1 EP0086399A1 (de) 1983-08-24
EP0086399B1 true EP0086399B1 (de) 1988-06-22

Family

ID=6154924

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83100957A Expired EP0086399B1 (de) 1982-02-05 1983-02-02 Mehrreflektorantenne

Country Status (2)

Country Link
EP (1) EP0086399B1 (de)
DE (1) DE3204029A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631735A1 (de) * 1986-09-18 1988-04-07 Messerschmitt Boelkow Blohm Nachrichtenuebertragungseinrichtung fuer raumfahrzeuge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0028018A1 (de) * 1979-10-24 1981-05-06 Western Electric Company, Incorporated Antennensystem mit phasengesteuerter Strahlergruppe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3414904A (en) * 1966-05-16 1968-12-03 Hughes Aircraft Co Multiple reflector antenna
US3914768A (en) * 1974-01-31 1975-10-21 Bell Telephone Labor Inc Multiple-beam Cassegrainian antenna
US3953858A (en) * 1975-05-30 1976-04-27 Bell Telephone Laboratories, Incorporated Multiple beam microwave apparatus
US4090203A (en) * 1975-09-29 1978-05-16 Trw Inc. Low sidelobe antenna system employing plural spaced feeds with amplitude control
US4236161A (en) * 1978-09-18 1980-11-25 Bell Telephone Laboratories, Incorporated Array feed for offset satellite antenna
US4298877A (en) * 1979-01-26 1981-11-03 Solar Energy Technology, Inc. Offset-fed multi-beam tracking antenna system utilizing especially shaped reflector surfaces

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0028018A1 (de) * 1979-10-24 1981-05-06 Western Electric Company, Incorporated Antennensystem mit phasengesteuerter Strahlergruppe

Also Published As

Publication number Publication date
EP0086399A1 (de) 1983-08-24
DE3204029A1 (de) 1983-08-11

Similar Documents

Publication Publication Date Title
DE2503594C2 (de)
EP2735055B1 (de) Reflektorantenne für ein radar mit synthetischer apertur
DE3536581C2 (de)
DE2505375A1 (de) Antennensystem bestehend aus einem parabolspiegel und einem erreger
DE4026432A1 (de) Planarantenne
DE60107939T2 (de) Reflektorantenne mit gemeinsamer apertur und verbessertem zuführungsentwurf
DE2239228C3 (de) Antenne mit einem torischen Hauptreflektor
EP0028836B1 (de) Antennenanordnung für ein Radarrundsuchverfahren zur Zielortung mit Höhenerfassung
DE1257227B (de) Cassegrain-Antenne
DE2246650A1 (de) Aplanatische hoechstfrequenzantenne
DE10339675A1 (de) Multiband-Ringfokus-Doppelreflektorantennensystem
DE2058550C3 (de) Antenne mit einem sphärischen Hauptreflektor
DE2610506A1 (de) Antenne
DE2162068A1 (de) Zylinderantenne
DE3214949C2 (de)
EP0086399B1 (de) Mehrreflektorantenne
DE2319731A1 (de) Exzentrische cassegrain-antenne
DE60013792T2 (de) Antenne mit begrenztem Blickfeld für Weltraumanwendungen
DE3820920C2 (de)
DE2540763A1 (de) Strahleranordnung fuer die gemeinsame antenne eines primaer/sekundaer- radars mit einem kontrollkanal
DE60120909T2 (de) Doppeltreflektor-Antenne mit Ablenker
EP0021193A1 (de) Integriertes Antennensystem
DE2716819A1 (de) Stoerstrahlungsgeschuetzte periskopanordnung
DE1766019A1 (de) Hochfrequenz-Mehrstrahlantenne fuer die Peilung eines mehrere Oktaven umspannenden Bereiches
EP0022991B1 (de) Antennenanordnung zur strahlungspegelmässigen Überdeckung aller Nebenzipfel einer scharf bündelnden Hauptantenne und Anwendung bei einer Radarrundsuchantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): FR GB IT SE

17P Request for examination filed

Effective date: 19840221

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880630

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900131

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900209

Year of fee payment: 8

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910202

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST