EP0079338B1 - Procede et dispositif permettant de detacher et d'enlever des revetements solides sur les surfaces d'espace clos, par exemple le cote gaz de fumee d'un four ou d'une chaudiere - Google Patents

Procede et dispositif permettant de detacher et d'enlever des revetements solides sur les surfaces d'espace clos, par exemple le cote gaz de fumee d'un four ou d'une chaudiere Download PDF

Info

Publication number
EP0079338B1
EP0079338B1 EP19820901377 EP82901377A EP0079338B1 EP 0079338 B1 EP0079338 B1 EP 0079338B1 EP 19820901377 EP19820901377 EP 19820901377 EP 82901377 A EP82901377 A EP 82901377A EP 0079338 B1 EP0079338 B1 EP 0079338B1
Authority
EP
European Patent Office
Prior art keywords
steam
composition
furnace
water
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19820901377
Other languages
German (de)
English (en)
Other versions
EP0079338A1 (fr
Inventor
Joe Inge Olgarth Johannesson
Bengt Göran LUNDSTRÖM
Sven-Gunnar Svensson
Sven-Erik Agertegh
Sven-Roland Agertegh
Vlastimir Mikulasek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CLIMATIC AB
DALF INTERNATIONAL AB
Original Assignee
CLIMATIC AB
DALF INTERNATIONAL AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CLIMATIC AB, DALF INTERNATIONAL AB filed Critical CLIMATIC AB
Publication of EP0079338A1 publication Critical patent/EP0079338A1/fr
Application granted granted Critical
Publication of EP0079338B1 publication Critical patent/EP0079338B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/06Use of additives to fuels or fires for particular purposes for facilitating soot removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B43/00Preventing or removing incrustations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers

Definitions

  • the present invention relates to a process for loosening and removing solid coatings on the surfaces of enclosed spaces, e.g. soot and solid coatings formed during the operation of a furnace or boiler on the surfaces of the furnace forming the flue gas side, the covers and flue gas ducts to the flue gas side being sealed to form a closed chamber and steam, saturated with a special cleaning composition according to the invention, is supplied to the flue gas side.
  • the process according to the invention can be carried out in one or more steps, depending on the composition and thickness of the coatings.
  • the invention also comprises a device for carrying out the process.
  • the invention will be described in more detail below and illuminated with examples for the case where the enclosed space, the surfaces of which are to be freed of coatings and thus cleaned, is the flue gas side of a furnace or boiler, but it will be obvious that the process and the device can just as easily be applied to the cleaning of other enclosed spaces, e.g., the interior walls of tanks and large vessels.
  • the problem can also be expressed as follows: an increase in the flue gas temperature of 50°C from 200°C to 250°C for example with a carbon dioxide content of 10 %, reduces the efficiency of the furnace by about 3 %. This points out the great economic importance of preventing an unnecessary rise in the flue gas temperature, e.g. as a result of reduced heat absorption because of solid coatings on the furnace surfaces.
  • Factors contributing to reduced heating costs in burning fossil fuels include cleaning and soot removal in furnaces and removal of solid coatings which appreciably reduce the heat transfer capacity and thus the efficiency of the furnance, resulting in turn in higher energy consumption.
  • the solid coatings on the furnace walls and the convection portions consist primarily of sulphates, which are very difficult to remove by conventional mechanical cleaning methods or by traditional sweeping. In certain types of cast furnaces, the coatings can result in a reduction of surface area in the flue gas ducts in the convection portion making flue gas evacuation more difficult.
  • the method involves however subjecting the furnace to a certain amount of wear at each cleaning. Wear arises because of corrosion, since the steam condenses on the furnace walls and reacts with the sulphur compounds in the coatings to form sulphuric acid. This is highly corrosive also in the drainage system through which the dissolved sludge must be removed during cleaning.
  • caustic soda is usually used, which is placed on the bottom surface of the furnace, It is however difficult to achieve a perfect dosage of soda to prevent environmental damage, due to too high or too low pH value. Also certain risks are involved for workers handling the soda. Furthermore it is not possible to eliminate corrosion on the furnace walls with the aid of the caustic soda.
  • the dissolved coatings are removed by rinsing with water. It is possible to add a basic agent to the rinse water which can neutralize the sulphuric acid, but the amount of sulphuric acid is usually so large that too much time must be devoted to rinsing with a basic agent. After water rinsing, the cleaned furnace surfaces are treated with an approved basic agent to neutralize any remaining sulphur in pores, welding joints and the like. This method, which is designated System Vapor, is complicated and expensive in addition to having the above described problems.
  • the patent specification discloses that the process can be amplified by temporary heating. This pressure increase achieved thereby is said to be the cause of the powerful bursting effect.
  • the patent specification also discloses that according to one embodiment of the process, the desired effect is achieved in a more advantageous manner by alternatingly cooling and heating the waterside, the heating being done by steam for example, hot water or the like, and the cooling being effected in various ways which require more work, time and expense. According to one embodiment, it is disclosed that cooling is effected by means of softened water and salt solution is recommended for cooling other parts of the flue gas space.
  • German Auslegeschrift 27 02 716 describes a process which is divided into several steps.
  • ammonia-water is introduced into the flue gas space in the furnace by means of steam for a period of 1-2 hours.
  • the ammonia used is not mixed into the steam before it is introduced into the flue gas space. Rather, ammonia vapours are introduced into the upper portion of the flue gas duct to be cleaned through openings designed therefor, and the ammonia is finally divided by means of a spray device for water, also in the upper portion of the flue gas space.
  • steam is introduced into the lower portion of the flue gas duct through steam jets, whereby the steam produces an additional fine division of the ammonia vapours.
  • the Auslegeschrift discloses that it is advantageous to arrange the spray device for water as high as possible in the flue gas space and the injectors as low as possible in the space, so that the water can effect a cleaning process from top to bottom while the steam flows from bottom to top. During this step of the total process, there is no saturation of steam with neutralizing agent, i.e. ammonia. Rather, it is disclosed that the ammonia-water used suitably has a 25 % content of ammonia, the rest being water.
  • Danish Lay-open Print 122 969 describes an agent for cleaning the flue gas side of furnaces.
  • the agent consists in principle of two components, namely a) ordinary anionic, amphoteric or non-ionic tensides and b) chemical compounds which to a far reaching degree are subjected to thermal decomposition with heavy generation of gases, preferably ammonia and carbon dioxide.
  • gases preferably ammonia and carbon dioxide.
  • the Lay-open print the following demands are placed on the means used: 1. it must have a high wetting and penetrating effect, 2. it must have a good neutralizing effect, 3. it must produce a heavy generation of gas at elevated temperature and finally, the medium must have minimal tendency to form coatings.
  • the inventive idea can be said to lie in point 3, i.e.
  • the means must produce a heavy gas generation at elevated temperature.
  • components having this characteristic of producing heavy gas generation preferably ammonia and carbondioxide, are ammonium carbonate, ammonium bicarbonate, ammonium carbamate or carbamide.
  • gas generating compounds which do not split the ammonia i.e. compounds which have been used as blowing agent in the manufacture of foamed plastic articles. It is stated that we are dealing with compounds which are elevated temperature split off nitrogen, e.g. azodicarbonamide with several compounds.
  • oxygen generating compounds e.g. carbamide peroxide adducts and finally it is also possible to use a combination of substances, which are thermally decomposed with gas generation.
  • the description discloses how the cleaning agent in question can be used: a solution in water or possibly partially a dispersion of the means being sprayed as such into the flue gas space of the furnace, using for this purpose a spray device commonly available on the market with sufficient capacity, e.g. those available for spraying of gardens against harmful insects.
  • the present invention relates to a process, according to which steam, prior to being supplied to the flue gas side for example of the furnace, is saturated with a composition which, if the process is carried out in only one step, or alternatively in the first step of a multistep process, i.a. produces an increase in the pH value of the steam to a level which is sufficient and necessary for creating a basic environment, in which the components of the composition during the cleaning process transform all harmful sulphur compounds in the coatings and environmentally harmful heavy metals into harmless salts which can be easily removed from the bottom of the furnace. Saturating the steam with the composition in question practically completely eliminates the formation of sulphuric acid with accompanying problems according to the traditional processes.
  • sulphuric acid is still formed upon contact of the steam with the sulphur compounds in the coatings, this acid is immediately neutralized by alkali in the composition, such as alkali hydroxide, silicates or phosphates. Normally, however, as was mentioned, other compounds are formed in the reaction between the components of the composition and the sulphur compounds, which will be discussed in more detail below.
  • the composition used in the process according to the invention consists of a mixture, which primarily and in principle comprises synthetic tensides, organic complexing agents, alkali which in addition to the above mentioned effects (i.e. achieving a basic environment and neutralizing any sulphuric acid formed) also have a direct grease dissolving and cleaning effect, environmentally safe solvents and solvent vehicles, corrosion inhibitor, and water.
  • the make up of the composition is directed in each individual cleaning case to the type of pollutants occurring and the coatings in the spaces to be cleaned and to the thickness of the coating. In practice, several steps must often be combined to achieve a satisfactory clean result. Thus it is not possible to recommend a uniform composition for all types of furnance units and coatings.
  • the first step is suitably carried out in a basic environment as mentioned above, while the second step, for removing for example hard to remove burned on residue on furnace walls, such as oil coke and flame soot as well as iron sulphate coatings, is performed in an acid environment.
  • the scope of the invention encompasses the use of a number of special cleaning agents which best fulfil the requirements.
  • the invention fulfils even present high environmental standards. This is especially true with regard to acid components in coatings such as sulphur compounds and harmful heavy metals such as vanadium, nickel, iron, copper, cadium, lead, zinc, mercury and other metal ions. These are neutralized and converted into harmless compounds or salts in the cleaning process in one or more steps, i.e. before the waste products enter the drainage system. Our tests have shown that waste products from the cleaning process contain only half or one fourth of the amount of environmentally hazardous substances permissible by the environmental authorities.
  • compositions used in the process according to the invention are in the form of premixed additives, either viscous liquids or powders, which are mixed with water before use.
  • a composition in liquid form appears to be advantageous.
  • a powder composition has the advantage that it need not be protected from frost, which can be important in certain cases.
  • the process according to the invention in combination with the special cleaning compositions can be used in closed tanks for example and all types of combustion systems with fossil fuels for achieving a particularly effective cleaning, soot removal and removal of coatings by means of a non-damaging treatment, which i.a. eliminates the danger of corrosion damage to the metal surfaces.
  • the process is considerably more simple and less time-consuming than methods used up to now and the treatment result is decidely better, thus providing economic advantages over traditional methods.
  • the process according to the invention also provides an effective corrosion protection of furnace walls for example.
  • the compositions used according to the invention are environmentally safe and do not damage hands or clothings. Nor are they poisonous, thus making handling thereof completely safe. For bulk handling however, it is recommended that protective glasses and rubber gloves be used to prevent splashing in the eyes or lengthy skin contact.
  • waste products from the treatment of furnaces or tanks are collected on the bottom of the furnace or tank in the form of a sludge.
  • No special disposal prescriptions are required for the bottom sludge.
  • materials which are normally dangerous in normal cleaning of furnaces are converted to harmless salts and environmentally safe residue.
  • an anticorrosive surface passivating layer is formed on the furnace wall, which also has the effect that soot will not fasten as easily to the furnace wall.
  • Said anticorrosion effect and the formation of a passivating layer on the furnace wall is suitably achieved by performing the passivation in a separate step, after the primary cleaning process.
  • the passivating layer formed on the furnace wall consists of iron or zinc phosphate and iron oxide and has a weight of 200-1000 mg/m 2 . Examples of passivating agents will be given below.
  • the process according to the invention has the following characteristics for furnace cleaning:
  • the process is similar when applied to other enclosed spaces than furnaces.
  • the cleaning composition used together with water produces a steam which is then introduced in an unpressurized state into the space to be cleaned, e.g. the flue gas space of a furnace.
  • the furnace 1 is provided with a burner 2 which generates flue gas. These rise upwards in the furnace past a hotwater heater 3 and leave the furnace through a flue duct 4. Under normal operation of the furnace, soot and solid coatings 5 are formed, which lower the efficiency of the hotwater heater 3. Also, the coatings increase the flue gas temperature significantly, which means both poor use of the fuel supply and increased wear on the flue gas ducts and chimney.
  • a steam unit 6 is connected via a steam line 7 to the flue gas side of the furnace.
  • the furnace described above can instead be another closed space which is to be cleaned of coatings on the walls.
  • the steam unit 6 is provided with a chamber 8, in which, according to the embodiment shown, an electrode 9 is arranged. This part can be made differently from that shown in the drawing.
  • the heating unit can be made as immersion electrode, using process variant B).
  • the composition is thus introduced in this case in aqueous solution into the steam via an introduction unit (not shown) in the steam line 7 after the vapourization chamber 8, by means of which line, the chamber is connected to the closed space, e.g. the furnace.
  • An inlet line 10 for water is connected to the lower end of the chamber 8.
  • a reduction valve 11 is included in the inlet line 10, by means of which the water flow through the inlet line 10 can be regulated.
  • the reduction valve 11 is also provided with a branch 12 for a feeder line 13 for the cleaning composition 14, which is stored in a container 15.
  • the composition in liquid form which is produced by dissolving the initially viscous or powdered composition in water, is drawn by the flow of water through the reduction valve into the chamber 8 in the steam unit 6.
  • a pump (not shown) in the feeder line 13 can press the composition into the branch 12, when a large amount of composition is to be mixed into the steam.
  • the flow of liquid composition 14 into the inlet line 10 can be regulated by a valve 16.
  • the flow of the mixture of composition 14 and water into the chamber 8 can be regulated by means (not shown) in the steam unit 6 for sensing the liquid level in the chamber together with a throttle valve 17.
  • a liquid level sensor device should suitably be included in the device even when using immersion electrodes for heating in variant B).
  • the reduction valve 11 is provided with a nonreturn valve (not shown), which prevents water from penetrating into the feeder line 13 for the composition, when the flow to the chamber 8 is cut off by the valve 17.
  • the device can be adapted to close spaces, e.g. furnaces of various dimensions by setting the reduction valve 11 for small flows of water and composition 14 when a small space is to be cleaned, and for greaterflows when a large space, e.g. an industrial furnace is to be cleaned.
  • the steam formation in the unit 6 has automatically the correct admixture of cleaning composition.
  • the steam saturated with the composition according to the invention usually has, in a one step process, a pH value of between 8 and 14.
  • the steam is condensed in a known manner on the metal walls of the flue gas side of a furnace for example.
  • Surfactants in the composition facilitate penetration of the composition into layers of soot for example and into the solid coatings; and tensides and complexing agents in the composition break down the coatings.
  • Corrosion inhibitors in the cleaning composition prevent corrosion when the metal surfaces after the steam treatment are rinsed clean in a known manner with plain water.
  • the process described according to the invention eliminates the problem of neutralizing the coatings removed from a furnace, for example by caustic soda, as is done according to the prior art.
  • caustic soda is eliminated and therbey the risk of corrosion damage to the furnace and drainage system.
  • the cleaning composition used in the process according to the invention does not give rise to lime deposits in the steam unit 6 and the risk of toxic discharge into the sewage system is eliminated. It has already been mentioned that the process substantially reduces the treatment time for cleaning over known art. In trials for cleaning a furnace of size 1000 Mcal, the time saved over ordinary steam cleaning was about 12 hours.
  • furnaces can be cleaned, for maintaining a high efficiency, more often than previously at the same cost as previously.
  • the process according to the invention is adapted to the nature of the coatings to be removed, by suitable selection of the cleaning composition.
  • the process can be divided into for example the following reaction types:
  • tensides which can be included in the cleaning composition: Hydroxy alkyl ethyl alkyl amino ethyl glycine, which is an amphoteric tenside, which is effective in both strongly alkaline and acidic cleaning agents. It is biodegradable and non-toxic.
  • Lauryl dimethyl carboxymethyl ammonium betaine which is an amphoteric tenside, which is effective and stable in both alkaline and acidic environment. It is biodegradable and non-toxic.
  • Alkylphenylpolyglycol either with 10 ethylene oxide groups in the molecule which is a non-ionic tenside with especially good cleaning and emulsifying properties. It is partially biodegradable and non-toxic.
  • An example of a corrosion inhibitor with emulsifying properties in the cleaning composition is 1-hydroxyethyl-2-alkyl-imidazoline, which has good adhesion to all types of metal surfaces.
  • An example of a complexing agent in the composition for heavy metals in the combustion residue and coatings, such as copper, cadmium, silver, mercury, lead, nickel and several other metal ions, is 2-mercaptobenzo-1,3,5-triazine.
  • EDTA ethylene diamino-tetra acetic acid
  • NTA nitrilo-triacetate
  • DTPE diethylene triamino - penta acetic acid
  • HEEDTE hydroxyethyl-ethylene diamino-triacetic acid
  • An example of a solvent vehicle in aqueous solutions of the composition is sodium cumol sulfonate, which has good dispersion properties.
  • An example of an environmentally safe solvent for grease and fuel oils is 1,2-propylene glycol and iso-propanol.
  • waste products from the cleaning and treatment of furnaces for example fall to the bottom of the furnace in the form of a slurry which is removed therefrom.
  • No special instructions for handling the waste slurry are required and as was mentioned above, there is no toxic discharge, and therefore no separate discharge purification or detoxification is required.
  • the process according to the invention can be carried out, as has been mentioned above, in one or two steps, depending on the composition and thickness of the coatings.
  • the make up of the cleaning composition are described below:
  • Neutralization of steam condensate and removal of soot, heavy metals and lighter coatings from furnace walls is carried out in an alkaline environment in a one step process by using an example the above mentioned zinc carbonate method, iron (II)hydroxide method, iron (III)oxide method, copper carbonate method or the hydrogen peroxide method.
  • cleaning agents for example, can be used with advantage:
  • the rest water up to 100 % by weight.
  • a specially composed cleaning agent in powder form designed for neutralization of the drop water and for removing soot and light coatings in furnaces. It provides a non-corrosive treatment of furnaces by effective desulphurization of furnace walls. Damaging sulphur compounds are transformed in alkaline environment into completely harmless salts which end up in the bottom of the furnace, where they are removed.
  • the rest water up to 100 % by weight.
  • This composition is used when the nature of the coatings do not require an especially strong alkaline cleaning agent in liquid or powder form.
  • the rest water up to 100 % by weight
  • Cleaning and removal of strongly adhering combustion residue for example on furnace walls, such as oil coke and flame soot as well as iron-sulphate coatings of a thickness of 10 mm on furnace walls or in other enclosed spaces is suitably done in two steps, the first of which is carried out in an alkaline environment using the above mentioned means for example, the second supplementary step for removing the strongly adhering coatings being carried out in an acid environment.
  • the cleaning steps are then suitably followed by a passivation step for the metal surface.
  • cleaning agents for example, can be used with advantage:
  • Composition cleaning agent in liquid form for removing iron-sulphate, rust, soot and other coatings in furnaces for example.
  • the rest water up to 100 % by weight.
  • the rest water up to 100 % by weight.
  • the rest water up to 100 % by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Incineration Of Waste (AREA)

Claims (8)

1. Procédé pour détacher et enlever la suie et les revêtements solides sur les surfaces d'espaces clos tels que le côté gaz brûlés dans un foyer ou une chaudière, les gaines et les conduits de gaz brûlés allant au côté gaz brûlés étant rendus étanches pour former une chambre fermée, par introduction de vapeur dans l'espace clos, caractérisé en ce que, avant d'être introduite dans l'espace clos, la vapeur est saturée avec une composition aqueuse qui contient des agents tensio-actifs synthétiques, des alcalis tels que des hydroxydes, des silicates et des phosphates alcalins, des agents complexants organiques, des solvants et des véhicules de solvants sans danger pour l'environnement, un inhibiteur de corrosion pour empêcher la corrosion des surfaces métalliques lorsqu'elles sont rincées de manière connue à l'eau pure après le traitement à la vapeur, en ce que de la vapeur, saturée avec la composition de nettoyage vaporisée, est introduite sans pression, c'est-à-dire sensiblement à la pression ambiante, dans l'espace à nettoyer, ce procédé étant mis en oeuvre en un ou plusieurs stades, en ce que, dans le cas d'un seul stade, il est mis en oeuvre dans des conditions alcalines et que, dans le cas de plus d'un stade, le premier stade s'effectue de même dans des conditions alcalines, le dernier stade de nettoyage étant suivi par un stade de passivation des surfaces nettoyées dans lequel on amène un agent passivant qui empêche le revêtement ultérieur des surfaces métalliques grâce à la formation d'une couche passivante constituée par du phosphate de fer ou de zinc et de l'oxyde de fer et ayant un poids de 200 à 1000 mg/m2.
2. Procédé selon la revendication 1, caractérisé en ce que la vapeur saturée par la composition est obtenue en amenant une solution aqueuse de la composition (14) à l'eau à vaporiser et est vaporisée avec elle dans une chambre de production de vapeur (8) à l'intérieur d'une unité de vapeur (6), la vapeur de l'eau et de la composition est introduite, à l'état sans pression, par un conduit de vapeur communi (7) dans l'espace clos.
3. Procédé selon la revendication 2, caractérisé en ce que l'espace clos est le côté gaz brûlés d'une chaudière (1).
4. Procédé selon la revendication 1, caractérisé en ce que la vapeur saturée par la composition est obtenue en introduisant une solution aqueuse de la composition, d'une manière connue en soi, dans la vapeur qui est déjà à l'état sans pression, d'où il résulte que la composition aqueuse est vaporisée et que la vapeur mélangée est ensuite introduite à l'état sans pression dans l'espace clos.
5. Procédé selon la revendication 4, caractérisé en ce que l'espace clos est le côté gaz brûlés d'une chaudière (1).
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la portion de nettoyage du procédé est effectuée en un seul stade dans un environnement alcalin avant le stade de passivation.
7. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la portion de nettoyage du procédé est effectuée en deux stades, le premier dans un environnement alcalin et l'autre dans un environnement acide, avant le stade de passivation.
8. Dispositif pour mettre en oeuvre le procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comporte un réservoir (15) pour une composition liquide (14), ce réservoir étant raccordé par une canalisation (13) à une vanne réductrice (11), à travers laquelle de l'eau circule par un canalisation (10) jusqu'à une unité de vapeur (6) comprenant une chambre de production de vapeur (8), qui contient des moyens (9) pour vaporiser l'eau en liaison avec cette composition, le canalisation d'amenée (13) étant équipée d'une vanne (16) pour régler le débit de la composition (14) dans une canalisation commune (10) pour la fourniture de l'eau et de la composition à la chambre de production de vapeur (8), cette unité de vapeur (6) comprenant des moyens pour détecter le niveau du liquide dans la chambre (8) pour régler l'arrivée du mélange de la composition et de l'eau à l'unité de vapeur (6), cette vanne réductrice (11) étant équipée d'un clapet anti-retour pour empêcher l'eau de pénétrer dans la canalisation d'amenée (13) de la composition lorsque le courant allant à la chambre de production de vapeur (8) est arrêté par une vanne (17) disposée dans la canalisation (10) entre la vanne réductrice (11) et la chambre de production de vapeur (8).
EP19820901377 1981-05-20 1982-04-19 Procede et dispositif permettant de detacher et d'enlever des revetements solides sur les surfaces d'espace clos, par exemple le cote gaz de fumee d'un four ou d'une chaudiere Expired EP0079338B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE8103177A SE437032B (sv) 1981-05-20 1981-05-20 Forfarande och anordning for losgorande och avlegsnande av fasta beleggningar pa ytorna i en verme- eller angpanna
SE8103177 1981-05-20

Publications (2)

Publication Number Publication Date
EP0079338A1 EP0079338A1 (fr) 1983-05-25
EP0079338B1 true EP0079338B1 (fr) 1985-07-24

Family

ID=20343881

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19820901377 Expired EP0079338B1 (fr) 1981-05-20 1982-04-19 Procede et dispositif permettant de detacher et d'enlever des revetements solides sur les surfaces d'espace clos, par exemple le cote gaz de fumee d'un four ou d'une chaudiere

Country Status (7)

Country Link
EP (1) EP0079338B1 (fr)
CA (1) CA1211345A (fr)
DE (1) DE3264872D1 (fr)
DK (1) DK156677C (fr)
FI (1) FI75594C (fr)
SE (2) SE437032B (fr)
WO (1) WO1982004065A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8401844A0 (sv) * 1984-04-03 1985-10-04 Andren Sven Uno Pannsotning
US6089955A (en) * 1994-10-12 2000-07-18 Nextec, Inc. Method and composition for removing coatings which contain hazardous elements
FR2749855B1 (fr) * 1996-10-10 1998-10-30 Eurexim Agent combustible solide de destruction de la suie et des goudrons, son procede de fabrication et son utilisation
CN109675849A (zh) * 2018-11-27 2019-04-26 大唐湘潭发电有限责任公司 一种电厂低温烟气处理系统的灰垢加碱水冲洗系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE166121C1 (fr) *
US2704523A (en) * 1955-03-22 F walters
DE1095441B (de) * 1954-12-10 1960-12-22 Kaminfegermeister Verband Base Verfahren zur Behandlung der Innenflaechen von gemauerten Kaminen zwecks Entfernung von Verbrennungs-rueckstaenden
DE1546151A1 (de) * 1965-03-22 1969-05-14 Collardin Gmbh Gerhard Verfahren zur Reinigung von Heizflaechen umlaufender Regenerativ-Vorwaermer
NL132465C (fr) * 1967-11-24
DE1601299A1 (de) * 1968-01-19 1970-07-23 Hutter Kg S Verfahren und Vorrichtung zur Reinigung von rauchgasbeaufschlagten Flaechen bei Dampfkesseln,Waermeaustauschern u.dgl.
DE2702716C2 (de) * 1977-01-24 1979-06-28 Josef Krammer Chem. Dampfkessel- Reinigung, 4040 Neuss Verfahren und Vorrichtung zur rauchsasseitigen Reinigung von Kesseln oder öfen

Also Published As

Publication number Publication date
DK11583D0 (da) 1983-01-13
FI75594C (fi) 1988-07-11
DK156677B (da) 1989-09-18
EP0079338A1 (fr) 1983-05-25
DK11583A (da) 1983-01-13
FI75594B (fi) 1988-03-31
DE3264872D1 (en) 1985-08-29
SE8106333L (sv) 1982-11-21
FI830144A0 (fi) 1983-01-17
FI830144L (fi) 1983-01-17
DK156677C (da) 1990-02-05
CA1211345A (fr) 1986-09-16
SE8103177L (sv) 1982-11-21
SE437032B (sv) 1985-02-04
WO1982004065A1 (fr) 1982-11-25

Similar Documents

Publication Publication Date Title
JP5165386B2 (ja) So3コントロールのための目標を定めたダクト注入
CA2552979C (fr) Procede de reduction de l'opacite d'un panache
KR101572562B1 (ko) 유해 배출가스 및 클링커 억제와 완전연소를 위한 화석연료 및 축분 연소 촉진제 및 그 제조방법
EP0079338B1 (fr) Procede et dispositif permettant de detacher et d'enlever des revetements solides sur les surfaces d'espace clos, par exemple le cote gaz de fumee d'un four ou d'une chaudiere
CS276140B6 (en) Aqueous solution of a catalyst for more perfect combustion of carbon- or/and hydrocarbon-containing compounds
JP2006105578A (ja) 排ガスの処理方法
NO144619B (no) Fremgangsmaate og preparat for aa bekjempe avsetningsoppbygning i gassvaskere
EP0058086B1 (fr) Méthode pour la prévention ou l'élimination de dépôts des surfaces des chaudières et des surfaces dépendantes
CN107824022B (zh) 一种电力行业废水废气的处理方法和处理系统
NO156062B (no) Fremgangsmaate og anordning for aa loesne og fjerne faste belegg paa overflater i lukkede rom, f.eks. roekgass-siden i varme- eller dampkjele.
WO1988009368A1 (fr) Composition et procede servant a nettoyer les parties exposees au feu de dispositifs de chauffage
US6524397B2 (en) Method for removing an acidic deposit
JP5070815B2 (ja) 排ガス処理方法
JP3843378B2 (ja) 鉄キレートを含有する廃液の処理方法
CN214780943U (zh) 一种发电机组的脱硫废水处理系统
JP2636947B2 (ja) 溶融炉の燃焼排ガス処理装置における腐食防止方法
JPS5853071B2 (ja) 燃焼ガス接触面部の洗浄方法
GB2395722A (en) The prevention or removal of deposits from heating and ancillary surfaces
HU201836B (en) Preparation and method for cleaning boilers on the side of furnace chamber
JPS5853034B2 (ja) スケ−ル防止剤
NO870676L (no) Pulvertilsetningsstoff for anvendelse ved forbrenning av faste materialer, og anvendelse av pulvertilsetningsstoffet
IT1157066B (it) Procedimento e dispositivo per sciogliere ed asportare rivestimenti solidi sulle superfici di spazi chiusi ad esempio il lato dei gas di combustione di un forno o di una caldaia
JPH06147450A (ja) アルカリ廃液の焼却処理装置
CS214009B1 (en) Removing method of degradation products of fuels and carbon black from heating surfaces and flue gas ducting of heating installations

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

17P Request for examination filed

Effective date: 19830506

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

REF Corresponds to:

Ref document number: 3264872

Country of ref document: DE

Date of ref document: 19850829

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 82901377.0

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990406

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990414

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990415

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990419

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990426

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990429

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000430

BERE Be: lapsed

Owner name: SVENSSON SVEN-GUNNAR

Effective date: 20000430

Owner name: LUNDSTROM BENGT GORAN

Effective date: 20000430

Owner name: JOHANNESSON JOE INGE OLGARTH

Effective date: 20000430

Owner name: DALF INTERNATIONAL A.B.

Effective date: 20000430

Owner name: CLIMATIC A.B.

Effective date: 20000430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000419

EUG Se: european patent has lapsed

Ref document number: 82901377.0

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001229

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20001101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST