EP0068035B1 - Flügelzellenpumpe, insbesondere zur Lenkhilfe - Google Patents

Flügelzellenpumpe, insbesondere zur Lenkhilfe Download PDF

Info

Publication number
EP0068035B1
EP0068035B1 EP19810104981 EP81104981A EP0068035B1 EP 0068035 B1 EP0068035 B1 EP 0068035B1 EP 19810104981 EP19810104981 EP 19810104981 EP 81104981 A EP81104981 A EP 81104981A EP 0068035 B1 EP0068035 B1 EP 0068035B1
Authority
EP
European Patent Office
Prior art keywords
flow
rotor
cam ring
inlet
pressure plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19810104981
Other languages
English (en)
French (fr)
Other versions
EP0068035A1 (de
Inventor
Erwin Konz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cessione luk Fahrzeug - Hidraulik & Co KG GmbH
Original Assignee
Vickers Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vickers Systems GmbH filed Critical Vickers Systems GmbH
Priority to DE8181104981T priority Critical patent/DE3174238D1/de
Priority to EP19810104981 priority patent/EP0068035B1/de
Publication of EP0068035A1 publication Critical patent/EP0068035A1/de
Application granted granted Critical
Publication of EP0068035B1 publication Critical patent/EP0068035B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/06Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00

Definitions

  • the invention relates to a vane pump with the features a) to d) of claim 1.
  • the cam ring also forms an outer part of the housing and has two through bores beyond the diameter range of the pressure plate.
  • Each through-hole is flanked by two pockets, each of which extends radially inward in one housing half and whose respective front end forms the first and second inlet opening to the working areas of the pump.
  • the front pocket in the direction of flow forms a current distribution space in its radially outer region, while the radially inner region forms a continuation and deflection channel, at the end of which the first inlet opening lies.
  • the current distribution space thus does not open directly into the first inlet opening.
  • the continuation and deflection channel touches the pressure plate in an edge recess.
  • a supply channel from the oil reservoir to branching supply channels is provided, which open at their ends in inlet kidneys, in which one Current distribution takes place in such a way that a partial flow passes through a cam ring channel and a blind bore in the pressure plate to the side of the rotor opposite the inlet kidney and can contribute to filling the respective working area.
  • a disadvantage of the known design is the asymmetrical supply of the hydraulic fluid to the two inlet kidneys, one of which favors the inertia of the inlet flow, while the other is disadvantaged. As a result, the speed of the pump cannot be very high in order to avoid the risk of cavitation and excessive noise.
  • the feed channels favor one working area and leave the other working area in the flow shadow, so that when the number of revolutions increases, there is a risk of cavitation and excessive noise.
  • the invention solves the problem of providing a vane pump of the type specified at the outset with a smaller overall volume, with an even more uniform filling of the two working areas being achieved.
  • a power steering pump built according to the invention for pressures in the range from 65 to 82 bar had a total weight that was 400 to 450 g lower than a power steering pump of the same power available on the market.
  • the vane pump has a main housing part 1 and a housing cover 2, which enclose an interior 1a in a pressure-tight manner.
  • an interior 1a sit - arranged fixed to the housing - a pressure plate 4 and a cam ring 5, which are secured against rotation by pins 6.
  • a rotor 7 is arranged within the cam ring 5 and between the housing cover 2 and the pressure plate 4 and has a number of radial guide slots. Wings 8 are radially displaceably mounted within these guide slots.
  • the rotor 7 can be driven via a shaft 9 which is mounted in a bearing bore in the housing cover 2.
  • the rotor 7 is cylindrically shaped, while the cam ring 5 has an approximately oval inner contour, the small axis of which corresponds approximately to the diameter of the rotor 7, while the large axis determines the extension length of the vanes 8.
  • the cam ring 5 and the rotor 7 are two crescent-shaped work areas 11 and 12, which are divided into a number of cell spaces by the vanes 8. The cell spaces increase on the suction side of the system and decrease on the pressure side.
  • the supply of hydraulic fluid to the respective suction side is as follows: Recirculated hydraulic Liquid is passed below a reservoir 14 into a filter chamber 15, from where the liquid enters an oil reservoir 16, which surrounds the cam ring 5, the rotor 7, the pressure plate 4 and their housing support walls in a semicircular shape.
  • Two feed channels 17a, 18a and 17b, 18b each comprise a vertical section, formed by bores 17a and 17b, and a horizontal, knee-shaped section 18a and 18b, respectively. With their knee-shaped sections 18a, 18b, the feed channels lie essentially in the horizontal axis plane (FIG. 2) and are arranged symmetrically to one another.
  • the radial legs of the feed channels 18a, 18b open into a valve chamber 19 aligned with the shaft 9, while the axial legs each meet through openings 20 of the pressure plate 4.
  • Circumferential seals 21 seal the gap between the back of the pressure plate 4 and the housing wall 1.
  • the through openings 20 expand towards the front of the pressure plate 4 and form a curved, elongated current distribution space 22 which extends in the circumferential direction and in which current is divided.
  • a radially inner branch stream 23 passes through the radially inner part of the through opening 20 and the current distribution space 22 directly via a first inlet 27 into the working area 11 or 12 between the cam ring 5 and the rotor 7, while a radially outer branch stream 24 passes through the radially outer part of the through opening 20 and the current distribution space 22 flows.
  • Three bores 25 in the cam ring form a cam ring channel which runs in the axial direction and meets a housing groove 26 which directs the branch flow 24 radially inwards.
  • the housing groove 26 is widened at its radially inner end in the circumferential direction and there forms a second inlet 28 into the working area of the pump.
  • Arc-shaped grooves 31, 32 are provided in the housing cover 2 and in the pressure plate 4 on both sides of the wings 8.
  • the grooves 31 are each connected via holes 33 (FIG. 4) through the cam ring 5 to the grooves 32 (FIG. 1).
  • the grooves 32 each include a bore through the pressure plate 4.
  • a throttle body 38 with a measuring orifice 38a and an auxiliary throttle 38b is located in the delivery line 36.
  • the auxiliary throttle 38b is connected to a flow control valve 40 via a channel 39.
  • the flow control valve 40 has a slide piston 41, which is pushed by the force of a spring 42 in the direction of the back of the pressure plate 4.
  • the slide piston has two sealing areas 43, 44, between which there is an annular groove 45, into which the feed channels 17a, 18a and 17b, 18b normally open.
  • a partially radially and partially axially extending channel 46 leads from the annular groove 45 through the slide piston 41 into a valve chamber 47, into which the channel 39 opens and in which the spring 42 lies.
  • a spring 48 and a valve cone 49 are arranged within the channel 46.
  • the operation of the power steering pump proceeds as follows: by driving the shaft 9, the rotor 7 is rotated and the vanes 8 are thus guided through the sickle-shaped working areas 11, 12. Hydraulic fluid is drawn in, which can enter both flanks of the wings 8, as shown by the branch flows 23 and 24 in FIG. 3. The feed takes place in the same way for both work areas 11, 12 via the essentially symmetrical feed channels 17a, 18a and 17b, 18b. As a result of this “parallel feeding”, an equal distribution of the filling pressure in both working areas 11, 17 is achieved. This has a noise-reducing effect due to the avoidance of cavitation.
  • the suctioned hydraulic fluid is displaced into the pressure area by the vanes 8 and reaches the pressure chamber 35 via the outlet channels 31, 32 and from there via the delivery channel 36 and the throttle body 38 to the outer pump outlet 37. If more hydraulic fluid is conveyed than the measuring orifice 38a coped with, the pressure in the pressure chamber 35 rises, and the slide piston 41 is pushed against the force of the spring 42 until the sealing surface 43 partially reaches beyond the mouth of the feed channels 17a, 18a, 17b, 18b. With this current control, a direct connection between the pressure chamber 35 and the feed channels is created, which is extremely short, so that the regulated hydraulic fluid is circulated with little energy loss.
  • valve cone 49 lifts off, so that the pressure in the valve chamber 47 drops and the slide piston 41 is displaced to the right in the drawing. This in turn creates the direct connection between the pressure chamber 35 and the supply channels 17a, 18a, 17b, 18b (function as a pressure relief valve).
  • the surrounding wall parts Due to the arrangement of the pressure chamber 35 centrally in the housing 1, the surrounding wall parts have a good sound-insulating effect, in particular because the flow control valve 40 is also aligned with the axis of the rotor 7 and the pressure plate 4.
  • the housing cover 2 is made of aluminum, on the one hand to save weight and on the other hand to offer a good running surface.
  • a stiffening rib 3 is used to receive a leak oil hole 3a, which leads the leak oil creeping along the shaft 9 back into the reservoir 16. Due to the existence of the storage space 16, the size of the storage container 14 can be reduced accordingly, whereby the size and weight of the overall pump can also be saved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

  • Die Erfindung bezieht sich auf eine Flügelzellenpumpe mit den Merkmalen a) bis d) des Anspruchs 1.
  • Bei einer Flügelzellenpumpe dieser Art (US-PS 2880674) bildet der Nockenring auch einen äusseren Teil des Gehäuses und weist zwei Durchgangsbohrungen jenseits des Durchmesserbereiches der Druckplatte auf. Jede Durchgangsbohrung wird von zwei Taschen flankiert, die sich in jeweils einer Gehäusehälfte radial nach innen erstrecken und deren jeweiliges vorderes Ende die erste bzw. zweite Einlassöffnung zu den Arbeitsbereichen der Pumpe bilden. Dabei bildet die in Strömungsrichtung vordere Tasche in ihrem radial äusseren Bereich einen Stromaufteilungsraum, während der radial innere Bereich einen Fortführungs- und Umlenkkanal bildet, an dessen Ende die erste Einlassöffnung liegt. Der Stromaufteilungsraum mündet somit nicht unmittelbar in die erste Einlassöffnung. Der Fortführungs- und Umlenkkanal berührt die Druckplatte in einer Randaussparung. Solange die Pumpe im niedrigen Drehzahlbereich läuft und die Saugwirkung überwiegt, werden jeweils gleiche Zweigströme über jede der Einlassöffnungen in den zugehörigen Arbeitsbereich strömen. Wenn jedoch die Einlasskanäle aufgeladen werden, wird sich die Trägheit strömender Flüssigkeit bemerkbar machen, und die in Strömungsrichtung hintere Tasche wird strömungsmässig bevorzugt werden. Nachteilig ist ferner die ausladende Konstruktion, um Raum für die Taschen und die Durchgangsbohrungen zur Aufteilung der beiden Einlasskanäle an ihren Enden zu gewinnen. Die knieförmigen Abschnitte der Zuführkanäle sind im übrigen durch eine radiale und zwei axiale Bohrungen erzeugt, die sich an einer sacklochartigen und einer bohrerspitzenartigen Umlenkstelle treffen, so dass an diesen Stellen erhöhte hydraulische Umlenkverluste entstehen. Die Strömungsumlenkung der betreffenden Teilströme ist nicht vollständig symmetrisch. Dadurch wird die gleichmässige Füllung der beiden Arbeitsbereiche beeinträchtigt.
  • Bei einer weiteren bekannten Flügelzellenpumpe mit den Merkmalen a), b) und c) von Patentanspruch 1 (US-A-2 800 083) ist ein Zufuhrkanal vom Ölvorratsraum zu sich verzweigenden Zuführkanälen vorgesehen, die an ihren Enden in Einlassnieren münden, in welchen eine Stromaufteilung dergestalt stattfindet, dass ein Teilstrom durch einen Nockenringkanal und eine Blindbohrung in der Druckplatte auf die der Einlassniere gegenüberliegende Seite des Rotors gelangt und zur Füllung des jeweiligen Arbeitsbereichs beitragen kann. Nachteilig bei der bekannten Ausbildung ist die unsymmetrische Zuführung der Hydraulikflüssigkeit zu den beiden Einlassnieren, deren eine von der Trägheit des Einlassstroms begünstigt, während die andere benachteiligt ist. Dies hat zur Folge, dass die Drehzahl der Pumpe nicht sehr hoch sein kann, um der Gefahr der Kavitation und der übermässigen Geräuschentwicklung zu entgehen.
  • Bei zur Zeit gebauten, auf dem Markt befindlichen Lenkhilfspumpen begünstigen die Zuführkanäle den einen Arbeitsbereich und lassen den anderen Arbeitsbereich im Strömungsschatten, so dass bei einer Steigerung der Umdrehungszahl die Gefahr der Kavitation und der übermässigen Geräuschentwicklung auftreten.
  • Die Erfindung löst die Aufgabe, eine Flügelzellenpumpe der eingangs angegebenen Art mit kleinerem Bauvolumen bereitzustellen, wobei eine noch gleichmässigere Füllung der beiden Arbeitsbereiche erzielt wird.
  • Die gestellte Aufgabe wird aufgrund der Massnahmen im kennzeichnenden Teil des Anspruchs 1 gelöst. Weiterbildungen ergeben sich aus den abhängigen Patentansprüchen.
  • Eine gemäss der Erfindung gebaute Lenkhilfpumpe für Drücke im Bereich von 65 bis 82 bar hatte ein um 400 bis 450 g geringeres Gesamtgewicht gegenüber einer am Markt befindlichen Lenkhilfpumpe der gleichen Leistung. Infolge der gleichmässigen Füllung der Arbeitsräume und der besseren Abschirmung der geräuscherzeugenden Teile konnte das abgegebene Geräusch deutlich vermindert und die maximale Drehzahl angehoben werden.
  • Ein Ausführungsbeispiel wird anhand der Zeichnung beschrieben. Dabei zeigt:
    • Fig. 1 einen Längsschnitt durch eine Lenkhilfpumpe,
    • Fig. 2 einen Schnitt eintlang der Linie 11-11 der Fig.1,
    • Fig. 3 eine vergrösserte Einzelheit aus Fig. 2,
    • Fig. 4 einen Schnitt entlang der Linie IV-IV in Fig. 1 und
    • Fig. 5 einen Schnitt entlang der Linie V-V in Fig. 4.
  • Die Flügelzellenpumpe weist ein Gehäusehauptteil 1 und einen Gehäusedeckel 2 auf, die einen Innenraum 1a druckmitteldicht einschliessen. Im Innenraum 1a sitzen - gehäusefest angeordnet - eine Druckplatte 4 und ein Nockenring 5, die durch Stifte 6 drehgesichert sind. Innerhalb des Nockenrings 5 und zwischen dem Gehäusedeckel 2 und der Druckplatte 4 ist ein Rotor 7 angeordnet, der eine Reihe von radialen Führungsschlitzen besitzt. Innerhalb dieser Führungsschlitze sind Flügel 8 radial verschieblich gelagert. Der Rotor 7 ist über eine Welle 9 antreibbar, die in einer Lagerbohrung des Gehäusedekkels 2 gelagert ist. Der Rotor 7 ist zylindrisch geformt, während der Nockenring 5 einen angenähert ovalen Innenumriss aufweist, dessen kleine Achse etwa dem Durchmesser des Rotors 7 entspricht, während die grosse Achse die Auszugslänge der Flügel 8 bestimmt. Auf diese Weise liegen zwischen dem Nockenring 5 und dem Rotor 7 zwei sichelförmige Arbeitsbereiche 11 und 12, die von den Flügeln 8 in eine Anzahl von Zellenräumen unterteilt werden. Bei der Saugseite des Systems vergrössern sich die Zellenräume, und bei der Druckseite verkleinern sie sich.
  • Die Zufuhr von Hydraulikflüssigkeit zur jeweiligen Saugseite ist wie folgt: Rückgeführte Hydraulikflüssigkeit wird unterhalb eines Vorratsbehälters 14 in einen Filterraum 15 geleitet, von wo aus die Flüssigkeit in einen Ölvorratsraum 16 gelangt, der den Nockenring 5, den Rotor 7, die Druckplatte 4 sowie deren Gehäusestützwände halbkreisförmig umgibt. Zwei Zuführkanäle 17a, 18a und 17b, 18b umfassen je einen senkrechten Abschnitt, gebildet durch Bohrungen 17a bzw. 17b, und je einen waagrechten, knieförmigen Abschnitt 18a bzw. 18b. Die Zuführkanäle liegen mit ihren knieförmigen Abschnitten 18a, 18b im wesentlichen in der waagrechten Achsebene (Fig. 2) und sind symmetrisch zueinander angeordnet. Die radialen Schenkel der Zuführkanäle 18a, 18b münden in einen zur Welle 9 fluchtenden Ventilraum 19, während die axialen Schenkel jeweils auf Durchgangsöffnungen 20 der Druckplatte 4 stossen. Umlaufende Dichtungen 21 dichten den Spalt zwischen der Rückseite der Druckplatte 4 und der Gehäusewandung 1 ab. Die Durchgangsöffnungen 20 erweitern sich zur Vorderseite der Druckplatte 4 und bilden einen gebogenen länglichen Stromaufteilungsraum 22, der sich in Umfangsrichtung erstreckt und in dem eine Stromaufteilung erfolgt. Ein radial innerer Zweigstrom 23 gelangt durch den radial inneren Teil der Durchgangsöffnung 20 und den Stromaufteilungsraum 22 unmittelbar über einen ersten Einlass 27 in den Arbeitsbereich 11 oder 12 zwischen Nockenring 5 und Rotor 7, während ein radial äusserer Zweigstrom 24 durch den radial äusseren Teil der Durchgangsöffnung 20 und des Stromaufteilungsraums 22 fliesst. Drei Bohrungen 25 im Nockenring bilden einen Nokkenringkanal, der in axialer Richtung verläuft und auf eine Gehäusenut 26 stösst, welche den Zweigstrom 24 radial nach innen lenkt. Die Gehäusenut 26 ist an ihrem radial inneren Ende in Umfangsrichtung ausgeweitet und bildet dort einen zweiten Einlass 28 in den Arbeitsbereich der Pumpe. Beidseitig der Flügel 8 sind bogenförmige Nuten 31, 32 im Gehäusedeckel 2 bzw. in der Druckplatte 4 vorgesehen. Die Nuten 31 sind jeweils über Bohrungen 33 (Fig. 4) durch den Nockenring 5 mit den Nuten 32 (Fig. 1) verbunden. Die Nuten 32 umfassen jeweils eine Bohrung durch die Druckplatte 4 hindurch. Auf der Rückseite der Druckplatte 4 ist ein Druckraum 35 gebildet, der für eine gute Anlage der Druckplatte am Rotor 7 und dem Nockenring 5 sorgt und über einen Förderkanal 36 mit einem äusseren Pumpenauslass 37 verbunden ist. In der Förderleitung 36 sitzt ein Drosselkörper 38 mit einer Messblende 38a und einer Hilfsdrossel 38b. Die Hilfsdrossel 38b ist über einen Kanal 39 mit einem Stromregelventil 40 verbunden. Das Stromregelventil 40 weist einen Schieberkolben 41 auf, der durch die Kraft einer Feder 42 in Richtung auf die Rückseite der Druckplatte 4 gedrängt wird. Der Schieberkolben weist zwei Abdichtungsbereiche 43, 44 auf, zwischen denen eine Ringnut 45 liegt, in welche die Zuführkanäle 17a, 18a bzw. 17b, 18b normalerweise einmünden. Von der Ringnut 45 führt ein teilweise radial und teilweise axial sich erstreckender Kanal 46 durch den Schieberkolben 41 in einen Ventilraum 47, in welchen der Kanal 39 einmündet und in welchem die Feder 42 liegt. Innerhalb des Kanals 46 sind eine Feder 48 und ein Ventilkegel 49 angeordnet.
  • Der Betrieb der Lenkhilfpumpe geht wie folgt vor sich: Durch Antrieb der Welle 9 wird der Rotor 7 gedreht und damit die Flügel 8 durch die sichelförmigen Arbeitsbereiche 11, 12 hindurchgeführt. Es wird Hydraulikflüssigkeit angesaugt, die zu beiden Flanken der Flügel 8 eintreten kann, wie durch die Zweigströme 23 und 24 in Fig. 3 dargestellt. Die Zuführung erfolgt in gleicher Weise für beide Arbeitsbereiche 11, 12 über die im wesentlichen symmetrischen Zuführkanäle 17a, 18a bzw. 17b, 18b. Infolge dieser «parallelen Zuführung» wird eine gleiche Verteilung des Fülldrucks in beide Arbeitsbereiche 11, 17 erzielt. Dies wirkt geräuschvermindernd infolge der Vermeidung von Kavitation. Die angesaugte Hydraulikflüssigkeit wird durch die Flügel 8 in den Druckbereich verschoben und gelangt über die Auslasskanäle 31, 32 in den Druckraum 35 und von dort über den Förderkanal 36 und den Drosselkörper 38 zum äusseren Pumpenauslass 37. Wenn mehr Hydraulikflüssigkeit gefördert wird, als die Messblende 38a bewältigt, steigt der Druck im Druckraum 35, und der Schieberkolben 41 wird entgegen der Kraft der Feder 42 solange verschoben, bis die Abdichtfläche 43 teilweise bis jenseits der Einmündung der Zuführkanäle 17a, 18a, 17b, 18b gelangt. Bei dieser Stromregelung wird eine direkte Verbindung zwischen dem Druckraum 35 und den Zuführkanälen geschaffen, die ausserordentlich kurz ist, so dass die abgeregelte Hydraulikflüssigkeit mit wenig Energieverlust umgewälzt wird. Wenn bei blockierter Arbeitsleitung der Druck im Pumpenauslass 37 ansteigt, hebt der Ventilkegel 49 ab, so dass der Druck im Ventilraum 47 abfällt und der Schieberkolben 41 in der Zeichnung nach rechts verschoben wird. Dadurch wird wiederum die direkte Verbindung zwischen dem Druckraum 35 und den Zuführkanälen 17a, 18a, 17b, 18b geschaffen (Funktion als Druckbegrenzungsventil).
  • Durch die Anordnung des Druckraums 35 zentral im Gehäuse 1 wirken die umgebenden Wandteile gut schalldämmend, insbesondere weil zudem noch das Stromregelventil 40 fluchtend zur Achse des Rotors 7 und der Druckplatte 4 vorgesehen ist.
  • Der Gehäusedeckel 2 besteht aus Aluminium, um einerseits an Gewicht zu sparen und andererseits eine gute Lauffläche zu bieten. Eine Versteifungsrippe 3 wird dazu ausgenutzt, eine Leckölbohrung 3a aufzunehmen, die das entlang der Welle 9 kriechende Lecköl in den Vorratsraum 16 zurückführt. Durch die Existenz des Vorratsraums 16 kann die Grösse des Vorratsbehälters 14 entsprechend verringert werden, wodurch weiterhin an Grösse und Gewicht der Gesamtpumpe eingespart werden kann.

Claims (4)

1. Flügelzellenpumpe für eine Hydraulikflüssigkeit, insbesondere zur Lenkhilfe, mit folgenden Merkmalen:
a) ein Gehäuse (1, 2) mit daran befestigtem Nockenring (5) umschliesst eine Druckplatte (4) und einen die Pumpenachse bestimmenden Rotor (7) unter Freilassung zweier Arbeitsbereiche (11, 12), die durch Flügel (8) in Zellenräume aufgeteilt sind, welche infolge des Antriebs des Rotors (7) durch eine Welle (9) zwischen einer ersten und einer zweiten, auf unterschiedlichen Seiten des Rotors angeordneten Einlassöffnungen (27, 28) und Auslassöffnungen (31, 32) für jeden der Arbeitsbereiche (11, 12) wandern;
b) zu jedem Arbeitsbereich (11, 12) führt ein Einlasskanal, der sich über einen Stromaufteilungsraum (22) zur ersten (27) und zweiten Einlassöffnung (28) hin gabelt, wobei jeder Stromaufteilungsraum einen radial äusseren und inneren Bereich aufweist und der radial äussere Bereich über einen Nockenringkanal (25) und einen Umlenkkanal (26) zur zweiten Einlassöffnung (28) führt;
c) von den Arbeitsbereichen (11, 12) führen die Auslassöffnungen (31, 32) auf die dem Rotor abgewandte Rückseite der Druckplatte (4) in einen Druckraum (35), wobei die dem Rotor zugewandte Vorderseite der Druckplatte (4) dichtend am Rotor (7) und dem Nockenring (5) anliegt;
d) die Einlasskanäle sind im wesentlichen symmetrisch zueinander angeordnet, wobei jeder Einlasskanal einen ersten Zuführkanalabschnitt (17a, 17b) und einen zweiten, mit axialen und radialen Schenkeln ausgestatteten, knieförmigen Zuführkanalabschnitt (18a, 18b) aufweist, die ersten Zuführkanalabschnitte (17a, 17b) in einer Ebene liegen, die in etwa senkrecht zur Pumpenachse verläuft, und die zweiten Zuführkanalabschnitte (18a, 18b) sich in einer Pumpenachsenebene erstrekken und mit ihren axialen Schenkeln in die Stromaufteilungsräume (22) sowie mit ihren radialen Schenkeln in einen Ventilraum (19) münden, von dem aus, beim Ansprechen eines Ventils (40), eine Abströmung der Hydraulikflüssigkeit erfolgt; gekennzeichnet durch folgende Massnahmen:
e) jeder knieförmige Zuführkanalabschnitt (18a, 18b) mündet mit seinem axialen Schenkel jeweils in einer zugehörigen, die Druckplatte (4) durchsetzenden Durchgangsöffnung (20), die auf der Rückseite der Druckplatte (4) durch umlaufende Dichtungen (21) gegenüber dem Druckraum (35) abgedichtet ist und je einen der Stromaufteilungsräume (22) beherbergt,
f) jeder Stromaufteilungsraum (22) mündet mit seinem radial inneren Bereich unmittelbar in die erste Einlassöffnung (27).
2. Flügelzellenpumpe nach Anspruch 1, dadurch gekennzeichnet, dass jeder Nockenringkanal (25) durch nebeneinander angeordnete, sich in axialer Richtung erstreckende Bohrungen durch den Nockenring (5) gebildet ist.
3. Flügelzellenpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die zweiten, knieförmigen Zuführkanalabschnitte (18a, 18b) so ausgebildet sind, dass eine gleiche Verteilung des Fülldruckes in die beiden Arbeitsbereiche (11, 12) erzielt wird.
4. Flügelzellenpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Auslassöffnungen (31, 32) eines Arbeitsbereiches (11 bzw. 12) über eine Bohrung (33) im Nockenring (5) miteinander verbunden sind, wobei die eine Auslassöffnung (32) als Stromvereinigungsraum gestaltet ist.
EP19810104981 1981-06-26 1981-06-26 Flügelzellenpumpe, insbesondere zur Lenkhilfe Expired EP0068035B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE8181104981T DE3174238D1 (en) 1981-06-26 1981-06-26 Vane pump, especially for power steering
EP19810104981 EP0068035B1 (de) 1981-06-26 1981-06-26 Flügelzellenpumpe, insbesondere zur Lenkhilfe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19810104981 EP0068035B1 (de) 1981-06-26 1981-06-26 Flügelzellenpumpe, insbesondere zur Lenkhilfe

Publications (2)

Publication Number Publication Date
EP0068035A1 EP0068035A1 (de) 1983-01-05
EP0068035B1 true EP0068035B1 (de) 1986-04-02

Family

ID=8187788

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19810104981 Expired EP0068035B1 (de) 1981-06-26 1981-06-26 Flügelzellenpumpe, insbesondere zur Lenkhilfe

Country Status (2)

Country Link
EP (1) EP0068035B1 (de)
DE (1) DE3174238D1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007039172A1 (de) 2007-06-05 2008-12-11 Robert Bosch Gmbh Flügelzellenpumpe

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623421A1 (de) * 1986-07-11 1988-01-14 Vickers Systems Gmbh Lenkhilfpumpe
US6149409A (en) * 1999-08-02 2000-11-21 Ford Global Technologies, Inc. Cartridge vane pump with dual side fluid feed and single side inlet
DE102014106427A1 (de) * 2014-05-08 2015-11-12 Technische Universität Dresden Verfahren und Vorrichtung zur Herstellung von Formteilen aus einer Faserwerkstoffbahn

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2800083A (en) * 1951-11-07 1957-07-23 Vickers Inc Power transmission
US2880674A (en) * 1953-09-11 1959-04-07 Vickers Inc Power transmission
DE1553020A1 (de) * 1964-01-02 1970-10-22 Breinlich Dr Richard Drehfluegelmaschine mit einer verbesserten Steuerung der Zufuehrung und Abfuehrung des Fluidums
FR1536836A (fr) * 1967-09-15 1968-08-16 Hobourn Eaton Mfg Co Ltd Pompe rotative
US3632238A (en) * 1969-09-05 1972-01-04 Eaton Yale & Towne Pump assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007039172A1 (de) 2007-06-05 2008-12-11 Robert Bosch Gmbh Flügelzellenpumpe

Also Published As

Publication number Publication date
EP0068035A1 (de) 1983-01-05
DE3174238D1 (en) 1986-05-07

Similar Documents

Publication Publication Date Title
DE3050041C2 (de) Flügelpumpe
DE4124583C2 (de) Flügelzellenpumpe mit variabler Leistung
DE2223156C2 (de) Flügelzellenverdichter
DE2541266C3 (de)
DE4308506A1 (de) Ölpumpensystem
DE4030295C2 (de) Pumpeneinheit mit Steuerventil
EP0068035B1 (de) Flügelzellenpumpe, insbesondere zur Lenkhilfe
DE2735824C2 (de) Flügelzellenpumpe, insbesondere zur Lenkhilfe
DE1808826A1 (de) Drehlkolbenmaschine
WO2002081913A2 (de) Hydraulisches pumpenaggregat
EP0151657A1 (de) Flügelzellenpumpe, insbesondere zur Lenkhilfe
DE2741766A1 (de) Zentrifugalpumpe
DE19623242C1 (de) Sperrflügelpumpe
EP0125328A1 (de) Flügelzellenpumpe, insbesondere zur Lenkhilfe
DE3242983A1 (de) Regelbare fluegelzellenpumpe
DE1728268A1 (de) Fluegelzellenpumpe oder- motor
DE6801280U (de) Pumpe fuer fluessigkeiten.
DE2249591A1 (de) Fluegelradpumpe
AT247727B (de) Rotationsflügelpumpe oder -flüssigkeitsmotor
EP0328745B1 (de) Innenzahnradmaschine
DE2248490C2 (de) Drehkolbenpumpe
DE4019097A1 (de) Fluegelzellenpumpe
DE2641451C3 (de) Kompressor
DE3245974C2 (de)
DE1127224B (de) Drehkolbenmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811010

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VICKERS SYSTEMS GMBH

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

REF Corresponds to:

Ref document number: 3174238

Country of ref document: DE

Date of ref document: 19860507

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;LUK FAHRZEUG - HIDRAULIK GMBH & CO. KG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

ITTA It: last paid annual fee
EAL Se: european patent in force in sweden

Ref document number: 81104981.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950511

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950530

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960627

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960626

EUG Se: european patent has lapsed

Ref document number: 81104981.6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980508

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980604

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST