EP0080606B1 - Deckenluftauslass - Google Patents

Deckenluftauslass Download PDF

Info

Publication number
EP0080606B1
EP0080606B1 EP82110186A EP82110186A EP0080606B1 EP 0080606 B1 EP0080606 B1 EP 0080606B1 EP 82110186 A EP82110186 A EP 82110186A EP 82110186 A EP82110186 A EP 82110186A EP 0080606 B1 EP0080606 B1 EP 0080606B1
Authority
EP
European Patent Office
Prior art keywords
air outlet
ceiling air
adjusting
outlet according
ceiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82110186A
Other languages
English (en)
French (fr)
Other versions
EP0080606A1 (de
Inventor
Wolfgang Finkelstein
Hans Riegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gebrueder Trox GmbH
Original Assignee
Gebrueder Trox GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Trox GmbH filed Critical Gebrueder Trox GmbH
Priority to AT82110186T priority Critical patent/ATE11337T1/de
Publication of EP0080606A1 publication Critical patent/EP0080606A1/de
Application granted granted Critical
Publication of EP0080606B1 publication Critical patent/EP0080606B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/01Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station in which secondary air is induced by injector action of the primary air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/14Details or features not otherwise provided for mounted on the ceiling

Definitions

  • the invention relates to a ceiling air outlet, in particular for air-conditioned rooms, with a housing which can be connected to a supply air line and which has a partition, two flow paths and an outlet grille, a control flap being arranged in at least one of the flow paths.
  • Ceiling air outlets are known in various embodiments. They should distribute the air supplied by an air conditioning system as evenly as possible in the room to be air conditioned.
  • the volume flow can normally only be reduced to approx. 50% when it is blown into the room through outlets with constant discharge cross-sections. If the volume flow is reduced to less than 50%, malfunctions can occur.
  • the total volume flow moved in the jet decreases proportionally with the injected volume flow, i.e. less indoor air is induced.
  • the associated reduction in the flow velocity in the residence zone then often leads to complaints about discomfort.
  • the jet direction also becomes unstable or the jet direction changes.
  • the influence of gravity of the cold air blown in is so great that the jet detaches itself prematurely from the ceiling and enters the occupied zone at a flow rate that is still too high and too low a temperature.
  • the desired ceiling jet cannot even form.
  • the object of the invention is therefore to improve a ceiling air outlet of the type described at the outset in such a way that the room air flow remains stable with variable supply air supplied by the air conditioning system.
  • the partition is arranged essentially parallel to the outlet grille, that the partition has at least one opening that can be closed with the control flap and that in the partition wall at least in the area of the free edge of the control flap a series of nozzle openings or directed towards the outlet grille Nozzle slots is arranged.
  • the ceiling air outlet according to the invention does not have separate flow channels, but only separate flow paths through the partition.
  • the supply air supplied by the air conditioning system constantly flows through the nozzle openings or nozzle slots arranged along the edge of the opening or the adjusting flap.
  • the control flap When the control flap is closed, the air jets emerging from the nozzle openings or nozzle slots create a negative pressure in the induction space between the partition and the outlet grille, so that ambient air is sucked into the induction space through the outlet grille.
  • This room air mixes with the supply air emerging from the nozzle openings or nozzle slots and is discharged back into the room with the jets.
  • the proportion of room air sucked into the induction room changes when the valve is opened.
  • the butterfly valve By suitably controlling the butterfly valve, it is possible to always set up the flow conditions so that the total amount of air exiting from the ceiling air outlet consisting of the supply air volume and the induced indoor air volume remains constant even with variable supply of supply air by the air conditioning system.
  • the housing When projected onto the outlet grille, the housing can have an essentially rectangular to square cross section. This will enable, as will be explained later, a clear design of the ceiling air outlet with regard to the control of a constant total quantity.
  • the partition wall can have two adjacent openings, each of which is assigned an adjusting flap.
  • the pivot axes of the two control flaps should preferably be arranged side by side and parallel to one another.
  • substantially uniform flow conditions can be achieved, in particular with a rectangular housing cross-section, if an air guide grille with fins arranged transversely to the pivot axis of the control flap is provided on the supply air side of each control flap. These fins deflect the supply air, which usually enters the side of the housing, in such a way that in each section of the housing, the supply air passing through the opening or openings with the jets emerging from the nozzle openings or nozzle slots without significant eddy formation, i.e. can combine without loss.
  • the nozzle openings or nozzle slots are expediently arranged in a ring-like manner around the opening or openings, so that a ring of jets is formed below the dividing wall and surrounds the induction space mentioned at the beginning.
  • the nozzle openings should be formed by tubular connecting pieces attached to the partition. These nozzles can taper conically in the direction of flow if a higher jet speed is desired in the induction chamber.
  • each valve is loaded with a counterweight, which brings the valve into the closed position with only a small supply of fresh air. As the supply of air increases, so does the pressure on the control flap, which opens more or less depending on the pressure conditions. In principle, it can also be achieved in this embodiment that the total quantity emitted from the ceiling air outlet and consisting of the supply air quantity and induced room air quantity remains constant.
  • an actuating drive with a servomotor can be assigned to each control flap.
  • the adjustment flap can then be adjusted according to different criteria.
  • the servomotor is part of a control circuit, the actual value transmitter of which is a pressure sensor arranged on the supply air side of the partition. Similar to the version with a counterweight, the control flap is then adjusted in accordance with the pressure on the supply air side of the partition. The pressure sensor measures the static pressure above the partition and the control loop is set so that this pressure remains constant.
  • the servomotor as part of a control circuit, the actual value transmitter of which is a temperature sensor arranged in the room to be air-conditioned.
  • This version can be used advantageously if a volume flow controller is connected upstream of the ceiling air outlet, because then the actuator of the flap can be connected in parallel with an actuator of the upstream volume flow controller and can be connected together with the latter in a control circuit that keeps the room temperature constant.
  • the ceiling air outlet shown in the drawing has a box-shaped housing 1 for connection to a supply air line 2.
  • the supply air line 2 opens into an upper housing space 3 which is delimited on its underside by a partition 4 which divides the housing 1 into the upper housing space 3 and a lower housing space, which is referred to below as induction space 5.
  • On the underside of the housing 1 there is an outlet grille 6 with fins 7 which deflect the air emerging from the induction space 5 to the side, so that when the ceiling air outlet is embedded in a ceiling, the emerging air flows under the ceiling.
  • the partition 4 is arranged parallel to the outlet grille 6.
  • the partition 4 In the middle part of the partition 4 there are two openings 8, 9 next to each other, each of which can be closed with an adjusting flap 10 or 11.
  • the flaps 10, 11 are pivotally mounted on pivot axes 12, 13 which extend parallel to one another between the two openings 8, 9 and which are coupled in opposite directions to one another at one end of the housing via a gear 14.
  • the openings 8, 9 are each covered with an air guide grille 15 and 16, respectively, acting as a rectifier, the lamellae 17 of which align the air flow passing through the openings 8, 9 from the upper housing space 3 substantially perpendicular to the plane of the partition 4.
  • nozzle openings 18 On the partition 4, a series of nozzle openings 18 is arranged, which extend in a ring around the openings 8, 9.
  • Each nozzle opening 18 consists of a tubular socket 19, the axis of which is directed perpendicular to the plane of the partition 4, each socket 19 being tapered in the direction of the outlet grille 6.
  • each control flap 10 or 11 carries a counterweight, under the action of which the respective steep flap 10 or 11 is brought into its rest position in the absence or with little air flow, in which case it has the assigned opening 8 or 9 closes.
  • a counterweight 20 is drawn for the valve 10. It goes without saying that the adjusting flap 11 also carries a corresponding counterweight.
  • control flaps 10 and 11 are connected to an actuator 22 via the gear 14 and an actuator 21.
  • the ceiling air outlet shown works as follows: If only relatively little air is supplied from the air conditioning system (not shown) via the supply air line 2, the control flaps 10, 11, as shown in FIG. 1 with solid lines, remain in their rest position, ie the openings 8, 9 are closed. The supply air can consequently only flow from the upper housing space into the induction space via the nozzle openings 18. Since the nozzle openings 18 are arranged around the openings 8, 9, the rays (arrows 23) emerging from these nozzle openings 18 limit the induction space 5 and generate a negative pressure therein. Correspondingly, room air (arrows 24) is supplied through the outlet grille 6 sucks, which mixes with the supply air jets emerging from the nozzle openings 18 and is discharged together with the supply air from the ceiling air outlet.
  • control flaps 10, 11 are opened more or less, as is shown in FIG. 1 with dashed lines. Then the supply air can flow not only through the nozzle openings 18 but also through the openings 8, 9 from the upper housing space 3 into the induction space 5. The pressure difference between the induction room 5 and the room to be ventilated is lower, so that less room air (arrows 24) enters the induction room 5.
  • control of the position of the control flaps 10, 11 is achieved in the embodiment according to FIG. 3 by the counterweight 20. 1, 4 and 5, the control flaps 10, 11 are adjusted with the aid of the servomotor 22.
  • the servomotor 22 is part of a control circuit, the actual value transmitter of which is a pressure sensor 25 arranged on the supply side of the partition 4.
  • This pressure sensor 25 measures the static pressure in the upper housing chamber 3 and reports this pressure to a pressure regulator 26, which in turn controls the servomotor 22.
  • the servomotor 22 is connected as an actuator in a control circuit, the actual value transmitter of which is a temperature sensor 27 arranged in the room to be air-conditioned.
  • This temperature sensor 27 reports the room temperature to a controller 28, which not only controls the servo motor 22 of the flaps 10, 11, but also a further servomotor 20, with which a flap 30 of a volume flow controller 31 arranged in the supply air line 2 in front of the ceiling air outlet is adjusted.
  • the two servomotors 22, 29 are connected in parallel. It goes without saying that the control characteristics of the controllers 26 or 28 or the counterweight 20 are designed such that the total amount of air emerging from the ceiling air outlet is always constant, regardless of the supply air supply in each case.

Description

  • Die Erfindung betrifft einen Deckenluftauslass, insbesondere für klimatisierte Räume, mit einem an eine Zuluftleitung anschliessbaren Gehäuse, das eine Trennwand, zwei Strömungswege und ein Auslassgitter aufweist, wobei in wenigstens einem der Strömungswege eine Stellklappe angeordnet ist.
  • Deckenluftauslässe sind in verschiedenen Ausführungsformen bekannt. Sie sollen die von einer Klimaanlage gelieferte Luft möglichst gleichmässig im zu klimatisierenden Raum verteilen.
  • Zur Aufrechterhaltung einer akzeptablen Raumluftströmung kann der Volumenstrom, wenn er durch Auslässe mit konstanten Ausblasquerschnitten in den Raum eingeblasen wird, normalerweise nur auf ca. 50% abgesenkt werden. Wird der Volumenstrom auf weniger als 50% reduziert, dann können Störungen auftreten.
  • Nach den Strahlgesetzen nimmt der im Strahl bewegte Gesamtvolumenstrom proportional mit dem eingeblasenen Volumenstrom ab, d.h. es wird weniger Raumluft induziert. Die damitverbundene Reduzierung der Strömungsgeschwindigkeit in der Aufenthaltszone führt dann häufig zu Klagen über Unbehaglichkeit.
  • Bei Unterschreiten einer kritischen Ausblasgeschwindigkeit wird aber auch die Strahlrichtung instabil bzw. die Strahlrichtung ändert sich. So wird beispielsweise bei einem Deckenstrahl der Schwerkrafteinfluss eingeblasener Kaltluft so gross, dass sich der Strahl vorzeitig von der Decke löst und mit noch zu hoher Strömungsgeschwindigkeit und zu grosser Untertemperatur in die Aufenthaltszone eintritt. Im Extremfall - bei sehr kleiner Ausblasgeschwindigkeit - kann sich der gewünschte Deckenstrahl gar nicht erst ausbilden.
  • Das alles gilt auch für einen bekannten Deckenluftauslass, bei dem mit Hilfe von Trennwänden zwei Strömungskanäle unterschiedlich grossen Querschnitts gebildet sind. Der Strömungskanal mit dem grösseren Querschnitt ist mit Hilfe einer Stellklappe mehr oder weniger verschliessbar. Die Stellklappe schliesst nach Massgabe des jeweiligen Strömungsdrucks mehr oder weniger, so dass durch den Strömungskanal mit dem grösseren Querschnitt nur dann grössere Luftmengen fliessen, wenn von der Klimaanlage entsprechende Luftmengen geliefert werden. Durch den Strömungskanal mit dem kleineren Querschnitt fliesst dagegen stets eine konstante Luftmenge. Gleichwohl treten dabei die oben erläuterten Störungen auf.
  • Aufgabe der Erfindung ist es deshalb, einen Deckenluftauslass der eingangs beschriebenen Gattung so zu verbessern, dass die Raumluftströmung bei variabler, von der Klimaalange gelieferten Zuluft stabil bleibt.
  • Diese Aufgabe wird dadurch gelöst, dass die Trennwand im wesentlichen parallel zum Auslassgitter angeordnet ist, dass die Trennwand wenigstens eine mit der Stellklappe verschliessbare Öffnung aufweist und das in der Trennwand wenigstens im Bereich des freien Randes der Stellklappe eine Reihe von auf das Auslassgitter gerichteten Düsenöffnungen oder Düsenschlitzen angeordnet ist.
  • Der erfindungsgemässe Deckenluftauslass besitzt keine getrennten Strömungskanäle, sondern lediglich gesonderte Strömungswege durch die Trennwand hindurch. Zwischen Trennwand und Auslassgitter ist ein Induktionsraum vorhanden, dessen Wirkung sich wie folgt beschreiben lässt. Durch die längs des Randes der Öffnung bzw. der Stellklappe angeordneten Düsenöffnungen oder Düsenschlitze strömt ständig die von der Klimaanlage gelieferte Zuluft. Wenn die Stellklappe geschlossen ist, erzeugen die aus den Düsenöffnungen bzw. Düsenschlitzen austretenden Luftstrahle einen Unterdruck im Induktionsraum zwischen Trennwand und Auslassgitter, so dass durch das Auslassgitter Raumluft in den Induktionsraum eingesaugt wird. Diese Raumluft vermischt sich mit der aus den Düsenöffnungen bzw. Düsenschlitzen austretenden Zuluft und wird mit den Strahlen wieder in den Raum ausgetragen. Der Anteil der in den Induktionsraum eingesaugten Raumluft verändert sich, wenn die Stellklappe geöffnet wird. Durch geeignete Steuerung der Stellklappe ist es möglich, die Strömungsverhältnisse stets so einzurichten, dass die aus Zuluftmenge und induzierter Raumluftmenge bestehende Gesamtmenge der aus dem Deckenluftauslass austretenden Luft auch bei variabler Lieferung von Zuluft durch die Klimaanlage konstant bleibt.
  • Das Gehäuse kann in einer Projektion auf das Auslassgitter einen im wesentlichen rechteckigen bis quadratischen Querschnitt aufweisen. Das ermöglicht, wie später noch ausgeführt werden wird, eine - und im Hinblick auf die Steuerung einer konstanten Gesamtmenge - übersichtliche Ausbildung des Deckenluftauslasses.
  • Insbesondere kann die Trennwand zwei benachbarte Öffnungen aufweisen, denen jeweils eine Stellklappe zugeordnet ist. Bei einer derartigen, symmetrischen Ausbildung sollten vorzugsweise die Schwenkachsen der beiden Stellklappen nebeneinander und parallel zueinander angeordnet sein.
  • In allen Gehäuseschnitten im wesentlichen gleichmässige Strömungsverhältnisse lassen sich insbesondere bei rechteckigem Gehäusequerschnitt dann erreichen, wenn auf der Zuluftseite jeder Stellklappe ein Luftleitgitter mit quer zur Schwenkachse der Stellklappe angeordneten Lamellen vorgesehen ist. Durch diese Lamellen wird die in der Regel seitlich in das Gehäuse eintretende Zuluft so umgelenkt, dass in jedem Gehäuseschnitt die durch die Öffnung bzw. die Öffnungen tretende Zuluft sich mit den aus den Düsenöffnungen oder Düsenschlitzen austretenden Strahlen ohne wesentliche Wirbelbildung, d.h. verlustfrei vereinigen kann.
  • Die Düsenöffnungen oder Düsenschlitze sind zweckmässig kranzartig um die Öffnung bzw. Öffnungen herum angeordnet, so dass unterhalb der Trennwand ein Kranz von Strahlen gebildet wird, der den eingangs erwähnten Induktionsraum umschliesst.
  • Damit die Strahlen hinreichende Stabilität besitzen, sollten die Düsenöffnungen von rohrförmigen, an die Trennwand angesetzten Stutzen gebildetsein. Diese Stutzen können sich in Strömungsrichtung konisch verjüngen, wenn eine höhere Strahlgeschwindigkeit im Induktionsraum gewünscht wird.
  • Für die Steuerung der Stellklappen bestehen verschiedene Möglichkeiten. Am einfachsten ist es, wenn jede Stellklappe mit einem Gegengewicht belastet ist, welches die Stellklappe bei nur geringem Zuluftangebot in Schliessstellung bringt. Mit zunehmendem Zuluftangebot steigt dann auch der Druck auf die Stellklappe, die sich nach Massgabe der sich einstellenden Druckverhältnisse mehr oder weniger öffnet. Grundsätzlich lässt sich auch bei dieser Ausführungsform erreichen, dass die vom Deckenluftauslass abgegebene, aus Zuluftmenge und induzierter Raumluftmenge bestehende Gesamtmenge konstant bleibt.
  • Bei anderen Ausführungsformen kann jeder Stellklappe ein Stelltrieb mit Stellmotor zugeordnet sein. Die Einstellung der Stellklappe kann dann nach unterschiedlichen Gesichtspunkten erfolgen.
  • Bei einer Ausführungsform ist der Stellmotor Teil eines Regelkreises, dessen Ist-Wertgeber ein auf der Zuluftseite der Trennwand angeordneter Druckfühler ist. Ähnlich wie bei der Ausführung mit Gegengewicht wird dann die Stellklappe nach Massgabe des sich auf der Zuluftseite der Trennwand einstellenden Drucks gesteuert verstellt. Der Druckfühler misst den statischen Druck oberhalb der Trennwand und der Regelkreis wird so eingestellt, dass dieser Druck konstant bleibt.
  • Andererseits besteht auch die Möglichkeit, den Stellmotor als Teil eines Regelkreis auszubilden, dessen Ist-Wertgeber ein im zu klimatisierenden Raum angeordneter Temperaturfühler ist. Diese Ausführung lässt sich vorteilhaft dann einsetzen, wenn dem Deckenluftauslass ein Volumenstromregler vorgeschaltet ist, weil dann der Stellmotor der Stellklappe mit einem Stellmotor des vorgeschalteten Volumenstromreglers parallel geschaltet und zusammen mit diesem in einen Regelkreis geschaltet sein kann, der die Raumtemperatur konstant hält.
  • Im Folgenden werden in der Zeichnung dargestellte Ausführungsbeispiele der Erfindung erläutert; es zeigen:
    • Fig.1 einen Vertikalschnitt durch einen Deckenluftauslass,
    • Fig. 2 einen Horizontalschnitt in Richtung 11-11 durch den Gegenstand nach Fig. 1,
    • Fig. 3 in schematischer Darstellung der Deckenluftauslass nach Fig. 1 mit durch Gegengewicht betätigbaren Stellklappen,
    • Fig. 4 in schematischer Darstellung den Dekkenluftauslass nach Fig. 1 mit durch Stelltrieb betätigbaren Stellklappen, und
    • Fig. 5 eine andere Ausführungsform des Gegenstandes nach Fig. 4.
  • Der in der Zeichnung dargestellte Deckenluftauslass weist ein kastenförmiges Gehäuse 1 zum Anschluss an eine Zuluftleitung 2 auf. Die Zuluftleitung 2 mündet in einen oberen Gehäuseraum 3, der an seiner Unterseite von einer Trennwand 4 begrenzt ist, die das Gehäuse 1 in den oberen Gehäuseraum 3 und einen unteren Gehäuseraum teilt, der im Folgenden als Induktionsraum 5 bezeichnet wird. An der Unterseite des Gehäuses 1 befindet sich ein Auslassgitter 6 mit Lamellen 7, die die aus dem Induktionsraum 5 austretende Luft zur Seite ablenken, so dass bei in eine Decke eingelassenem Deckenluftauslass die austretende Luft unter der Decke entlangströmt.
  • Wie man der Zeichnung entnimmt, ist die Trennwand 4 parallel zum Auslassgitter 6 angeordnet. Im mittleren Teil der Trennwand 4 befinden sich nebeneinander zwei Öffnungen 8,9 die jeweils mit einer Stellklappe 10 bzw. 11 verschliessbar sind. Die Stellklappen 10, 11 sind schwenkbar an Schwenkachsen 12, 13 gelagert, die sich parallel zueinander zwischen den beiden Öffnungen 8, 9 erstrecken und die an einem Ende des Gehäuses über ein Getriebe 14 gegenläufig miteinander gekuppelt sind.
  • Im übrigen sind die Öffnungen 8, 9 jeweils mit einem als Gleichrichter wirkenden Luftleitgitter 15 bzw. 16 abgedeckt, deren Lamellen 17 den aus dem oberen Gehäuseraum 3 durch die Öffnungen 8,9 hindurch tretenden Luftstrom in wesentlichen senkrecht zur Ebene der Trennwand 4 ausrichten.
  • An der Trennwand 4 ist im übrigen eine Reihe von Düsenöffnungen 18 angeordnet, die sich kranzförmig rings um die Öffnungen 8, 9 herum erstrecken. Jede Düsenöffnung 18 besteht aus einem rohrförmigen Stutzen 19, dessen Achse senkrecht zur Ebene der Trennwand 4 gerichtet ist, wobei jeder Stutzen 19 in Richtung auf das Auslassgitter 6 konisch verjüngt ist.
  • Bei der in Fig. 3 dargestellten Ausführungsform trägt jede Stellklappe 10 bzw. 11 ein Gegengewicht, unter dessen Wirkung die betreffende Steilklappe 10 bzw. 11 bei fehlendem oder bei geringem Luftstrom in ihre Ruhestellung gebracht wird, bei der sie die zugeordnete Öffnung 8 bzw. 9 verschliesst. In Fig.3 ist nur ein Gegengewicht 20 für die Stellklappe 10 gezeichnet. Es versteht sich, dass auch die Stellklappe 11 ein entsprechendes Gegengewicht trägt.
  • Bei den in den Fig. 1, 4 und 5 dargestellten Ausführungsformen sind die Stellklappen 10 bzw. 11 über das Getriebe 14 und einen Stelltrieb 21 an einen Stellmotor 22 angeschlossen.
  • Der dargestellte Deckenluftauslass arbeitet wie folgt: Wenn über die Zuluftleitung 2 von der nicht dargestellten Klimaanlage nur verhältnismässig wenig Luft geliefert wird, bleiben die Stellklappen 10, 11, wie in Fig. 1 mit ausgezogenen Linien dargestellt, in ihrer Ruhelage, d.h. die Öffnungen 8, 9 sind geschlossen. Die Zuluft kann folglich nur über die Düsenöffnungen 18 aus dem oberen Gehäuseraum in den Induktionsraum strömen. Da die Düsenöffnungen 18 rings um die Öffnungen 8,9 herum angeordnet sind, begrenzen die aus diesen Düsenöffnungen 18 austretenden Strahlen (Pfeile 23) den Induktionsraum 5 und erzeugen darin einen Unterdruck. Dementsprechend wird durch das Auslassgitter 6 Raumluft (Pfeile 24) angesaugt, die sich mit den aus den Düsenöffnungen 18 austretenden Zuluftstrahlen vermischt und zusammen mit der Zuluft aus dem Deckenluftauslass wieder ausgetragen wird.
  • Bei einem grösseren Zuluftangebot werden die Stellklappen 10, 11 mehr oder weniger geöffnet, wie das in Fig. 1 mit gestrichelten Linien dargestellt ist. Dann kann die Zuluft nicht nur durch die Düsenöffnungen 18, sondern auch durch die Öffnungen 8, 9 aus dem oberen Gehäuseraum 3 in den Induktionsraum 5 strömen. Die Druckdifferenz zwischen dem Induktionsraum 5 und dem zu belüftenden Raum ist geringer, so dass weniger Raumluft (Pfeile 24) in den Induktionsraum 5 eintritt.
  • Durch geeignete Steuerung der Stellung der Stellklappen 10, 11 lässt sich erreichen, dass die Gesamtmenge der aus dem Deckenluftauslass austretenden Luft, nämlich die Summe von Zuluftmenge und Raumluftmenge, immer konstant bleibt.
  • Die Steuerung der Stellung der Stellklappen 10, 11 wird bei der Ausführungsform nach Fig. 3 durch das Gegengewicht 20 erreicht. Bei den Ausführungen nach den Fig. 1, 4 und 5 werden die Stellklappen 10, 11 mit Hilfe des Stellmotors 22 verstellt.
  • Bei der Ausführungsform nach Fig. 4 ist der Stellmotor 22 Teil eines Regelkreises, dessen Ist-Wertgeber ein auf derZuluftseite der Trennwand 4 angeordneter Druckfühler 25 ist. Dieser Druckfühler 25 misst den statischen Druck in der oberen Gehäusekammer 3 und meldet diesen Druck einem Druckregler 26, der seinerseits den Stellmotor 22 steuert.
  • Bei der Ausführungsform nach Fig. 5 ist der Stellmotor 22 als Stellglied in einen Regelkreis geschaltet, dessen Ist-Wertgeber ein im zu klimatisierenden Raum angeordneter Temperaturfühler 27 ist. Dieser Temperaturfühler 27 meldet die Raumtemperatur an einen Regler 28, der nicht nur den Stellmotor 22 der Stellklappen 10, 11, sondern auch einen weiteren Stellmotor 20 steuert, mit dem eine Klappe 30 eines in der Zuluftleitung 2 vor dem Deckenluftauslass angeordneten Volumenstromreglers 31 verstellt wird. Insoweit sind die beiden Stellmotoren 22, 29 parallel geschaltet. Es versteht sich, dass die Regelcharakteristik der Regler 26 bzw. 28 oder das Gegengewicht 20 so ausgelegt sind, dass die Gesamtmenge der aus dem Deckenluftauslass austretenden Luft unabhängig von dem jeweils vorhandenen Zuluftangebot stets konstant ist.

Claims (13)

1. Deckenluftauslass, insbesondere für klimatisierte Räume, mit einem an eine Zuluftleitung (2) anschliessbaren Gehäuse (1), das eine Trennwand (4), zwei Strömungswege und ein Auslassgitter (6) aufweist, wobei in wenigstens einem der Strömungswege eine Stellklappe (10 bzw. 11 ) angeordnet ist, dadurch gekennzeichnet, dass die Trennwand (4) im wesentlichen parallel zum Auslassgitter (6) angeordnet ist, dass die Trennwand (4) wenigstens eine mit der Stellklappe (10 bzw. 11) verschliessbare Öffnung (8 bzw. 9) aufweist, und dass in der Trennwand (4) wenigstens im Bereich des freien Randes der Stellklappe (10 bzw. 11) eine Reihe von auf das Auslassgitter (6) gerichteten Düsenöffnungen (18) oder Düsenschlitzen angeordnet ist.
2. Deckenluftauslass nach Anspruch 1, dadurch gekennzeichnet, dass das Gehäuse (1) in einer Projektion auf das Auslassgitter (6) einen im wesentlichen rechteckigen bis quadratischen Querschnitt aufweist.
3. Deckenluftauslass nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Trennwand (4) zwei benachbarte Öffnungen (8, 9) aufweist, denen jeweils eine Stellklappe (10, 11 ) zugeordnet ist.
4. Deckenluftauslass nach Anspruch 3, dadurch gekennzeichnet, dass die Schwenkachsen (12,13) der beiden Stellklappen (11, 10) nebeneinander und parallel zueinander angeordnet sind.
5. Deckenluftauslass nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass auf der Zuluftseite jeder Stellklappe (10, 11 ) ein Luftleitgitter (15, 16) mit quer zur Schwenkachse (12, 13) der Stellklappe (10, 11) angeordneten Lamellen (17) vorgesehen ist.
6. Deckenluftauslass nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Düsenöffnungen (18) oder Düsenschlitze kranzartig um die Öffnung bzw. Öffnungen (8,9) herum angeordnet sind.
7. Deckenluftauslass nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Düsenöffnungen (18) von rohrförmigen, an die Trennwand (4) angesetzten Stutzen (19) gebildet sind.
8. Deckenluftauslass nach Anspruch 7, dadurch gekennzeichnet, dass die Stutzen (19) sich in Strömungsrichtung konisch verjüngen.
9. Deckenluftauslass nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass jede Stellklappe (10, 11) mit einem Gegengewicht (20) belastet ist.
10. Deckenluftauslass nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass jeder Stellklappe (10, 11) ein Stelltrieb (21) mit Stellmotor (22) zugeordnet ist.
11. Deckenluftauslass nach Anspruch 10, dadurch gekennzeichnet, dass der Stellmotor (22) Teil eines Regelkreises ist, dessen Ist-Wertgeber ein auf der Zuluftseite der Trennwand (4) angeordneter Druckfühler (25) ist.
12. Deckenluftauslass nach Anspruch 10, dadurch gekennzeichnet, dass der Stellmotor (22) Teil eines Regelkreises ist, dessen Ist-Wertgeber ein im zu klimatisierenden Raum angeordneter Temperaturfühler (27) ist.
13. Deckenluftauslass nach Anspruch 12, dadurch gekennzeichnet, dass der Stellmotor (22) der Stellklappe (10 bzw. 11) mit einem Stellmotor (29) eines dem Deckenluftauslass vorgeschalteten Volumenstromreglers (31 ) parallel geschaltet ist.
EP82110186A 1981-11-28 1982-11-05 Deckenluftauslass Expired EP0080606B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82110186T ATE11337T1 (de) 1981-11-28 1982-11-05 Deckenluftauslass.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE3147224 1981-11-28
DE19818134758U DE8134758U1 (de) 1981-11-28 1981-11-28 Deckenluftauslass
DE19813147224 DE3147224A1 (de) 1981-11-28 1981-11-28 Deckenluftauslass

Publications (2)

Publication Number Publication Date
EP0080606A1 EP0080606A1 (de) 1983-06-08
EP0080606B1 true EP0080606B1 (de) 1985-01-16

Family

ID=25797629

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82110186A Expired EP0080606B1 (de) 1981-11-28 1982-11-05 Deckenluftauslass

Country Status (7)

Country Link
US (1) US4508022A (de)
EP (1) EP0080606B1 (de)
JP (1) JPS58104444A (de)
DE (3) DE8134758U1 (de)
ES (1) ES275688Y (de)
NO (2) NO154444C (de)
ZA (1) ZA828766B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HRP20080662B1 (hr) * 2008-12-19 2013-11-08 Blago Brkić Konstrukcija rešetkaste nape za odsis otrovnih plinova ili para

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3241268C1 (de) * 1982-11-09 1984-01-19 Maurmann Ingenieurbüro GmbH, 5628 Heiligenhaus Deckenluftauslaß für Klimaanlagen
US4535685A (en) * 1984-03-05 1985-08-20 Maurmann Ingenieurburo Gmbh Air outlet for air conditioning systems
AU583505B2 (en) * 1984-05-10 1989-05-04 Matsushita Electric Industrial Co., Ltd. Flow deflecting assembly
FI74344C (fi) * 1986-01-23 1988-01-11 Halton Oy Utspridare foer ingaongsluft.
DE4417188A1 (de) * 1994-05-17 1995-11-23 Flaekt Ab Bearbeitungskabine und Verfahren zum Belüften einer Bearbeitungskabine
US5938525A (en) 1997-07-23 1999-08-17 Tompkins Industries, Inc Air diffuser, and mold and method for its production
US6361432B1 (en) 1999-08-17 2002-03-26 Tomkins Industries, Inc. Air diffuser with air flow regulator
US7815327B2 (en) * 2005-09-12 2010-10-19 Gary Peter Shamshoian Integrated light fixture and ventilation means
US20110122603A1 (en) * 2005-09-12 2011-05-26 Gary Peter Shamshoian Integrated laboratory light fixture
FI122286B (fi) 2006-01-16 2011-11-15 Halton Oy Tuloilmalaite ja menetelmä ilmavirtausmäärän säädössä
FI122284B (fi) * 2006-10-03 2011-11-15 Halton Oy Ilmavirtauksen päätelaite
US20090264062A1 (en) * 2008-04-16 2009-10-22 Nuclimate Air Quality Systems, Inc. Ventilation system
EP2354687B1 (de) * 2010-02-03 2012-09-26 TROX GmbH Deckenluftauslass für klimatechnische Anlagen
US9551496B2 (en) * 2011-04-20 2017-01-24 Dan P. McCarty Displacement-induction neutral wall air terminal unit
DE202012101635U1 (de) * 2012-04-05 2012-06-22 Trox Gmbh Einrichtung zum Belüften, zum Heizen und/oder zum Kühlen eines Raumes
BE1021395B1 (fr) * 2013-03-05 2015-11-16 W Properties Sprl Climatiseur
US20160209075A1 (en) * 2015-01-16 2016-07-21 Air System Components, Inc. Duct interface for chilled beam
US10830486B2 (en) * 2015-01-30 2020-11-10 Mestek, Inc. Air handling unit and method for controlling a flow of air therethrough
US10871304B2 (en) 2016-11-07 2020-12-22 Air Distribution Technologies Ip, Llc Air diffuser
PL3379165T3 (pl) 2017-03-21 2021-11-08 Lindinvent Ab Samoregulujący terminal nawiewny
NO344806B1 (no) * 2018-02-27 2020-05-04 Trox Auranor Norge As Kjølebaffel.
NO345103B1 (no) * 2018-10-31 2020-09-28 Trox Auranor Norge As Kjølebaffel
US11187431B2 (en) * 2019-04-22 2021-11-30 Air Distribution Technologies Ip, Llc Variable flow adapters for air diffusers with damper
US11752838B2 (en) * 2019-04-22 2023-09-12 Air Distribution Technologies Ip, Llc Variable flow adapters for air diffusers of HVAC systems
WO2023210307A1 (ja) * 2022-04-25 2023-11-02 パナソニックIpマネジメント株式会社 送風システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3012493A (en) * 1957-01-22 1961-12-12 Nl Airconditioning Mij Gebr Va Air-box with grille
DE6929459U (de) * 1968-07-30 1971-01-21 Nordisk Ventilator Druckluftgesteuerter luftmengenregler
US3592240A (en) * 1968-10-30 1971-07-13 Allied Thermal Corp Damper unit for controlling air flow
SE334991B (de) * 1969-03-19 1971-05-10 Svenska Flaektfabriken Ab
DE2033195C3 (de) * 1970-07-04 1981-04-16 LTG Luftechnische GmbH, 7000 Stuttgart Luftaustrittseinrichtung für Klimaanlagen
US3946647A (en) * 1973-05-07 1976-03-30 Aktiebolaget Svenska Flaktfabriken Device for preferably cooling a room by a ventilation air stream
DE2542160A1 (de) * 1975-09-22 1977-03-31 Ltg Lufttechnische Gmbh Volumenstromregler fuer lufttechnische anlagen
US4020752A (en) * 1975-10-10 1977-05-03 Lear Siegler, Inc. Air diffuser with modular core
DE2842924C2 (de) * 1978-10-02 1986-11-06 Gebrüder Trox, GmbH, 4133 Neukirchen-Vluyn Deckenluftauslaß für Klimaanlagen
DE3042216C2 (de) * 1980-11-08 1986-03-27 H. Krantz Gmbh & Co, 5100 Aachen Drallauslaß

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HRP20080662B1 (hr) * 2008-12-19 2013-11-08 Blago Brkić Konstrukcija rešetkaste nape za odsis otrovnih plinova ili para

Also Published As

Publication number Publication date
DE3147224A1 (de) 1983-06-09
ES275688Y (es) 1984-10-16
EP0080606A1 (de) 1983-06-08
JPS58104444A (ja) 1983-06-21
NO823589L (no) 1983-05-30
ES275688U (es) 1984-03-16
NO154444B (no) 1986-06-09
NO154444C (no) 1986-09-17
ZA828766B (en) 1983-09-28
DE8134758U1 (de) 1982-04-29
JPH0316583B2 (de) 1991-03-05
DE3261976D1 (en) 1985-02-28
NO154444L (de)
US4508022A (en) 1985-04-02

Similar Documents

Publication Publication Date Title
EP0080606B1 (de) Deckenluftauslass
DE102006062082B4 (de) Zuluftvorrichtung und Verfahren zur Regelung der Luftströmungsmenge
DE102019104067B4 (de) Elektrisch gesteuertes Proportionalventil mit großer Kapazität
EP3327366B1 (de) Luftauslass zum temperieren eines raumes
DE3708573A1 (de) Ventilanordnung
EP0321531A1 (de) Luftreguliereinheit, verfahren zur luftströmungsregelung und verwendung eines auftriebskörpers in einem solchen system
DE2542160C2 (de)
CH660058A5 (de) Geblaeseanordnung, insbesondere fuer klimaanlagen und mit einer solchen geblaeseanordnung ausgeruestete klimaanlage.
DE2105077A1 (de) Vorrichtung zum gleichmäßigen Verteilen von Luft innerhalb von an Luftverteilkanäle einer Klimaanlage angeschlossenen Räumen
DE19617302C1 (de) Steuervorrichtung in einer Absauganlage
DE2328186C2 (de) Induktionsgerät
DE2442102C3 (de) Vorrichtung zum Einblasen von Luft aus einer Zufuhrleitung in einen Raum
DE3241268C1 (de) Deckenluftauslaß für Klimaanlagen
DE3242215A1 (de) Injektor-raumklimageraet
DE2807901C2 (de)
EP0607116B1 (de) Endstück für Raumklimaanlagen
DE2810383C2 (de) Ausblaseeinheit mit Regulierung bzw. Verschiebung der auszublasenden Luftmenge
DE3004073A1 (de) Raumlueftungseinrichtung
EP0094000B1 (de) Fensterblasgerät für Lüftungs- und Klimaanlagen
WO2002006748A1 (de) Regelvorrichtung
DE3118083A1 (de) Belueftungseinrichtung fuer stallraeume
CH671281A5 (en) Switching valve for air-conditioning ventilation system - has two coils used to displace slider to operate two normally closed valves
DE4329646C2 (de) Lüftungstechnisches Bauelement mit einer Einrichtung zum Durchmischen von dieses Bauelement durchströmender Luft
DE1809067B2 (de) Anlage, insbesondere zum Kühlen von Schüttgut
DE3021356A1 (de) Anlage zur klimatisierung eines arbeitsraumes oder wohnraumes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830513

ITF It: translation for a ep patent filed

Owner name: UFFICIO BREVETTI RICCARDI & C.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 11337

Country of ref document: AT

Date of ref document: 19850215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3261976

Country of ref document: DE

Date of ref document: 19850228

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19851130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19901018

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19911024

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19911108

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911114

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911125

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19911130

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19911206

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19911218

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19921105

Ref country code: AT

Effective date: 19921105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19921106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19921130

Ref country code: CH

Effective date: 19921130

Ref country code: BE

Effective date: 19921130

BERE Be: lapsed

Owner name: GEBRUDER TROX G.M.B.H.

Effective date: 19921130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19921105

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930730

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930803

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82110186.2

Effective date: 19930610