EP0059181B1 - Procédé et dispositif pour régler la vitesse de fusion d'une électrode par refusion sous laitier électroconducteur - Google Patents

Procédé et dispositif pour régler la vitesse de fusion d'une électrode par refusion sous laitier électroconducteur Download PDF

Info

Publication number
EP0059181B1
EP0059181B1 EP82890025A EP82890025A EP0059181B1 EP 0059181 B1 EP0059181 B1 EP 0059181B1 EP 82890025 A EP82890025 A EP 82890025A EP 82890025 A EP82890025 A EP 82890025A EP 0059181 B1 EP0059181 B1 EP 0059181B1
Authority
EP
European Patent Office
Prior art keywords
electrode
weight
melting
current
melting rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82890025A
Other languages
German (de)
English (en)
Other versions
EP0059181A1 (fr
Inventor
Manfred Dr. Gfrerer
Heimo Dr. Jäger
Friedrich Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Edelstahlwerke AG
Original Assignee
Vereinigte Edelstahlwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Edelstahlwerke AG filed Critical Vereinigte Edelstahlwerke AG
Publication of EP0059181A1 publication Critical patent/EP0059181A1/fr
Application granted granted Critical
Publication of EP0059181B1 publication Critical patent/EP0059181B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting

Definitions

  • the invention relates to a method and a device for regulating the melting rate of a self-consuming electrode in a slag bath during electro-slag remelting.
  • AT-PS 345 487 has already proposed to keep the current required for remelting constant by changing the lowering speed of the electrode to be melted in the event of deviations from the setpoint, etc. If the current is too low, the lowering speed is increased and if the current is too high it is reduced. Furthermore, with such a constant current, if the lowering speed is too low compared to a preselected lowering speed, the bath voltage is increased in order to supply more active power and thus to be able to increase the melting rate and thus the lowering speed. In the opposite case, the bath tension is reduced.
  • the bath depth also changes the immersion depth, e.g. an increase in voltage with a constantly regulated current would result in a reduction in the immersion depth of the electrode in the weld pool, but as a result the melting rate generally does not increase proportionally.
  • the bath resistance changes over the course of the melting time. If the bath voltage and current are kept constant, the electrode is e.g. Immerse the increasing bath resistance deeper into the weld pool, which also changes the melting rate.
  • the melting weight of a self-consuming electrode is regulated according to a weight-time function without regard to an electrode spacing to be maintained.
  • the immersion depth is regulated according to the bath resistance or its gradient without monitoring the melting rate.
  • the known methods for regulating the melting rate each have the disadvantage that the regulation takes place only via the feed rate of the electrode, the voltage or the current intensity.
  • the position of the electrode in the slag bath and its distance from the melt level are not taken into account.
  • the thermal conditions during solidification are of great importance for the metallurgical properties of the block to be melted.
  • the deeper the electrode is immersed in the slag bath the higher the temperature of the still liquid block and the lower the sump made of liquid metal formed in the block.
  • the melting rate is not linearly dependent on the immersion depth, which means that the immersion depth is an important control variable.
  • the method according to the invention for regulating the melting rate of a self-consuming electrode during electroslag remelting in a slag bath, the lowering speed of the electrode to be remelted, which is determined by a length measurement, being regulated in relation to compliance with a target value of the melting rate and the current intensity and / or the voltage consists essentially in the fact that the weight of the portion of the electrode immersed in the slag bath is continuously determined from the actual total electrode weight and the length of the electrode above the slag bath surface and compared with a target value and, if the quotient of U target and J so deviates, changes the product remains constant and the actual melting rate is compared with a target melting rate and in the event of a deviation the product of J so " and Us o n is changed accordingly.
  • the weight fraction of the electrode can be calculated located in the slag bath can be easily calculated, the resistance being changed in the event of a deviation, but the product of the current strength and voltage being kept constant. Then the actual melting rate, that is the molten weight of the electrode per unit of time, is compared with a target melting rate and if there is a deviation, the product is changed accordingly.
  • the remelting process is equivalent to a 2-size controlled system, with bath voltage U WB and current J as input variables (manipulated variables) and the melting rate and electrode immersion depth ⁇ b or immersion weight AG as output variables.
  • bath voltage U WB and current J as input variables (manipulated variables)
  • the melting rate and electrode immersion depth ⁇ b or immersion weight AG as output variables.
  • separate regulators for maintaining voltage U WB and current J are provided, the setpoints of which can be set separately.
  • the lowering speed of the electrode is controlled via the nominal value of the current strength. It must be taken into account here that the block grows against the electrode as it melts. Controlling the lowering speed by means of the current strength ensures that the speed is maintained more precisely, as a result of which the melting conditions can be maintained even more precisely.
  • the weight of the electrode is weighed, which gives the most accurate possible weight determination, and weight measurements such as power supply lines, the electrode holder, buoyancy of the electrode in the slag bath, etc. are easily possible via the weight measurement.
  • a device for carrying out the method, in which a current or voltage regulator connected to an actuating device for lowering the electrode and a voltage regulator connected to an actuating device for adjusting the tap of a variable transformer supplying the remelting system, essentially consists in the fact that the The current and voltage regulator is connected to a control computer which calculates the setpoints for these regulators and is in turn connected to a resistance value calculator which serves as a reference variable for determining the current and voltage setpoints and a melting rate regulator which is preferably influenced by a power value transmitter.
  • the resistance value calculator is connected to a position controller that compares the position of the electrode with respect to the slag bath surface with a setpoint value, which in turn is connected to a calculator for determining the melting weight from the melting length of the electrode and a measuring device for directly determining the melting weight of the electrode, one can particularly precise control of the portion of the electrode immersed in the liquid slag can be carried out based on a setpoint.
  • the position controller contains a correction device which, when a certain difference between the directly determined and the melting weight determined from the melting length of the electrode is exceeded. B. holds on to the last determined value, then automatic control is also possible if the electrode contains large cavities, since the electrode is not pulled out of the slag bath due to the seemingly too high melting rate.
  • both the weight of the electrode can be precisely determined on the one hand, and the melting rate can also be precisely determined and maintained via the device mentioned, since the weight measurement of the electrode takes the current conditions during remelting particularly carefully into account. This accuracy is particularly important at the end of the remelting process, since there is usually only a relatively small and therefore low-weight electrode, and depending on the operational requirements, a relatively low melting rate should also be maintained.
  • the current regulator 1 and the voltage regulator 2 which are connected to actual value transmitters and adjusting devices (not shown), are optionally via the switch 3 with a current setpoint generator 4 or a voltage setpoint generator 5 or a control computer 6 connected.
  • the actuating device connected to the current regulator 1 acts on a lifting and lowering device for actuating the electrode for setting the lowering speed thereof, whereas the actuating device connected to the voltage regulator 2 acts on the tap of a regulating transformer which melts the electro-slag remelting device, not shown known type supplied.
  • the control computer 6 is connected to a resistance computer 7 and via 12, 13 to a power value transmitter 8 and supplies the current or voltage regulator 1, 2 with setpoints Js ° y or U So1 which are dependent on the required power value and the resistance value coming from the resistance value computer 7 ".
  • control computer 6 not shown, there are still the adjustable limits for the upper and lower limits of the active bath power.
  • the proportion of the signal supplied by the power value transmitter 8 to the control computer 6 can be adjusted by the signal mixer 12, 13 to which the manipulated variable output of the melting rate controller 14 is also connected.
  • the regulating and control component (R / S) is set by the signal mixer. With a 100% tax share, the signal from the power value transmitter 8 comes into full effect in the control computer 6 and vice versa.
  • the resistance value calculator 7 is connected to the setpoint generators 4 and 5 and uses these values to calculate a basic resistance value R o , which is based on and coming from the position controller 9 the switch 10 feedable signal is corrected.
  • the position controller 9 is in turn connected to an immersion weight and immersion depth (position) setpoint device 11 and an actual immersion weight or immersion depth (position) transmitter, and the weight of the immersed portion of the electrode is calculated from these values. which is compared with the target values, the quotient of U target and J target being changed in the event of a deviation, but the product is kept constant.
  • the position controller 9 also contains the correction logic and arithmetic device (not shown) which evaluates the two oil melting rates from the weight or length measurement and, if a certain difference is exceeded, carries out corrections, for example, to the last determined value.
  • the meltdown rate controller 14 receives its setpoint from a meltdown rate generator 15 and its actual value from the meltdown rate calculator 16, which preferably provides a signal corresponding to the actual meltdown rate by differentiating or forming differences in finite time intervals of the preferably directly determined meltdown weight of the electrode.
  • FIG. 2 schematically shows various possibilities for arranging the measuring devices for determining the lowering path of the electrode.
  • the cable winch 18 and its drive 19 and a cable guide roller 20 are arranged, via which the cable 23 provided for adjusting the electrode carriage 21 along the guide column 22, which is attached to the electrode carriage 21, is guided.
  • sensors 24 for monitoring the adjustment movement of the electrode are arranged on the cable winch stage 17 or, as indicated by dashed lines, on a cantilever arm connected to the guide column 22.
  • These transducers 24 are connected to the electrode carriage 21 via measuring chains 25, which expediently run exactly vertically, so that each of the measuring transducers 24 corresponds to the same changes in the height of the electrode by the same angular amounts due to the rotation of a sprocket engaged with the measuring chain 25.
  • the installation location designated 1 provides the most accurate measurement values, since with this method the measurement chain 25 practically runs in the electrode axis 26 and therefore deflections of the electrode carriage 21, which occur during the melting of the Reduce the electrode, do not go into the measurement result, which is increasingly the case for installation locations 11 and 111.
  • Fig. 3 shows schematically the possibilities for the attachment of force transducers.
  • a force transducer designed as a tensile load cell 27 can be installed in a pulley-like guidance of the rope 23 directly in the rope strand held at a fixed point (arrangement IV) or, where apart from the negligible weight of the rope strand, which of course changes during the course of the lowering of the rope strand
  • Electrode 28 or the electrode carriage 21 changes, and apart from frictional forces between the electrode carriage 21 and the guide column 22 detects half the weight of the electrode carriage 21 together with the electrode 28. It is of course possible to balance the weight portion of the electrode carriage 21 in a downstream evaluation circuit and to form the time differential or the difference in finite but very small time intervals from the corrected signal.
  • a tensile load cell 27 remains unaffected by the change in the cable weight if, like at installation location V, it is interposed between the loose pulley of the pulley-like cable guide and the electrode carriage 21, although it must absorb the full weight of the electrode carriage 21 together with the electrode 28 .
  • the force transducer must also absorb a high tare weight, the electrode carriage 21.
  • the contact jaws 30 are attached to a pressing device with the interposition of insulation 31, which are essentially connected by two levers connected via a hydraulic cylinder 32 and articulated to a rocker bearing 33 34 is formed.
  • the rocker bearing 33 enables the levers 34 to pivot about the longitudinal axis of the rocker bearing, which is fastened to the electrode carriage 21.
  • the electrode 28 is lifted from its support on the electrode carriage 21 by means of the lifting hydraulics 35 mounted on the electrode carriage 21 via the cable 23, into which a tensile load cell 27 is installed, and an insulated hook 37. The lifting is necessary in order to prevent force shunts by a to eliminate electrode head resting on the electrode carriage 21.
  • the electrode 28 itself is raised and lowered with the electrode carriage 21.
  • the indicated weighing platform with the pressure load cells 27 ' represents an alternative to weighing with tensile load cells.
  • the pressure load cells 27' must be relieved.
  • the current supply lines 36 are connected directly to the contact jaws 30 and are preferably extremely flexible.
  • the weight measurement of the electrode 28 is loaded only by a very low tare weight, since the weight of the contact jaws 30 together with the portions of the lever 34 on the contact jaw side is approximately the weight of the Hydraulic cylinder 32 together with the hinged portions of the lever 34 corresponds.
  • frictional forces occurring in the joints of the pressing device are included in the weight measurement.
  • flexible copper strips 36 ' are welded to the head of the electrode 28 and can be connected to contact jaws 30 which are seated on an insulation 31 attached to the electrode carriage 21 and which can be closed via hydraulic cylinders 32'.
  • the current leads 36 to the contact jaws 30 can be stiff since they are not included in the measurement.
  • the electrode 28 hangs on an insulated hook 37, which is connected to the lifting hydraulics via a rope provided with a tensile load cell, or is supported on a weighing platform 29.
  • changes in the bending stiffness of the copper strips 36' are caused by the heating unavoidable, which go into the measurement, but this embodiment is characterized by a particularly low tariff load and simplest structure.
  • FIGS. 8 and 9 A further embodiment, in which there is a very low tare load on the force measuring transducers, and therefore those with a correspondingly small measuring range can be used, which also respond more sensitively to changes in force, are shown in FIGS. 8 and 9.
  • FIG Electrode 28 is provided with an anchor rod 39 which passes through a sleeve 40 supported on electrode carriage 21.
  • the contact jaws 30 engage the sleeve 40, which is connected to the electrode 28 via flexible copper strips 36 ′, which are covered with a protective box 38.
  • the electrode 28 is weighed by means of the weight measuring device, which acts via an insulated hook and has a tensile load cell.
  • the electrode is raised and lowered via the electrode carriage 21, on which the sleeve 40 or the contact jaws 30 are supported.
  • the protective box 38 is also no longer included in the measurement, since it is supported on the sleeve 40.
  • the lifting and lowering device provided with the force measuring device 27 or 27 ', which is formed either by the separate lifting hydraulics 35 or by the cable winch of the electrode carriage, not shown in these FIGS. 10 and 11, engages if a weighing platform 29 and pressure load cells 27 'are used on the contact jaw 30', which is supported on the or by means of the insulation 31 from the weighing platform 29 or directly from the electrode carriage.
  • the contact jaw 30 ' is e.g. tapered, self-adjusting surface, in which contact blocks 41 are arranged, but a slot 42 corresponding approximately to the diameter of the rod of the electrode 28 is provided, through which the one e.g.
  • the rod having a conical head of the electrode 28 can be inserted laterally into the conical contact jaws. If the weight of the electrode 28 is not sufficient to achieve a perfect electrical contact in the contact jaw 30 ', the contact pressure of the conical head of the electrode 28 on the contact blocks 41 of the contact jaw 30' can be increased by means of the clamping arms 44 which can be actuated via the hydraulic cylinders 43.
  • the contact jaw 30 ' is expediently gimbaled via these tensile load cells 27 on the lifting hydraulics 35 or supported on the weighing platform.
  • FIGS. 12 and 13 A similar embodiment is shown in FIGS. 12 and 13, only that instead of the one conical contact jaw 30 ', two contact jaws 30 are provided, which are provided with cylindrical surfaces and can be moved relative to one another by means of two hydraulic cylinders 32', between which the head of the electrode 28 can be clamped.
  • two contact jaws 30 are provided, which are provided with cylindrical surfaces and can be moved relative to one another by means of two hydraulic cylinders 32', between which the head of the electrode 28 can be clamped.
  • tensile load cells 27 which, as can be seen from FIG. 13, can also be found with one, the ropes connected to these or these engage on a holder 45 guiding the contact jaws 30, on which also the hydraulic cylinders 32 'are attached. If pressure load cells 27 'are used, these can possibly be engage directly on the bracket 45 or support it.
  • the embodiment according to FIGS. 14 and 15 provides a head of the electrode 28 which is provided with an axial and two non-circular bores 50 and 49 running transversely thereto, on which the insulated hook of the weight measuring device, which has tensile load cells (not shown), also engages .
  • the contact jaws 30 ′′ are penetrated by a pull rod 47 provided with a hammer head 46, which is acted upon by a spring 48.
  • This spring 48 is accommodated in a housing 51 and is relieved of the pull rod 47 via a sleeve 52 and a rocker 53.
  • a rotating device 54 which is connected to the pull rod 47 and which enables the pull rod 47 to be rotated by 90 °, is fastened to the housing 51 in order to be able to insert it into the non-circular bores 49 and then to rotate it, so that after unlocking the Spring 48 the hammer head 46 of the pull rod rests against the wall of the bore 50 and presses the contact jaws 30 "against the head of the electrode 28, the contact jaws 30" being only loosely guided by the base plate 55.

Claims (10)

1. Procédé de régulation du taux de fusion d'une électrode consommable dans la refusion électrique sous laitier dans un bain de laitier, où sont soumis à réglage l'intensité du courant et/ou la tension, ainsi que la vitesse de descente de l'électrode de refusion, dont la longueur est déterminée, en vue du maintien du taux de fusion à une valeur de consigne, caractérisé en ce que le poids de la partie de l'électrode immergée dans le bain de laitier est déterminé en permanence à partir du poids total effectif de l'électrode et de la longueur de l'électrode au dessus de la surface du bain de laitier, et est comparé avec une valeur de consigne, et qu'en cas d'écart, on modifie le quotient de la tension Usons et de l'intensité Jcons, le produit restant constant, et que le taux dé fusion réel est comparé avec un taux de fusion de consigne et, en cas d'écart, le produit Jcons et de Ucons est modifié de façon correspondante.
2. Procédé selon la revendication 1, caractérisé en ce que lâ vitesse d'abaissement de l'électrode est commandée par l'intermédiaire de la valeur de consigne de l'intensité du courant.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'électrode est pesée.
4. Dispositif pour la mise en œuvre du procédé selon une quelconque des revendications 1 à 3, dans lequel il est prévu un régulateur de courant relié à un servo-mécanisme pour abaisser l'électrode, et un régulateur de tension relié à un servo-mécanisme pour déplacer la prise d'un transformateur variable alimentant l'installation de refusion, caractérisé en ce que le régulateur de courant (1) et le régulateur de tension (2) sont reliés à une calculatrice de commande (6) qui calcule les valeurs prescrites pour ces régulateurs (1; 2) et est elle-même reliée à une calculatrice de valeur de résistance (7) fournissant la valeur de résistance servant de grandeur de référence pour la détermination des valeurs prescrités-d'intensité et de tension, et à un régulateur de taux de fusion (14) influencé par un émetteur de valeur de puissance (8).
5. Dispositif selon la revendication 4, caractérisé en ce que la calculatrice de valeur de résistance (7) est reliée à un régulateur de positionnement (9) comparant la position de l'électrode (28) par rapport à la surface du bain de laitier avec une valeur prescrite, qui est lui-même relié à une calculatrice pour la détermination du poids dé fusion à partir de la longueur de fusion de l'électrode, ainsi qu'à un dispositif de mesure pour la détermination directe du poids de fusion.
6. Dispositif selon la revendication 5, caractérisé en ce que le régulateur de positionnement (9) contient un dispositif limitateur qui, en cas de dépassement d'une valeur de différence déterminée entre le poids de fusion déterminé directement et le poids de fusion déterminé à à partir de la longueur de fusion de l'électrode, effectue des corrections.
7. Dispositif pour la mise en oeuvre du procédé selon la revendication 1 ou 2, caractérisé en ce que, pour effectuer la mesure en continu du poids de l'électrode, il est prévu un dispositif dynamométrique (27, 27') intercalé entre un dispositif de levage et d'abaissement pour déplacer l'électrode (28) qui est relié au régulateur de taux de fusion (14) par l'intermédiaire d'un dispositif émettant un signal correspondant approximativement à la différentielle de temps de la valeur mesurée.
8. Dispositif selon la revendication 7, caractérisé en ce que le dispositif de levage et d'abaissement pour l'électrode (28) estchargé par le dispositif dynamométrique et par un dispositif pour la mise en contact de l'électrode, le courant étant amené au dispositif de contact par l'intermédiaire de bandes de cuivre (36') élastiques et souples.
9. Dispositif selon la revendication 7 ou 8, caractérisé en ce que l'électrode (28) munie d'une tige d'ancrage (39) traversant une douille (40) sur laquelle agissent des mâchoires de contact (30) est suspendue à un crochet de traction (37) et est reliée à la douille (40) par des bandes de cuivre (36') souples.
10. Dispositif selon la revendication 7, caractérisé en ce que l'électrode (28) peut être reliée par des bandes de cuivre (36') souples à des mâchoires de contact (30) prenant appui sur le chariot porte-électrode (21 ) et le dispositif de levage et d'abaissement pourvu du dispositif dynamométrique (27, 27') agit directement sur l'électrode (28).
EP82890025A 1981-02-25 1982-02-19 Procédé et dispositif pour régler la vitesse de fusion d'une électrode par refusion sous laitier électroconducteur Expired EP0059181B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT866/81A AT392751B (de) 1981-02-25 1981-02-25 Verfahren und vorrichtung zur regelung der abschmelzrate einer elektrode beim elektroschlacken-umschmelzen
AT866/81 1981-02-25

Publications (2)

Publication Number Publication Date
EP0059181A1 EP0059181A1 (fr) 1982-09-01
EP0059181B1 true EP0059181B1 (fr) 1984-12-05

Family

ID=3501619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82890025A Expired EP0059181B1 (fr) 1981-02-25 1982-02-19 Procédé et dispositif pour régler la vitesse de fusion d'une électrode par refusion sous laitier électroconducteur

Country Status (7)

Country Link
US (1) US4483708A (fr)
EP (1) EP0059181B1 (fr)
AT (1) AT392751B (fr)
BR (1) BR8200937A (fr)
CA (1) CA1169899A (fr)
DE (1) DE3261404D1 (fr)
ZA (1) ZA821238B (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331661A (en) * 1992-02-27 1994-07-19 Sandia Corporation Method and apparatus for controlling electroslag remelting
KR100374513B1 (ko) * 2000-08-25 2003-03-04 재단법인 포항산업과학연구원 주형의 탕면 아래로 침지된 전극의 침지깊이 측정장치 및그 방법
US6496530B2 (en) 2001-04-03 2002-12-17 Sandia Corporation Control of electrode depth in electroslag remelting
US7180931B1 (en) 2004-05-25 2007-02-20 Sandia Corporation Electrode immersion depth determination and control in electroslag remelting furnace
US8077754B1 (en) * 2006-08-08 2011-12-13 Williamson Rodney L Pool power control in remelting systems
CN102887996B (zh) * 2011-07-19 2016-03-16 因温斯特技术公司 聚醚多元醇过滤中的聚合物回收方法
DE102013007394A1 (de) * 2013-04-30 2014-10-30 Ald Vacuum Technologies Gmbh Umschmelzofen und Kardangelenk insbesondere für die Elektrodenstangenhalterung eines Umschmelzofens
CN105039732B (zh) * 2015-08-17 2017-07-11 东北大学 电渣重熔用低硅预熔渣的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1924364A1 (de) * 1968-05-14 1969-11-27 Ass Elect Ind Regeleinrichtung fuer eine Vorrichtung zur Elektroraffination von Metallen
FR1597914A (fr) * 1968-12-18 1970-06-29
DE1962135C3 (de) * 1969-12-11 1980-01-17 Leybold-Heraeus Gmbh, 5000 Koeln Verfahren zur Reinigung von Metallen in einem Elektroschlacke-umschmelzofen
US4135915A (en) * 1973-12-12 1979-01-23 Gec Mechanical Handling Limited Kinetic energy monitor
US3890457A (en) * 1974-02-21 1975-06-17 Pavel Ioelievich Fain Device for program controlling metal remelting processes
AT345487B (de) * 1975-06-27 1978-09-25 Elin Union Ag Einrichtung zum konstanthalten der bad- bzw. lichtbogenspannung
ATA559376A (de) * 1976-07-29 1978-10-15 Inteco Int Techn Beratung Anlage zum elektroschlacken-umschmelzen von abschmelzelektroden zu bloecken
US4091229A (en) * 1977-03-01 1978-05-23 Wooding Corporation Slag and alloy feeding based on electrode weight
DE2732873A1 (de) * 1977-07-21 1979-02-15 Leybold Heraeus Gmbh & Co Kg Anordnung zur regelung der eintauchtiefe von abschmelzelektroden in elektroschlacke-umschmelzoefen
JPS56500178A (fr) * 1979-01-31 1981-02-19

Also Published As

Publication number Publication date
ATA86681A (de) 1990-11-15
CA1169899A (fr) 1984-06-26
BR8200937A (pt) 1983-01-04
DE3261404D1 (en) 1985-01-17
EP0059181A1 (fr) 1982-09-01
ZA821238B (en) 1983-01-26
AT392751B (de) 1991-06-10
US4483708A (en) 1984-11-20

Similar Documents

Publication Publication Date Title
DE60103451T2 (de) Verfahren und Vorrichtung für das Simulieren von Lasten an Hebezeugen
DE2044199A1 (en) Programme controlled sheet metal bending - using open tooling
DE3245070A1 (de) Verfahren und vorrichtung fuer die genaue einstellung der anodenebene einer elektrolysezelle fuer die herstellung von aluminium
EP0059181B1 (fr) Procédé et dispositif pour régler la vitesse de fusion d'une électrode par refusion sous laitier électroconducteur
DE1932884A1 (de) Einrichtung zur Steuerung einer Stranggussanlage
DE60034273T2 (de) Verfahren und Vorrichtung zum Giessen eines Metallstranges
DE2254485A1 (de) Vorrichtung zum messen der vortriebsgeschwindigkeit einer von einer schwimmenden installation aus durchgefuehrten bohrung
DE3917545A1 (de) Vorrichtung und verfahren zum wenden von lasten
DE2732873C2 (fr)
EP0298218B1 (fr) Four à refusion avec contrôle des poids des blocs à refondre
DE2440273B1 (de) Verfahren zur regelung des stranggiessprozesses beim vergiessen von stahl, sowie anordnung zur durchfuehrung des verfahrens
DE3626888C2 (fr)
EP3002534A1 (fr) Four de refusion avec une cellule de pesage
DE3346650A1 (de) Verfahren und vorrichtung zum bestimmen und regeln eines niveaus einer metallschmelze
DE3307589C2 (de) Verfahren und Vorrichtung zur Ablage einer Pulverschicht auf der Oberfläche einer Schmelze in einer Stranggießkokille
DE2328804B1 (de) Verfahren zum Elektroschlacke-Umschmelzen in einer trichterförmigen Kokille
EP1152850A1 (fr) Procede permettant de detecter et de reguler le niveau d'un metal fluide dans une lingotiere
EP3464654B1 (fr) Dispositif et procédé pour déterminer la vitesse d'écoulement d'une matière liquide
EP0094378B1 (fr) Dispositif de fusion comportant des électrodes consommables
DE1924364A1 (de) Regeleinrichtung fuer eine Vorrichtung zur Elektroraffination von Metallen
DE2448141A1 (de) Handhabungs-einrichtung fuer messkartuschen zum messen physikalischer und/oder chemischer groessen in schmelzen, insbesondere in giesspfannen oder konvertern
DE3917403C2 (de) Verfahren und Vorrichtung zum Füllen einer Stranggießkokille mit metallischer Schmelze
DE4342498C2 (de) Verfahren und Einrichtung zur Regelung der Position der Spitze einer Elektroofen-Elektrode
DE2814699C2 (de) Verfahren zur Erkennung des Gießendes beim Vergießen von Metallen
DE4027679A1 (de) Verfahren und vorrichtung zum regulieren des niveaus von fluessigem glas in einer glasschmelzvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19830131

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 3261404

Country of ref document: DE

Date of ref document: 19850117

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920221

Year of fee payment: 11

Ref country code: CH

Payment date: 19920221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920229

Year of fee payment: 11

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930220

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930228

Ref country code: CH

Effective date: 19930228

Ref country code: BE

Effective date: 19930228

BERE Be: lapsed

Owner name: VEREINIGTE EDELSTAHLWERKE A.G. VEW

Effective date: 19930228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940126

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940127

Year of fee payment: 13

EUG Se: european patent has lapsed

Ref document number: 82890025.8

Effective date: 19930912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950219

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST