EP0059181B1 - Method and apparatus for controlling the melting rate of an electrode by electroslag remelting - Google Patents

Method and apparatus for controlling the melting rate of an electrode by electroslag remelting Download PDF

Info

Publication number
EP0059181B1
EP0059181B1 EP82890025A EP82890025A EP0059181B1 EP 0059181 B1 EP0059181 B1 EP 0059181B1 EP 82890025 A EP82890025 A EP 82890025A EP 82890025 A EP82890025 A EP 82890025A EP 0059181 B1 EP0059181 B1 EP 0059181B1
Authority
EP
European Patent Office
Prior art keywords
electrode
weight
melting
current
melting rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82890025A
Other languages
German (de)
French (fr)
Other versions
EP0059181A1 (en
Inventor
Manfred Dr. Gfrerer
Heimo Dr. Jäger
Friedrich Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vereinigte Edelstahlwerke AG
Original Assignee
Vereinigte Edelstahlwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vereinigte Edelstahlwerke AG filed Critical Vereinigte Edelstahlwerke AG
Publication of EP0059181A1 publication Critical patent/EP0059181A1/en
Application granted granted Critical
Publication of EP0059181B1 publication Critical patent/EP0059181B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting

Definitions

  • the invention relates to a method and a device for regulating the melting rate of a self-consuming electrode in a slag bath during electro-slag remelting.
  • AT-PS 345 487 has already proposed to keep the current required for remelting constant by changing the lowering speed of the electrode to be melted in the event of deviations from the setpoint, etc. If the current is too low, the lowering speed is increased and if the current is too high it is reduced. Furthermore, with such a constant current, if the lowering speed is too low compared to a preselected lowering speed, the bath voltage is increased in order to supply more active power and thus to be able to increase the melting rate and thus the lowering speed. In the opposite case, the bath tension is reduced.
  • the bath depth also changes the immersion depth, e.g. an increase in voltage with a constantly regulated current would result in a reduction in the immersion depth of the electrode in the weld pool, but as a result the melting rate generally does not increase proportionally.
  • the bath resistance changes over the course of the melting time. If the bath voltage and current are kept constant, the electrode is e.g. Immerse the increasing bath resistance deeper into the weld pool, which also changes the melting rate.
  • the melting weight of a self-consuming electrode is regulated according to a weight-time function without regard to an electrode spacing to be maintained.
  • the immersion depth is regulated according to the bath resistance or its gradient without monitoring the melting rate.
  • the known methods for regulating the melting rate each have the disadvantage that the regulation takes place only via the feed rate of the electrode, the voltage or the current intensity.
  • the position of the electrode in the slag bath and its distance from the melt level are not taken into account.
  • the thermal conditions during solidification are of great importance for the metallurgical properties of the block to be melted.
  • the deeper the electrode is immersed in the slag bath the higher the temperature of the still liquid block and the lower the sump made of liquid metal formed in the block.
  • the melting rate is not linearly dependent on the immersion depth, which means that the immersion depth is an important control variable.
  • the method according to the invention for regulating the melting rate of a self-consuming electrode during electroslag remelting in a slag bath, the lowering speed of the electrode to be remelted, which is determined by a length measurement, being regulated in relation to compliance with a target value of the melting rate and the current intensity and / or the voltage consists essentially in the fact that the weight of the portion of the electrode immersed in the slag bath is continuously determined from the actual total electrode weight and the length of the electrode above the slag bath surface and compared with a target value and, if the quotient of U target and J so deviates, changes the product remains constant and the actual melting rate is compared with a target melting rate and in the event of a deviation the product of J so " and Us o n is changed accordingly.
  • the weight fraction of the electrode can be calculated located in the slag bath can be easily calculated, the resistance being changed in the event of a deviation, but the product of the current strength and voltage being kept constant. Then the actual melting rate, that is the molten weight of the electrode per unit of time, is compared with a target melting rate and if there is a deviation, the product is changed accordingly.
  • the remelting process is equivalent to a 2-size controlled system, with bath voltage U WB and current J as input variables (manipulated variables) and the melting rate and electrode immersion depth ⁇ b or immersion weight AG as output variables.
  • bath voltage U WB and current J as input variables (manipulated variables)
  • the melting rate and electrode immersion depth ⁇ b or immersion weight AG as output variables.
  • separate regulators for maintaining voltage U WB and current J are provided, the setpoints of which can be set separately.
  • the lowering speed of the electrode is controlled via the nominal value of the current strength. It must be taken into account here that the block grows against the electrode as it melts. Controlling the lowering speed by means of the current strength ensures that the speed is maintained more precisely, as a result of which the melting conditions can be maintained even more precisely.
  • the weight of the electrode is weighed, which gives the most accurate possible weight determination, and weight measurements such as power supply lines, the electrode holder, buoyancy of the electrode in the slag bath, etc. are easily possible via the weight measurement.
  • a device for carrying out the method, in which a current or voltage regulator connected to an actuating device for lowering the electrode and a voltage regulator connected to an actuating device for adjusting the tap of a variable transformer supplying the remelting system, essentially consists in the fact that the The current and voltage regulator is connected to a control computer which calculates the setpoints for these regulators and is in turn connected to a resistance value calculator which serves as a reference variable for determining the current and voltage setpoints and a melting rate regulator which is preferably influenced by a power value transmitter.
  • the resistance value calculator is connected to a position controller that compares the position of the electrode with respect to the slag bath surface with a setpoint value, which in turn is connected to a calculator for determining the melting weight from the melting length of the electrode and a measuring device for directly determining the melting weight of the electrode, one can particularly precise control of the portion of the electrode immersed in the liquid slag can be carried out based on a setpoint.
  • the position controller contains a correction device which, when a certain difference between the directly determined and the melting weight determined from the melting length of the electrode is exceeded. B. holds on to the last determined value, then automatic control is also possible if the electrode contains large cavities, since the electrode is not pulled out of the slag bath due to the seemingly too high melting rate.
  • both the weight of the electrode can be precisely determined on the one hand, and the melting rate can also be precisely determined and maintained via the device mentioned, since the weight measurement of the electrode takes the current conditions during remelting particularly carefully into account. This accuracy is particularly important at the end of the remelting process, since there is usually only a relatively small and therefore low-weight electrode, and depending on the operational requirements, a relatively low melting rate should also be maintained.
  • the current regulator 1 and the voltage regulator 2 which are connected to actual value transmitters and adjusting devices (not shown), are optionally via the switch 3 with a current setpoint generator 4 or a voltage setpoint generator 5 or a control computer 6 connected.
  • the actuating device connected to the current regulator 1 acts on a lifting and lowering device for actuating the electrode for setting the lowering speed thereof, whereas the actuating device connected to the voltage regulator 2 acts on the tap of a regulating transformer which melts the electro-slag remelting device, not shown known type supplied.
  • the control computer 6 is connected to a resistance computer 7 and via 12, 13 to a power value transmitter 8 and supplies the current or voltage regulator 1, 2 with setpoints Js ° y or U So1 which are dependent on the required power value and the resistance value coming from the resistance value computer 7 ".
  • control computer 6 not shown, there are still the adjustable limits for the upper and lower limits of the active bath power.
  • the proportion of the signal supplied by the power value transmitter 8 to the control computer 6 can be adjusted by the signal mixer 12, 13 to which the manipulated variable output of the melting rate controller 14 is also connected.
  • the regulating and control component (R / S) is set by the signal mixer. With a 100% tax share, the signal from the power value transmitter 8 comes into full effect in the control computer 6 and vice versa.
  • the resistance value calculator 7 is connected to the setpoint generators 4 and 5 and uses these values to calculate a basic resistance value R o , which is based on and coming from the position controller 9 the switch 10 feedable signal is corrected.
  • the position controller 9 is in turn connected to an immersion weight and immersion depth (position) setpoint device 11 and an actual immersion weight or immersion depth (position) transmitter, and the weight of the immersed portion of the electrode is calculated from these values. which is compared with the target values, the quotient of U target and J target being changed in the event of a deviation, but the product is kept constant.
  • the position controller 9 also contains the correction logic and arithmetic device (not shown) which evaluates the two oil melting rates from the weight or length measurement and, if a certain difference is exceeded, carries out corrections, for example, to the last determined value.
  • the meltdown rate controller 14 receives its setpoint from a meltdown rate generator 15 and its actual value from the meltdown rate calculator 16, which preferably provides a signal corresponding to the actual meltdown rate by differentiating or forming differences in finite time intervals of the preferably directly determined meltdown weight of the electrode.
  • FIG. 2 schematically shows various possibilities for arranging the measuring devices for determining the lowering path of the electrode.
  • the cable winch 18 and its drive 19 and a cable guide roller 20 are arranged, via which the cable 23 provided for adjusting the electrode carriage 21 along the guide column 22, which is attached to the electrode carriage 21, is guided.
  • sensors 24 for monitoring the adjustment movement of the electrode are arranged on the cable winch stage 17 or, as indicated by dashed lines, on a cantilever arm connected to the guide column 22.
  • These transducers 24 are connected to the electrode carriage 21 via measuring chains 25, which expediently run exactly vertically, so that each of the measuring transducers 24 corresponds to the same changes in the height of the electrode by the same angular amounts due to the rotation of a sprocket engaged with the measuring chain 25.
  • the installation location designated 1 provides the most accurate measurement values, since with this method the measurement chain 25 practically runs in the electrode axis 26 and therefore deflections of the electrode carriage 21, which occur during the melting of the Reduce the electrode, do not go into the measurement result, which is increasingly the case for installation locations 11 and 111.
  • Fig. 3 shows schematically the possibilities for the attachment of force transducers.
  • a force transducer designed as a tensile load cell 27 can be installed in a pulley-like guidance of the rope 23 directly in the rope strand held at a fixed point (arrangement IV) or, where apart from the negligible weight of the rope strand, which of course changes during the course of the lowering of the rope strand
  • Electrode 28 or the electrode carriage 21 changes, and apart from frictional forces between the electrode carriage 21 and the guide column 22 detects half the weight of the electrode carriage 21 together with the electrode 28. It is of course possible to balance the weight portion of the electrode carriage 21 in a downstream evaluation circuit and to form the time differential or the difference in finite but very small time intervals from the corrected signal.
  • a tensile load cell 27 remains unaffected by the change in the cable weight if, like at installation location V, it is interposed between the loose pulley of the pulley-like cable guide and the electrode carriage 21, although it must absorb the full weight of the electrode carriage 21 together with the electrode 28 .
  • the force transducer must also absorb a high tare weight, the electrode carriage 21.
  • the contact jaws 30 are attached to a pressing device with the interposition of insulation 31, which are essentially connected by two levers connected via a hydraulic cylinder 32 and articulated to a rocker bearing 33 34 is formed.
  • the rocker bearing 33 enables the levers 34 to pivot about the longitudinal axis of the rocker bearing, which is fastened to the electrode carriage 21.
  • the electrode 28 is lifted from its support on the electrode carriage 21 by means of the lifting hydraulics 35 mounted on the electrode carriage 21 via the cable 23, into which a tensile load cell 27 is installed, and an insulated hook 37. The lifting is necessary in order to prevent force shunts by a to eliminate electrode head resting on the electrode carriage 21.
  • the electrode 28 itself is raised and lowered with the electrode carriage 21.
  • the indicated weighing platform with the pressure load cells 27 ' represents an alternative to weighing with tensile load cells.
  • the pressure load cells 27' must be relieved.
  • the current supply lines 36 are connected directly to the contact jaws 30 and are preferably extremely flexible.
  • the weight measurement of the electrode 28 is loaded only by a very low tare weight, since the weight of the contact jaws 30 together with the portions of the lever 34 on the contact jaw side is approximately the weight of the Hydraulic cylinder 32 together with the hinged portions of the lever 34 corresponds.
  • frictional forces occurring in the joints of the pressing device are included in the weight measurement.
  • flexible copper strips 36 ' are welded to the head of the electrode 28 and can be connected to contact jaws 30 which are seated on an insulation 31 attached to the electrode carriage 21 and which can be closed via hydraulic cylinders 32'.
  • the current leads 36 to the contact jaws 30 can be stiff since they are not included in the measurement.
  • the electrode 28 hangs on an insulated hook 37, which is connected to the lifting hydraulics via a rope provided with a tensile load cell, or is supported on a weighing platform 29.
  • changes in the bending stiffness of the copper strips 36' are caused by the heating unavoidable, which go into the measurement, but this embodiment is characterized by a particularly low tariff load and simplest structure.
  • FIGS. 8 and 9 A further embodiment, in which there is a very low tare load on the force measuring transducers, and therefore those with a correspondingly small measuring range can be used, which also respond more sensitively to changes in force, are shown in FIGS. 8 and 9.
  • FIG Electrode 28 is provided with an anchor rod 39 which passes through a sleeve 40 supported on electrode carriage 21.
  • the contact jaws 30 engage the sleeve 40, which is connected to the electrode 28 via flexible copper strips 36 ′, which are covered with a protective box 38.
  • the electrode 28 is weighed by means of the weight measuring device, which acts via an insulated hook and has a tensile load cell.
  • the electrode is raised and lowered via the electrode carriage 21, on which the sleeve 40 or the contact jaws 30 are supported.
  • the protective box 38 is also no longer included in the measurement, since it is supported on the sleeve 40.
  • the lifting and lowering device provided with the force measuring device 27 or 27 ', which is formed either by the separate lifting hydraulics 35 or by the cable winch of the electrode carriage, not shown in these FIGS. 10 and 11, engages if a weighing platform 29 and pressure load cells 27 'are used on the contact jaw 30', which is supported on the or by means of the insulation 31 from the weighing platform 29 or directly from the electrode carriage.
  • the contact jaw 30 ' is e.g. tapered, self-adjusting surface, in which contact blocks 41 are arranged, but a slot 42 corresponding approximately to the diameter of the rod of the electrode 28 is provided, through which the one e.g.
  • the rod having a conical head of the electrode 28 can be inserted laterally into the conical contact jaws. If the weight of the electrode 28 is not sufficient to achieve a perfect electrical contact in the contact jaw 30 ', the contact pressure of the conical head of the electrode 28 on the contact blocks 41 of the contact jaw 30' can be increased by means of the clamping arms 44 which can be actuated via the hydraulic cylinders 43.
  • the contact jaw 30 ' is expediently gimbaled via these tensile load cells 27 on the lifting hydraulics 35 or supported on the weighing platform.
  • FIGS. 12 and 13 A similar embodiment is shown in FIGS. 12 and 13, only that instead of the one conical contact jaw 30 ', two contact jaws 30 are provided, which are provided with cylindrical surfaces and can be moved relative to one another by means of two hydraulic cylinders 32', between which the head of the electrode 28 can be clamped.
  • two contact jaws 30 are provided, which are provided with cylindrical surfaces and can be moved relative to one another by means of two hydraulic cylinders 32', between which the head of the electrode 28 can be clamped.
  • tensile load cells 27 which, as can be seen from FIG. 13, can also be found with one, the ropes connected to these or these engage on a holder 45 guiding the contact jaws 30, on which also the hydraulic cylinders 32 'are attached. If pressure load cells 27 'are used, these can possibly be engage directly on the bracket 45 or support it.
  • the embodiment according to FIGS. 14 and 15 provides a head of the electrode 28 which is provided with an axial and two non-circular bores 50 and 49 running transversely thereto, on which the insulated hook of the weight measuring device, which has tensile load cells (not shown), also engages .
  • the contact jaws 30 ′′ are penetrated by a pull rod 47 provided with a hammer head 46, which is acted upon by a spring 48.
  • This spring 48 is accommodated in a housing 51 and is relieved of the pull rod 47 via a sleeve 52 and a rocker 53.
  • a rotating device 54 which is connected to the pull rod 47 and which enables the pull rod 47 to be rotated by 90 °, is fastened to the housing 51 in order to be able to insert it into the non-circular bores 49 and then to rotate it, so that after unlocking the Spring 48 the hammer head 46 of the pull rod rests against the wall of the bore 50 and presses the contact jaws 30 "against the head of the electrode 28, the contact jaws 30" being only loosely guided by the base plate 55.

Description

Die Erfindung bezieht sich auf ein Verfahren und eine Vorrichtung zur Regelung der Abschmelzrate einer selbstverzehrenden Elektrode in einem Schlakkenbad beim Elektroschlacken-Umschmelzen.The invention relates to a method and a device for regulating the melting rate of a self-consuming electrode in a slag bath during electro-slag remelting.

Durch die AT-PS 345 487 wurde bereits vorgeschlagen, den zum Umschmelzen erforderlichen Strom dadurch konstant zu halten, dass bei Abweichungen vom Sollwert die Absenkgeschwindigkeit der abzuschmelzenden Elektrode geändert wird, u.zw. wird bei zu niedrigem Strom die Absenkgeschwindigkeit erhöht und bei zu hohem Strom vermindert. Weiters wird bei solcherart konstant gehaltenem Strom bei gegenüber einer vorgewählten Absenkgeschwindigkeit zu geringer Absenkgeschwindigkeit die Badspannung erhöht um mehr Wirkleistung zuzuführen und so die Abschmelzrate und damit die Absenkgeschwindigkeit steigern zu können. Im umgekehrten Fall wird die Badspannung vermindert.AT-PS 345 487 has already proposed to keep the current required for remelting constant by changing the lowering speed of the electrode to be melted in the event of deviations from the setpoint, etc. If the current is too low, the lowering speed is increased and if the current is too high it is reduced. Furthermore, with such a constant current, if the lowering speed is too low compared to a preselected lowering speed, the bath voltage is increased in order to supply more active power and thus to be able to increase the melting rate and thus the lowering speed. In the opposite case, the bath tension is reduced.

Nach diesem Verfahren ist aber keine gezielt proportionale Beeinflussung der Abschmelzrate gegeben, weil durch die Verstellung der Badspannung sich auch wieder die Eintauchtiefe verändert, z.B. würde eine Spannungserhöhung bei konstant geregeltem Strom eine Verringerung der Eintauchtiefe der Elektrode im Schmelzbad bewirken, wodurch aber die Abschmelzrate im allgemeinen nicht im proportionalen Masse zunimmt. Aufgrund metallurgischer Reaktionen im Schmelzbad ändert sich im Laufe der Schmelzzeit der Badwiderstand. Bei konstant gehaltener Badspannung und Strom wird die Elektrode mit z.B. steigendem Badwiderstand tiefer ins Schmelzbad eintauchen, womit sich auch die Abschmelzrate wieder verändert.According to this method, there is no specifically proportional influence on the melting rate, because the bath depth also changes the immersion depth, e.g. an increase in voltage with a constantly regulated current would result in a reduction in the immersion depth of the electrode in the weld pool, but as a result the melting rate generally does not increase proportionally. Due to metallurgical reactions in the weld pool, the bath resistance changes over the course of the melting time. If the bath voltage and current are kept constant, the electrode is e.g. Immerse the increasing bath resistance deeper into the weld pool, which also changes the melting rate.

Die beschriebenen Effekte lassen keine konstant bleibenden Umschmelzbedingungen zu. Aus metallurgischen Gründen ist aber eine kontrollierbare, z.B. konstant bleibende Abschmelzrate von grosser Wichtigkeit, weil die Einflussgrössen auf Abschmelzrate und auch Eintauchtiefe der Elektrode sehr vielfältig und nicht genau kalkulierbar sind, müssten Abschmelzrate und Eintauchtiefe mit regelungstechnischen Methoden überwacht werden.The effects described do not allow remelting conditions to remain constant. For metallurgical reasons, however, a controllable, e.g. Constant melting rate of great importance, because the influencing factors on the melting rate and immersion depth of the electrode are very diverse and cannot be calculated exactly, the melting rate and immersion depth would have to be monitored using control engineering methods.

Beispielsweise wird in DE-PS 1 934 218 das Abschmelzgewicht einer selbstverzehrenden Elektrode nach einer Gewichtszeitfunktion ohne Rücksicht auf einen einzuhaltenden Elektrodenabstand geregelt. In DE-PS 2 456 512 wird die Eintauchtiefe nach dem Badwiderstand bzw. dessen Gradienten geregelt, ohne hierbei die Abschmelzrate zu überwachen. Oben angeführte Gründe zeigen bereits, dass eine Eintauchtiefenregelung nach dem Badwiderstand sehr ungenau ist.For example, in DE-PS 1 934 218, the melting weight of a self-consuming electrode is regulated according to a weight-time function without regard to an electrode spacing to be maintained. In DE-PS 2 456 512 the immersion depth is regulated according to the bath resistance or its gradient without monitoring the melting rate. The reasons given above already show that immersion depth control according to the bath resistance is very imprecise.

Den bekannten Verfahren zur Regelung der Abschmelzrate haftet jeweils der Nachteil an, dass die Regelung lediglich über die Vorschubgeschwindigkeit der Elektrode, die Spannung bzw. die Stromstärke erfolgt. Die Lage der Elektrode im Schlackenbad und ihrAbstandvom Schmelzenspiegel bleibt jedoch unberücksichtigt. Für die metallurgischen Eigenschaften des zu erschmelzenden Blockes sind jedoch die thermischen Bedingungen während des Erstarrens von hoher Bedeutung. Je tiefer die Elektrode in das Schlackenbad eintaucht, umso höher wird die Temperatur des noch flüssigen Blockes sein und umso tiefer ist auch der im Block gebildete Sumpf aus flüssigem Metall. Weiters ist die Abschmelzrate nicht linear abhängig von der Eintauchtiefe, womit die Eintauchtiefe eine wesentliche Steuergrösse darstellt.The known methods for regulating the melting rate each have the disadvantage that the regulation takes place only via the feed rate of the electrode, the voltage or the current intensity. However, the position of the electrode in the slag bath and its distance from the melt level are not taken into account. However, the thermal conditions during solidification are of great importance for the metallurgical properties of the block to be melted. The deeper the electrode is immersed in the slag bath, the higher the temperature of the still liquid block and the lower the sump made of liquid metal formed in the block. Furthermore, the melting rate is not linearly dependent on the immersion depth, which means that the immersion depth is an important control variable.

Das erfindungsgemässe Verfahren zur Regelung der Abschmelzrate einer selbstverzehrenden Elektrode beim Elektroschlacken-Umschmelzen in einem Schlackenbad, wobei Absenkgeschwindigkeit der umzuschmelzenden Elektrode, welche durch eine Längenmessung bestimmt wird, in bezug auf die Einhaltung eines Sollwertes der Abschmelzrate und die Stromstärke und/oder die Spannung geregelt werden, besteht im wesentlichen darin, dass laufend das Gewicht des in das Schlackenbad eintauchenden Anteils der Elektrode aus dem tatsächlichen Elektrodengesamtgewicht und der Länge der Elektrode über der Schlackenbadoberfläche ermittelt und mit einem Sollwert verglichen und bei einer Abweichung der Quotient von USoll und Jso" verändert wird, wobei das Produkt konstant bleibt und die Ist-Abschmelzrate mit einer Soll-Abschmelzrate verglichen und bei einer Abweichung das Produkt aus Jso" und Uson entsprechend verändert wird. Aus der Differenz des gewogenen Elektrodengewichtes, wobei dies auch über das Gewicht des bereits erschmolzenen Blockes bestimmt werden kann, und der Länge der Elektrode über der Schlackenbadoberfläche, welche zur Berechnung des Gewichtes der Elektrode oberhalb des Schlackenbades dient, kann der Gewichtsanteil der Elektrode, die sich im Schlackenbad befindet, leicht errechnet werden, wobei bei einer Abweichung der Widerstand verändert wird, jedoch das Produkt aus Stromstärke und Spannung konstant gehalten wird. Sodann wird die Ist-Abschmelzrate, das ist abgeschmolzenes Gewicht der Elektrode pro Zeiteinheit, mit einer Soll-Abschmelzrate verglichen und bei einer Abweichung wird das Produkt entsprechend verändert.The method according to the invention for regulating the melting rate of a self-consuming electrode during electroslag remelting in a slag bath, the lowering speed of the electrode to be remelted, which is determined by a length measurement, being regulated in relation to compliance with a target value of the melting rate and the current intensity and / or the voltage , consists essentially in the fact that the weight of the portion of the electrode immersed in the slag bath is continuously determined from the actual total electrode weight and the length of the electrode above the slag bath surface and compared with a target value and, if the quotient of U target and J so deviates, changes the product remains constant and the actual melting rate is compared with a target melting rate and in the event of a deviation the product of J so " and Us o n is changed accordingly. From the difference in the weighted electrode weight, which can also be determined via the weight of the block that has already melted, and the length of the electrode above the slag bath surface, which is used to calculate the weight of the electrode above the slag bath, the weight fraction of the electrode can be calculated located in the slag bath can be easily calculated, the resistance being changed in the event of a deviation, but the product of the current strength and voltage being kept constant. Then the actual melting rate, that is the molten weight of the electrode per unit of time, is compared with a target melting rate and if there is a deviation, the product is changed accordingly.

Dem Prinzip nach ist der Umschmelzprozess einer 2-Grössen-Regelstrecke gleichzusetzen, mit Badspannung UWB und Strom J als Eingangsgrössen (Stellgrössen) und der Abschmelzrate und Elektrodeneintauchtiefe Δb bzw. Eintauchgewicht AG als Ausgangsgrössen. Im allgemeinen werden getrennte Regler zur Aufrechterhaltung von Spannung UWB und Strom J vorgesehen, dessen Sollwerte getrennt einstellbar sind.In principle, the remelting process is equivalent to a 2-size controlled system, with bath voltage U WB and current J as input variables (manipulated variables) and the melting rate and electrode immersion depth Δb or immersion weight AG as output variables. In general, separate regulators for maintaining voltage U WB and current J are provided, the setpoints of which can be set separately.

Zur Konstanthaltung der Elektrodeneintauchtiefe im Schmelzbad bei nachfolgender Veränderung der Badwirkleistung PWB ist eine Entkopplung der Regelgrössen notwendig. Diese kann mit Hilfe eines Steuerrechners, der aus gegebener zuzuführender Badwirkleistung PwBs und Schmelzbadwirkwiderstand RB nach den Beziehungen

Figure imgb0001
Figure imgb0002
die Spannungs- und Stromsollwerte UWBS, Js für die Regler errechnet, erfolgen, Cu, Cj sind Korrekturwerte für Nichtlinearitäten des Widerstandes RB.In order to keep the electrode immersion depth in the weld pool constant with a subsequent change in the effective bath power P WB , a decoupling of the control variables is necessary. This can be done with the help of a control computer, which from the given active bath power P wBs and melt pool active resistance R B according to the relationships
Figure imgb0001
Figure imgb0002
the voltage and current setpoints U WBS , Js are calculated for the controllers, C u , C j are correction values for non-linearities of the resistor R B.

Gemäss einem weiteren Merkmal der Erfindung wird die Absenkgeschwindigkeit der Elektrode über den Sollwert der Stromstärke gesteuert. Es muss hierbei berücksichtigt werden, dass der Block während des Abschmelzens der Elektrode gegen diese hin wächst. Durch die Steuerung der Absenkgeschwindigkeit über die Stromstärke ist eine exaktere Einhaltung der Geschwindigkeit gegeben, wodurch die Abschmelzbedingungen noch exakter eingehalten werden können.According to a further feature of the invention, the lowering speed of the electrode is controlled via the nominal value of the current strength. It must be taken into account here that the block grows against the electrode as it melts. Controlling the lowering speed by means of the current strength ensures that the speed is maintained more precisely, as a result of which the melting conditions can be maintained even more precisely.

Gemäss einem bevorzugten Merkmal der Erfindung wird das Gewicht der Elektrode gewogen, womit eine möglichst genaue Gewichtsbestimmung gegeben ist und über die Gewichtsmessung sind gewichtsmässige Berücksichtigungen wie Stromzuführungsleitungen, der Elektrodenhalter, Auftrieb der Elektrode im Schlackenbad, usw. leicht möglich.According to a preferred feature of the invention, the weight of the electrode is weighed, which gives the most accurate possible weight determination, and weight measurements such as power supply lines, the electrode holder, buoyancy of the electrode in the slag bath, etc. are easily possible via the weight measurement.

Eine erfindungsgemässe Vorrichtung zur Durchführung des Verfahrens, bei welcher ein mit einer Stelleinrichtung zur Absenkung der Elektrode verbundener Strom- bzw. Spannungsregler und ein mit einer Stelleinrichtung zur Verstellung des Abgriffes eines die Umschmelzanlage versorgenden Stelltransformators verbundener Spannungsregler vorgesehen ist, besteht im wesentlichen darin, dass der Strom- und der Spannungsregler mit einem Steuerrechner verbunden ist, welcher die Sollwerte für diese Regler errechnet und seinerseits mit einem den als Bezugsgrösse für die Ermittlung der Strom- und Spannungs-Sollwerte dienenden Widerstandswert liefernden Widerstandswertrechner und einem vorzugsweise von einem Leistungswertgeber beeinflussten Abschmelzratenregler verbunden ist. Dadurch wird eine besonder vorteilhafte Entkopplung der Regelgrössen ermöglicht, wobei sowohl der Widerstand als auch die Abschmelzrate einfach gesteuert werden können, so dass die erwünschten Temperaturbedingungen im flüssigen Block eingehalten werden können.A device according to the invention for carrying out the method, in which a current or voltage regulator connected to an actuating device for lowering the electrode and a voltage regulator connected to an actuating device for adjusting the tap of a variable transformer supplying the remelting system, essentially consists in the fact that the The current and voltage regulator is connected to a control computer which calculates the setpoints for these regulators and is in turn connected to a resistance value calculator which serves as a reference variable for determining the current and voltage setpoints and a melting rate regulator which is preferably influenced by a power value transmitter. This enables a particularly advantageous decoupling of the controlled variables, with both the resistance and the melting rate being easily controlled, so that the desired temperature conditions in the liquid block can be maintained.

Ist der Widerstandswertrechner mit einem die Lage der Elektrode bezogen auf die Schlackenbadoberfläche mit einem Sollwert vergleichenden Lageregler verbunden, der seinerseits mit einem Rechner zur Ermittlung des Abschmelzgewichtes aus der Abschmelzlänge der Elektrode sowie einer Messeinrichtung zur direkten Ermittlung des Abschmelzgewichtes der Elektrode verbunden ist, so kann eine besonders exakte Steuerung des in die flüssige Schlacke eintauchenden Anteils der Elektrode bezogen auf einen Sollwert durchgeführt werden.If the resistance value calculator is connected to a position controller that compares the position of the electrode with respect to the slag bath surface with a setpoint value, which in turn is connected to a calculator for determining the melting weight from the melting length of the electrode and a measuring device for directly determining the melting weight of the electrode, one can particularly precise control of the portion of the electrode immersed in the liquid slag can be carried out based on a setpoint.

Enthält der Lageregler eine Korrektureinrichtung, welche bei Überschreitung eines bestimmten Differenzwertes zwischen dem direkt ermittelten und dem aus der Abschmelzlänge der Elektrode ermittelten Abschmelzgewicht z. B. auf den zuletzt ermittelten Wert festhält, so ist auch dann eine selbsttätige Regelung möglich, wenn die Elektrode grosse Lunker enthält, da die Elektrode nicht aufgrund der scheinbar zu hohen Abschmelzrate aus dem Schlackenbad herausgezogen wird.The position controller contains a correction device which, when a certain difference between the directly determined and the melting weight determined from the melting length of the electrode is exceeded. B. holds on to the last determined value, then automatic control is also possible if the electrode contains large cavities, since the electrode is not pulled out of the slag bath due to the seemingly too high melting rate.

Wird zur kontinuierlichen Messung des Elektrodengewichtes zwischen einer Hebe- und Senkvorrichtung zur Verstellung der Elektrode eine Kraftmesseinrichtung zwischengeschaltet, die in der Lage ist, Totlasten, wie Elektrodenhalterung usw., auf Null zu tarieren und ist über eine ein dem Zeitdifferential des gemessenen Wertes zumindest annähernd entsprechendes Signal abgebende Einrichtung mit dem Abschmelzratenregler verbunden, so kann sowohl einerseits das Gewicht der Elektrode genau bestimmt, andererseits über die genannte Einrichtung auch die Abschmelzrate genau bestimmt und eingehalten werden, da die Gewichtsmessung der Elektrode die aktuellen Verhältnisse beim Umschmelzen besonders genau berücksichtigt. Diese Genauigkeit ist insbesondere am Ende des Umschmelzprozesses von hoher Bedeutung, da hier meist nur eine relativ kleine und daher gewichtsarme Elektrode vorliegt, wobei auch, je nach den betrieblichen Erfordernissen, eine relativ geringe Abschmelzrate eingehalten werden soll.For the continuous measurement of the electrode weight between a lifting and lowering device for adjusting the electrode, a force measuring device is interposed, which is able to tare dead loads, such as electrode holder, etc., to zero and is at least approximately the same as the time differential of the measured value Signal-emitting device connected to the melting rate controller, both the weight of the electrode can be precisely determined on the one hand, and the melting rate can also be precisely determined and maintained via the device mentioned, since the weight measurement of the electrode takes the current conditions during remelting particularly carefully into account. This accuracy is particularly important at the end of the remelting process, since there is usually only a relatively small and therefore low-weight electrode, and depending on the operational requirements, a relatively low melting rate should also be maintained.

Im folgenden wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:

  • Fig. 1 ein Blockschaltbild einer Einrichtung zur Durchführung des erfindungsgemässen Verfahrens;
  • Fig. 2 schematisch mehrere mögliche Anordnungen von Einrichtungen zur Ermittlung des Absenkweges der Elektrode;
  • Fig. 3 schematisch verschiedene Anordnungen von Messeinrichtungen zur direkten Gewichtsmessung der Elektrode und
  • Fig. 4 bis 16 verschiedene Möglichkeiten der Anordnung der Gewichtsmesseinrichtungen bei verschieden ausgestalteten Elektrodenhalterungen.
The invention is explained in more detail below with reference to the drawings. Show it:
  • 1 shows a block diagram of a device for carrying out the method according to the invention;
  • 2 schematically shows several possible arrangements of devices for determining the lowering path of the electrode;
  • Fig. 3 shows schematically different arrangements of measuring devices for direct weight measurement of the electrode and
  • Fig. 4 to 16 different ways of arranging the weight measuring devices with differently designed electrode holders.

Bei der Ausführungsform gemäss Fig. 1 sind der Stromregler 1 und der Spannungsregler 2, die mit nicht dargestellten Istwert-Gebern und Stelleinrichtungen verbunden sind, über den Schalter 3 wahlweise mit einem Strom-Sollwertgeber 4 bzw. einem Spannungs-Sollwertgeber 5 oder einem Steuerrechner 6 verbunden. Dabei wirkt die mit dem Stromregler 1 verbundene Stelleinrichtung auf eine Hebe-und Senkeinrichtung zur Betätigung der Elektrode zur Einstellung der Absenkgeschwindigkeit derselben ein, wogegen die mit dem Spannungsregler 2 verbundene Stelleinrichtung auf den Abgriff eines Regeltransformators einwirkt, der die nicht dargestellte Elektroschlacken-Umschmelz-Einrichtung bekannter Bauart versorgt. Der Steuerrechner 6 ist mit einem Widerstandsrechner 7 und über 12, 13 mit einem Leistungswertgeber 8 verbunden und versorgt den Strom- bzw. den Spannungsregler 1, 2 mit vom erforderlichen Leistungswert und dem vom Widerstandswertrechner 7 kommenden Widerstandswert abhängigen Sollwerten Js°y bzw. USo1".In the embodiment according to FIG. 1, the current regulator 1 and the voltage regulator 2, which are connected to actual value transmitters and adjusting devices (not shown), are optionally via the switch 3 with a current setpoint generator 4 or a voltage setpoint generator 5 or a control computer 6 connected. The actuating device connected to the current regulator 1 acts on a lifting and lowering device for actuating the electrode for setting the lowering speed thereof, whereas the actuating device connected to the voltage regulator 2 acts on the tap of a regulating transformer which melts the electro-slag remelting device, not shown known type supplied. The control computer 6 is connected to a resistance computer 7 and via 12, 13 to a power value transmitter 8 and supplies the current or voltage regulator 1, 2 with setpoints Js ° y or U So1 which are dependent on the required power value and the resistance value coming from the resistance value computer 7 ".

Im Steuerrechner 6 nicht eingezeichnet befinden sich noch die einstellbaren Schranken für die obere und untere Grenze der Badwirkleistung. Der Anteil des vom Leistungswertgeber 8 an den Steuerrechner 6 gelieferten Signals ist einstellbar durch den Signalmischer 12, 13 an den auch der Stellgrössenausgang des Abschmelzratenreglers 14 angeschlossen ist. Durch den Signalmischer wird der Regel- und Steueranteil (R/S) eingestellt. Bei 100% Steueranteil kommt das Signal des Leistungswertgebers 8 im Steuerrechner 6 voll zur Wirkung und umgekehrt.In the control computer 6, not shown, there are still the adjustable limits for the upper and lower limits of the active bath power. The proportion of the signal supplied by the power value transmitter 8 to the control computer 6 can be adjusted by the signal mixer 12, 13 to which the manipulated variable output of the melting rate controller 14 is also connected. The regulating and control component (R / S) is set by the signal mixer. With a 100% tax share, the signal from the power value transmitter 8 comes into full effect in the control computer 6 and vice versa.

Der Widerstandswertrechner 7 ist mit den Sollwertgebern 4 und 5 verbunden und errechnet aus diesen Werten einen Widerstandsgrundwert Ro, der nach einem vom Lageregler 9 kommenden und über den Schalter 10 zuführbaren Signal korrigiert wird. Der Lageregler 9 ist seinerseits mit einem Eintauchgewicht- und Eintauchtiefen-(Lage)-Sollwertgeber 11 und einem Ist-Eintauchgewicht- bzw. Eintauch- tiefen-(Lage)-Geber verbunden und aus diesen Werten wird das Gewicht des eintauchenden Anteils der Elektrode errechnet, welcher mit den Sollwerten verglichen wird, wobei bei einer Abweichung der Quotient von USoll und JSoll verändert wird, jedoch wird das Produkt konstant gehalten. Ausserdem enthält der Lageregler 9 noch die nicht gezeichnete Korrektur-Logik- und Rechen-Einrichtung, die die beiden lstabschmelzraten aus der Gewichts- bzw. Längenmessung bewertet und bei Überschreitung eines bestimmten Differenzbetrages Korrekturen durchführt, z.B. auf dem zuletzt ermittelten Wert festhält.The resistance value calculator 7 is connected to the setpoint generators 4 and 5 and uses these values to calculate a basic resistance value R o , which is based on and coming from the position controller 9 the switch 10 feedable signal is corrected. The position controller 9 is in turn connected to an immersion weight and immersion depth (position) setpoint device 11 and an actual immersion weight or immersion depth (position) transmitter, and the weight of the immersed portion of the electrode is calculated from these values. which is compared with the target values, the quotient of U target and J target being changed in the event of a deviation, but the product is kept constant. In addition, the position controller 9 also contains the correction logic and arithmetic device (not shown) which evaluates the two oil melting rates from the weight or length measurement and, if a certain difference is exceeded, carries out corrections, for example, to the last determined value.

Der Abschmelzratenregler 14 bekommt seinen Sollwert von einem Abschmelzratengeber 15 und seinen Istwert vom Abschmelzratenrechner 16, der vorzugsweise ein der tatsächlichen Abschmelzrate entsprechendes Signal durch Differenzieren oder Differenzbildung in endlichen Zeitabständen des vorzugsweise direkt ermittelten Abschmelzgewichtes der Elektrode liefert.The meltdown rate controller 14 receives its setpoint from a meltdown rate generator 15 and its actual value from the meltdown rate calculator 16, which preferably provides a signal corresponding to the actual meltdown rate by differentiating or forming differences in finite time intervals of the preferably directly determined meltdown weight of the electrode.

Aus Fig. 2 sind schematisch verschiedene Möglichkeiten der Anordnung der Messeinrichtungen zur Bestimmung des Absenkweges der Elektrode ersichtlich.2 schematically shows various possibilities for arranging the measuring devices for determining the lowering path of the electrode.

An der Seilwindenbühne 17 ist die Seilwinde 18 sowie deren Antrieb 19 und eine Seilführungsrolle 20 angeordnet, über welche das zur Verstellung des Elektrodenwagens 21 entlang der Führungssäule 22 vorgesehene Seil 23 geführt ist, welches am Elektrodenwagen 21 befestigt ist. Weiters sind noch Messwertgeber 24 zur Überwachung der Verstellbewegung der Elektrode auf der Seilwindenbühne 17 oder, wie strichliert angedeutet ist, auf einem mit der Führungssäule 22 verbundenen Kragarm angeordnet. Diese Messwertgeber 24 sind über Messketten 25 mit dem Elektrodenwagen 21 verbunden, die zweckmässig genau vertikal verlaufen, so dass jedes durch das Drehen eines mit der Messkette 25 in Eingriff stehenden Kettenrades der Messwertgeber 24 um gleiche Winkelbeträge der gleichen Änderungen der Höhenlage der Elektrode entspricht.On the cable winch stage 17, the cable winch 18 and its drive 19 and a cable guide roller 20 are arranged, via which the cable 23 provided for adjusting the electrode carriage 21 along the guide column 22, which is attached to the electrode carriage 21, is guided. Furthermore, sensors 24 for monitoring the adjustment movement of the electrode are arranged on the cable winch stage 17 or, as indicated by dashed lines, on a cantilever arm connected to the guide column 22. These transducers 24 are connected to the electrode carriage 21 via measuring chains 25, which expediently run exactly vertically, so that each of the measuring transducers 24 corresponds to the same changes in the height of the electrode by the same angular amounts due to the rotation of a sprocket engaged with the measuring chain 25.

Bezüglich der mit I, 11, 111 bezeichneten Einbauorte eines Messwertgebers 24 liefert der mit 1 bezeichnete Einbauort die genauesten Messwerte, da bei diesem Verfahren die Messkette 25 praktisch in der Elektrodenachse 26 verläuft und daher Durchbiegungen des Elektrodenwagens 21, die sich im Laufe des Abschmelzens der Elektrode vermindern, nicht in das Messergebnis eingehen, was bei den Einbauorten 11 und 111 in steigendem Ausmass der Fall ist.With regard to the installation locations of a transducer 24, designated I, 11, 111, the installation location designated 1 provides the most accurate measurement values, since with this method the measurement chain 25 practically runs in the electrode axis 26 and therefore deflections of the electrode carriage 21, which occur during the melting of the Reduce the electrode, do not go into the measurement result, which is increasingly the case for installation locations 11 and 111.

Fig. 3 zeigt schematisch die Möglichkeiten für die Anbringung von Kraft-Messwertaufnehmern. So kann ein als Zugkraft-Messdose 27 ausgebildeter Kraft-Messwertaufnehmer bei einerflaschenzugartigen Führung des Seiles 23 direkt im an einem Fixpunkt gehaltenen Seiltrum eingebaut sein (Anordnung IV) oder, wo sie abgesehen vom vernachlässigbaren Gewicht des Seiltrumes, welches sich selbstverständlich im Laufe des Absenkens der Elektrode 28 bzw. des Elektrodenwagens 21 ändert, und abgesehen von Reibungskräften zwischen dem Elektrodenwagen 21 und der Führungssäule 22 das halbe Gewicht des Elektrodenwagens 21 samt Elektrode 28 erfasst. Dabei ist es selbstverständlich möglich, in einer nachgeschalteten Auswerteschaltung den Gewichtsanteil des Elektrodenwagens 21 auszutarieren und aus dem korrigierten Signal das Zeitdifferential oder die Differenz in endlichen, jedoch sehr kleinen Zeitabständen zu bilden.Fig. 3 shows schematically the possibilities for the attachment of force transducers. For example, a force transducer designed as a tensile load cell 27 can be installed in a pulley-like guidance of the rope 23 directly in the rope strand held at a fixed point (arrangement IV) or, where apart from the negligible weight of the rope strand, which of course changes during the course of the lowering of the rope strand Electrode 28 or the electrode carriage 21 changes, and apart from frictional forces between the electrode carriage 21 and the guide column 22 detects half the weight of the electrode carriage 21 together with the electrode 28. It is of course possible to balance the weight portion of the electrode carriage 21 in a downstream evaluation circuit and to form the time differential or the difference in finite but very small time intervals from the corrected signal.

Von der Änderung des Seilgewichtes unbeeinflusst bleibt dagegen eine Zugkraft-Messdose 27 wenn sie, wie beim Einbauort V, zwischen der losen Rolle der flaschenzugartigen Seilführung und dem Elektrodenwagen 21 zwischengeschaltet ist, wobei sie jedoch das volle Gewicht des Elektrodenwagens 21 samt der Elektrode 28 aufnehmen muss. An diesem Einbauort V muss der Kraft-Messwertaufnehmer ebenfalls ein hohes Taragewicht, den Elektrodenwagen 21, aufnehmen.On the other hand, a tensile load cell 27 remains unaffected by the change in the cable weight if, like at installation location V, it is interposed between the loose pulley of the pulley-like cable guide and the electrode carriage 21, although it must absorb the full weight of the electrode carriage 21 together with the electrode 28 . At this installation location V, the force transducer must also absorb a high tare weight, the electrode carriage 21.

Bei den Einbauorten VI sind dagegen Druckmessdosen 27' vorgesehen, die am Elektrodenwagen 21 abgestützt sind und eine Wiegeplattform 29 tragen, auf der ihrerseits die Elektrode 28 abgestützt ist. Dabei ergibt sich ein vergleichsweise wesentlich geringeres Taragewicht als bei den Einbauorten IV und V und ausserdem ergibt sich keine Beeinflussung durch Reibungskräfte zwischen dem Elektrodenwagen 21 und der Führungssäule 22.At the installation locations VI, on the other hand, pressure measuring sockets 27 'are provided, which are supported on the electrode carriage 21 and carry a weighing platform 29, on which in turn the electrode 28 is supported. This results in a comparatively significantly lower tare weight than in the installation locations IV and V and, moreover, there is no influence by frictional forces between the electrode carriage 21 and the guide column 22.

In den Fig. 4 bis 15 sind schematisch Möglichkeiten für die Halterung und Kontaktierung der Elektrode 28 dargestellt, die ebenfalls in mehr oder weniger starkem Ausmass das Messergebnis der direkten Gewichtsmessung der Elektrode zur Ermittlung der tatsächlichen Abschmelzrate beeinflussen.4 to 15 schematically show possibilities for holding and contacting the electrode 28, which likewise influence the measurement result of the direct weight measurement of the electrode to determine the actual melting rate to a greater or lesser extent.

Bei der Ausführungsform nach Fig. 4 und 5, die im Auf- und Grundriss dargestellt ist, sind die Kontaktbacken 30 unter Zwischenlage einer Isolation 31 an einer Anpressvorrichtung befestigt, die im wesentlichen durch zwei über einen Hydraulikzylinder 32 verbundene und an einer Wippenlagerung 33 angelenkte Hebel 34 gebildet ist. Dabei ermöglicht die Wippenlagerung 33 eine Schwenkbewegung der Hebel 34 um die Längsachse der Wippenlagerung, die am Elektrodenwagen 21 befestigt ist. Das Abheben der Elektrode 28 von ihrer Auflage am Elektrodenwagen 21 erfolgt mittels der am Elektrodenwagen 21 montierten Hebehydraulik 35 über das Seil 23, in das eine Zugkraft-Messdose 27 eingebaut ist, und einen isolierten Haken 37. Das Abheben ist notwendig, um Kraftnebenschlüsse durch einen am Elektrodenwagen 21 aufliegenden Elektrodenkopf zu beseitigen. Das Heben und Senken der Elektrode 28 selbst erfolgt mit dem Elektrodenwagen 21.In the embodiment according to FIGS. 4 and 5, which is shown in elevation and plan view, the contact jaws 30 are attached to a pressing device with the interposition of insulation 31, which are essentially connected by two levers connected via a hydraulic cylinder 32 and articulated to a rocker bearing 33 34 is formed. The rocker bearing 33 enables the levers 34 to pivot about the longitudinal axis of the rocker bearing, which is fastened to the electrode carriage 21. The electrode 28 is lifted from its support on the electrode carriage 21 by means of the lifting hydraulics 35 mounted on the electrode carriage 21 via the cable 23, into which a tensile load cell 27 is installed, and an insulated hook 37. The lifting is necessary in order to prevent force shunts by a to eliminate electrode head resting on the electrode carriage 21. The electrode 28 itself is raised and lowered with the electrode carriage 21.

Die angedeutete Wiegeplattform mit den Druckkraft-Messdosen 27' stellt eine Alternative zur Wägung mit Zugkraft-Messdosen dar. Beim Einhängen der Elektrode 28 müssen die Druckkraft-Messdosen 27' entlastet werden.The indicated weighing platform with the pressure load cells 27 'represents an alternative to weighing with tensile load cells. When the electrode 28 is attached, the pressure load cells 27' must be relieved.

Die Stromzuleitungen 36 sind direkt mit den Kontaktbacken 30 verbunden und sind vorzugsweise äusserst biegeweich.The current supply lines 36 are connected directly to the contact jaws 30 and are preferably extremely flexible.

Bei dieser Ausführungsform ist die Gewichtsmessung der Elektrode 28 nur durch ein sehr geringes Taragewicht belastet, da das Gewicht der Kontaktbacken 30 samt den kontaktbackenseitigen Abschnitten der Hebel 34 etwa dem Gewicht des Hydraulikzylinders 32 samt den daran angelenkten Abschnitten der Hebel 34 entspricht. Allerdings gehen in den Gelenken der Anpressvorrichtung auftretende Reibungskräfte in die Gewichtsmessung ein.In this embodiment, the weight measurement of the electrode 28 is loaded only by a very low tare weight, since the weight of the contact jaws 30 together with the portions of the lever 34 on the contact jaw side is approximately the weight of the Hydraulic cylinder 32 together with the hinged portions of the lever 34 corresponds. However, frictional forces occurring in the joints of the pressing device are included in the weight measurement.

Bei der Ausführungsform gemäss den Fig. 6 und 7 sind am Kopf der Elektrode 28 biegeweiche Kupferbänder 36' angeschweisst, die mit auf einer am Elektrodenwagen 21 angebrachten Isolation 31 sitzenden Kontaktbacken 30, die über Hydraulikzylinder 32' schliessbar sind, verbunden werden können. Die Stromzuführungen 36 zu den Kontaktbacken 30 können dabei steif sein, da sie nicht in die Messung eingehen. Die Elektrode 28 hängt dabei ebenso wie bei der Ausführungsform nach Fig. 4 und 5 an einem isoliertem Haken 37, der über ein mit einer Zugkraft-Messdose versehenes Seil mit der Hebehydraulik verbunden ist, oder ist auf einer Wiegeplattform 29 abgestützt. Dabei ergibt sich nur ein sehr geringes Taragewicht, nämlich der Haken 37 und das Seil oder die Wiegeplattform 29, sowie ein Teil des Gewichtes der Kupferbänder 36' und der diese abdeckende Schutzkasten 38. Allerdings sind Veränderungen in der Biegesteifigkeit der Kupferbänder 36' durch die Erwärmung nicht zu vermeiden, die in die Messung eingehen, doch zeichnet sich diese Ausführungsform durch eine besonders geringe Tarabelastung und einfachsten Aufbau aus.In the embodiment according to FIGS. 6 and 7, flexible copper strips 36 'are welded to the head of the electrode 28 and can be connected to contact jaws 30 which are seated on an insulation 31 attached to the electrode carriage 21 and which can be closed via hydraulic cylinders 32'. The current leads 36 to the contact jaws 30 can be stiff since they are not included in the measurement. As in the embodiment according to FIGS. 4 and 5, the electrode 28 hangs on an insulated hook 37, which is connected to the lifting hydraulics via a rope provided with a tensile load cell, or is supported on a weighing platform 29. This results in only a very low tare weight, namely the hook 37 and the rope or weighing platform 29, as well as part of the weight of the copper strips 36 'and the protective box 38 covering them. However, changes in the bending stiffness of the copper strips 36' are caused by the heating unavoidable, which go into the measurement, but this embodiment is characterized by a particularly low tariff load and simplest structure.

Eine weitere Ausführungsform, bei der sich eine sehr geringe Tarabelastung der Kraft-Messaufnehmer ergibt, und daher solche mit einem dementsprechend kleinen Messbereich verwendet werden können, die dadurch auch empfindlicher auf Kraftänderungen ansprechen, zeigen die Fig. 8 und 9. Bei dieser Ausführungsform ist die Elektrode 28 mit einer Ankerstange 39 versehen, welche eine am Elektrodenwagen 21 abgestützte Hülse 40 durchsetzt. Die Kontaktbacken 30 greifen an der Hülse 40 an, die über biegeweiche Kupferbänder 36' mit der Elektrode 28 verbunden ist, welche mit einem Schutzkasten 38 abgedeckt sind. Bei dieser Ausführungsform wird die Elektrode 28 mittels der über einen isolierten Haken angreifenden, eine Zugkraft-Messdose aufweisenden Gewichtsmesseinrichtung gewogen. Das Heben und Senken der Elektrode erfolgt über den Elektrodenwagen 21, an dem die Hülse 40 bzw. die Kontaktbacken 30 abgestützt sind.A further embodiment, in which there is a very low tare load on the force measuring transducers, and therefore those with a correspondingly small measuring range can be used, which also respond more sensitively to changes in force, are shown in FIGS. 8 and 9. In this embodiment, FIG Electrode 28 is provided with an anchor rod 39 which passes through a sleeve 40 supported on electrode carriage 21. The contact jaws 30 engage the sleeve 40, which is connected to the electrode 28 via flexible copper strips 36 ′, which are covered with a protective box 38. In this embodiment, the electrode 28 is weighed by means of the weight measuring device, which acts via an insulated hook and has a tensile load cell. The electrode is raised and lowered via the electrode carriage 21, on which the sleeve 40 or the contact jaws 30 are supported.

Bei dieser Konstruktion geht auch der Schutzkasten 38 nicht mehr in die Messung ein, da dieser an der Hülse 40 abgestützt ist.With this construction, the protective box 38 is also no longer included in the measurement, since it is supported on the sleeve 40.

Bei der Ausführungsform gemäss den Fig. 10 und 11 greift die mit der Kraftmesseinrichtung 27 oder 27' versehene Hebe- und Senkvorrichtung, die entweder durch die separate Hebehydraulik 35 oder die in diesen Fig. 10 und 11 nicht dargestellte Seilwinde des Elektrodenwagens gebildet ist, falls eine Wiegeplattform 29 und Druckkraft-Messdosen 27' verwendet werden, an dem Kontaktbacken 30' an, welcher mittels der Isolation 31 von der Wiegeplattform 29 oder direkt vom Elektrodenwagen isoliert auf dieser bzw. diesem abgestützt ist. Der Kontaktbacken 30' ist mit einer z.B. kegelförmig verlaufenden, sich selbst einstellenden Fläche versehen, in der Kontaktblöcke 41 angeordnet sind, wobei jedoch ein etwa dem Durchmesser der Stange der Elektrode 28 entsprechender Schlitz 42 vorgesehen ist, durch den die einen z.B. kegeligen Kopf aufweisende Stange der Elektrode 28 seitlich in den kegelförmigen Kontaktbacken einführbar ist. Falls das Gewicht der Elektrode 28 für die Erzielung eines einwandfreien elektrischen Kontaktes in dem Kontaktbacken 30' nicht ausreicht, kann der Anpressdruck des kegeligen Kopfes der Elektrode 28 an den Kontaktblöcken 41 des Kontaktbackens 30' mittels der über die Hydraulikzylinder 43 betätigbaren Klemmarme 44 erhöht werden.In the embodiment according to FIGS. 10 and 11, the lifting and lowering device provided with the force measuring device 27 or 27 ', which is formed either by the separate lifting hydraulics 35 or by the cable winch of the electrode carriage, not shown in these FIGS. 10 and 11, engages if a weighing platform 29 and pressure load cells 27 'are used on the contact jaw 30', which is supported on the or by means of the insulation 31 from the weighing platform 29 or directly from the electrode carriage. The contact jaw 30 'is e.g. tapered, self-adjusting surface, in which contact blocks 41 are arranged, but a slot 42 corresponding approximately to the diameter of the rod of the electrode 28 is provided, through which the one e.g. rod having a conical head of the electrode 28 can be inserted laterally into the conical contact jaws. If the weight of the electrode 28 is not sufficient to achieve a perfect electrical contact in the contact jaw 30 ', the contact pressure of the conical head of the electrode 28 on the contact blocks 41 of the contact jaw 30' can be increased by means of the clamping arms 44 which can be actuated via the hydraulic cylinders 43.

Die Kontaktbacke 30' ist zweckmässigerweise kardanisch über diese Zugkraft-Messdosen 27 an der Hebehydraulik 35 aufgehängt oder an der Wiegeplattform abgestützt. Zur Erhöhung der Messgenauigkeit ist es bei dieser Ausführungsform zweckmässig, für die Stromzuführung möglichst biegeweiche Kupferbänder zu verwenden.The contact jaw 30 'is expediently gimbaled via these tensile load cells 27 on the lifting hydraulics 35 or supported on the weighing platform. To increase the measuring accuracy, it is expedient in this embodiment to use copper strips which are as flexible as possible for the power supply.

Eine ähnliche Ausführungsform zeigen die Fig. 12 und 13, nur dass anstelle der einen kegelförmigen Kontaktbacke 30' zwei mit Zylinderflächen versehene und mittels zweier Hydraulikzylinder 32' gegeneinander bewegbare Kontaktbacken 30 vorgesehen sind, zwischen denen der Kopf der Elektrode 28 klemmbar ist. Bei Verwendung von Zugkraft-Messdosen 27, wobei, wie aus Fig. 13 ersichtlich, auch mit einer das Auslangen gefunden werden kann, greifen die mit diesen bzw. dieser verbundenen Seile an einer die Kontaktbacken 30 führenden Halterung 45 an, an der auch die Hydraulikzylinder 32' befestigt sind. Im Falle der Verwendung von Druckkraft-Messdosen 27' können diese u.U. direkt an der Halterung 45 angreifen bzw. diese abstützen.A similar embodiment is shown in FIGS. 12 and 13, only that instead of the one conical contact jaw 30 ', two contact jaws 30 are provided, which are provided with cylindrical surfaces and can be moved relative to one another by means of two hydraulic cylinders 32', between which the head of the electrode 28 can be clamped. When using tensile load cells 27, which, as can be seen from FIG. 13, can also be found with one, the ropes connected to these or these engage on a holder 45 guiding the contact jaws 30, on which also the hydraulic cylinders 32 'are attached. If pressure load cells 27 'are used, these can possibly be engage directly on the bracket 45 or support it.

Die Ausführungsform gemäss Fig. 14 und 15 sieht einen mit einer axialen und zwei quer zu dieser verlaufende unrunde Bohrungen 50 bzw. 49 versehenen Kopf der Elektrode 28 vor, an dem auch der isolierte Haken der Gewichtsmesseinrichtung, welche nicht dargestellte Zugkraft-Messdosen aufweist, angreift. Die Kontaktbacken 30" sind in diesem Falle von einer mit einem Hammerkopf 46 versehenen Zugstange 47 durchsetzt, die von einer Feder 48 beaufschlagt ist. Diese Feder 48 ist in einem Gehäuse 51 untergebracht und ist zur Entlastung der Zugstange 47 über eine Hülse 52 und eine Wippe 53 zusammendrückbar. An dem Gehäuse 51 ist weiters eine mit der Zugstange 47 verbundene Verdreheinrichtung 54 befestigt, welche ein Verdrehen der Zugstange 47 um 90° ermöglicht, um diese in die unrunden Bohrungen 49 einführen und danach verdrehen zu können, so dass nach dem Entriegeln der Feder 48 der Hammerkopf 46 der Zugstange an der Wand der Bohrung 50 anliegt und die Kontaktbacken 30" gegen den Kopf der Elektrode 28 presst, wobei die Kontaktbacken 30" von der Grundplatte 55 nur lose geführt sind.The embodiment according to FIGS. 14 and 15 provides a head of the electrode 28 which is provided with an axial and two non-circular bores 50 and 49 running transversely thereto, on which the insulated hook of the weight measuring device, which has tensile load cells (not shown), also engages . In this case, the contact jaws 30 ″ are penetrated by a pull rod 47 provided with a hammer head 46, which is acted upon by a spring 48. This spring 48 is accommodated in a housing 51 and is relieved of the pull rod 47 via a sleeve 52 and a rocker 53. A rotating device 54, which is connected to the pull rod 47 and which enables the pull rod 47 to be rotated by 90 °, is fastened to the housing 51 in order to be able to insert it into the non-circular bores 49 and then to rotate it, so that after unlocking the Spring 48 the hammer head 46 of the pull rod rests against the wall of the bore 50 and presses the contact jaws 30 "against the head of the electrode 28, the contact jaws 30" being only loosely guided by the base plate 55.

Bei dieser Ausführungsform ergibt sich eine sichere selbstklammernde Kontaktierung, die bezüglich der Gewichtsmessung ohne Kraft-Nebenschluss ist.In this embodiment, there is reliable self-clamping contacting, which is without force shunt in terms of weight measurement.

In Fig. 16 ist eine Alternative zur direkten Elektrodenwägung aufgezeigt. Es wird hier der gesamte Block gewogen und über die Blockgewichtszunahme das abgeschmolzene Blockgewicht festgestellt. Die Wiegevorrichtung besteht aus Gewichtsmessdosen unter dem gekühlten Blockwagen. Bei Hebekokillen kommt es zu beachtlichen Kraftnebenschlüssen zwischen Block und Kokille, die das Wägeresultat verfälschen. Aus diesem Grunde muss entweder der Kokillenwagen ähnlich wie in Fig. 3 der Elektrodenwagen oder noch besser die Kokille selbst über Gewichtsmessdosen zusätzlich gewogen werden. Hierbei sind die Messwerte GBO Blockgewicht nach der letzten Elektrode, GE aktuelles angezeigtes scheinbares Blockgewicht, Gs und GKOK aktuelles scheinbares Gewicht der Hebekokille. Es ergibt sich das aktuelle Abschmelzgewicht GG der Elektrode zu:

  • GG = GrT + GKOKT - Gs - GBo
    • T = Bezug auf die Nulltarierung des leeren Kokillen- und Blockwagens.
16 shows an alternative to direct electrode weighing. The entire block is weighed here and the melted block weight is determined via the block weight increase. The weighing device consists of load cells under the cooled block wagon. With lifting molds, there are considerable forces conclusions between block and mold that falsify the weighing result. For this reason, either the mold carriage must be weighed, in a similar way to the electrode carriage in FIG. 3, or even better the mold itself, using weight measuring cans. The measured values G BO block weight after the last electrode, G E current displayed apparent block weight, G s and G KOK are the current apparent weight of the lifting mold. The current melting weight G G of the electrode results in:
  • G G = Gr T + G KOKT - Gs - GBo
    • T = reference to the zero taring of the empty mold and block wagon.

Der Aufwand ist hier grösser als bei den Vorrichtungen zuvor, aber mit dem Vorteil, keine Beeinflussung durch Stromzuführungen zu haben.The effort here is greater than with the devices previously, but with the advantage that it is not influenced by current leads.

Claims (10)

1. A method of regulating the melting rate of a consumable electrode in electro-slag remelting in a slag bath, in which the lowering speed of the electrode to be melted, whose length is determined, is regulated with respect to maintaining a nominal value of the melting rate and the current intensity and/or the voltage, characterized in that the weight of the part of the electrode immersed in the slag bath is continually determined from the actual overall weight of the electrode and the length of the electrode above the surface of the slag bath, and is compared with a nominal value and is altered if there is a variation in the quotient of the voltage Unominal and the current intensity Jnominal, the product remaining constant, and in that the actual melting rate is compared with a nominal melting rate and, if there is a variation, the product of Jnominal and Unominal is altered accordingly.
2. A method according to claim 1, characterized in that the lowering speed of the electrode is controlled via the nominal value of the current intensity.
3. A method according to claim 1 or 2, characterized in that the electrode is weighed.
4. Apparatus for carrying out the method according to one of claims 1 to 3, in which a current regulator, connected to an adjusting device for lowering the electrode, and a voltage regulator, connected to an adjusting device for adjusting the tap of a regulating transformer, supplying the remelting system, are provided, characterized in that the current and the voltage regulators (1; 2) are connected to a control calculator (6) which calculates the nominal values for these regulators (1; 2) and in turn is connected to a resistance value calculator (7) supplying a resistance value which is used as the reference value for determining the current and voltage nominal values and to a melting rate regulator (14), influenced preferably by a power value indicator (8).
5. Apparatus according to claim 4, characterized in that the resistance value calculator (7) is connected to a position regulator (9) which compares the position of the electrode (28), in reaction to the surface of the slag bath, with a nominal value, and which in turn is connected to a calculator for determining the melting weight from the melting length of the electrode and to a measuring device for directly determining the melting weight of the electrode.
6. Apparatus according to claim 5, characterized in that the position regulator (9) contains a limiting circuit which makes corrections if a specific difference value between the directly determined melting weight and the melting weight which has been determined from the melting length of the electrode is exceeded.
7. Apparatus for carrying out the method according to claim 1 or 2, characterized in that in order to measure the electrode weight continually there is interposed between a lifting and lowering apparatus for displacing the electrode (28), a force measuring device (27, 27') which is connected to the melting rate regulator (14) by way of a device which emits a signal corresponding at least approximately to the time differential of the measured value.
8. Apparatus according to claim 7, characterized in that the lifting and lowering apparatus for the electrode (28) is loaded by way of the force measuring device and a device for contacting the electrode, the current being supplied to the contacting device by way of flexible copper bands (36').
9. Apparatus according to claim 7 or 8, characterized in that the electrode (28), provided with a penetrating tie rod (39), at which contact jaws (30) engage, hangs on a draw hook and is connected to the sleeve (40) by way of flexible copper bands (36').
10. Apparatus according to claim 7, characterized in that the electrode (28) is connectable by way of flexible copper bands (36') to contact jaws (30) supported at the electrode carriage (21), and the lifting and lowering apparatus provided with the force measuring device (27, 27') engages directly at the electrode (28).
EP82890025A 1981-02-25 1982-02-19 Method and apparatus for controlling the melting rate of an electrode by electroslag remelting Expired EP0059181B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT866/81 1981-02-25
AT866/81A AT392751B (en) 1981-02-25 1981-02-25 METHOD AND DEVICE FOR REGULATING THE MELTING RATE OF AN ELECTRODE IN ELECTROSCREASING

Publications (2)

Publication Number Publication Date
EP0059181A1 EP0059181A1 (en) 1982-09-01
EP0059181B1 true EP0059181B1 (en) 1984-12-05

Family

ID=3501619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82890025A Expired EP0059181B1 (en) 1981-02-25 1982-02-19 Method and apparatus for controlling the melting rate of an electrode by electroslag remelting

Country Status (7)

Country Link
US (1) US4483708A (en)
EP (1) EP0059181B1 (en)
AT (1) AT392751B (en)
BR (1) BR8200937A (en)
CA (1) CA1169899A (en)
DE (1) DE3261404D1 (en)
ZA (1) ZA821238B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331661A (en) * 1992-02-27 1994-07-19 Sandia Corporation Method and apparatus for controlling electroslag remelting
KR100374513B1 (en) * 2000-08-25 2003-03-04 재단법인 포항산업과학연구원 Electrode immersion depth measurement apparatus of electro slag remelting process and its method
US6496530B2 (en) 2001-04-03 2002-12-17 Sandia Corporation Control of electrode depth in electroslag remelting
US7180931B1 (en) 2004-05-25 2007-02-20 Sandia Corporation Electrode immersion depth determination and control in electroslag remelting furnace
US8077754B1 (en) * 2006-08-08 2011-12-13 Williamson Rodney L Pool power control in remelting systems
CN102887996B (en) * 2011-07-19 2016-03-16 因温斯特技术公司 Polymer recovery processes during polyether glycol filters
DE102013007394A1 (en) * 2013-04-30 2014-10-30 Ald Vacuum Technologies Gmbh Remelting furnace and universal joint especially for the electrode rod holder of a remelting furnace
CN105039732B (en) * 2015-08-17 2017-07-11 东北大学 The electroslag remelting preparation method of low silicon pre-melted slag

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1924364A1 (en) * 1968-05-14 1969-11-27 Ass Elect Ind Control device for a device for the electrorefining of metals
FR1597914A (en) * 1968-12-18 1970-06-29
DE1962135C3 (en) * 1969-12-11 1980-01-17 Leybold-Heraeus Gmbh, 5000 Koeln Process for cleaning metals in an electroslag remelting furnace
US4135915A (en) * 1973-12-12 1979-01-23 Gec Mechanical Handling Limited Kinetic energy monitor
US3890457A (en) * 1974-02-21 1975-06-17 Pavel Ioelievich Fain Device for program controlling metal remelting processes
AT345487B (en) * 1975-06-27 1978-09-25 Elin Union Ag EQUIPMENT FOR KEEPING THE BATHROOM CONSTANT ARC VOLTAGE
ATA559376A (en) * 1976-07-29 1978-10-15 Inteco Int Techn Beratung SYSTEM FOR ELECTRIC SLAG RE-MELTING OF MELTING ELECTRODES TO BLOCK
US4091229A (en) * 1977-03-01 1978-05-23 Wooding Corporation Slag and alloy feeding based on electrode weight
DE2732873A1 (en) * 1977-07-21 1979-02-15 Leybold Heraeus Gmbh & Co Kg ARRANGEMENT FOR REGULATING THE DEPTH OF SUBMERGING OF MELTING ELECTRODES IN ELECTRO-SLASK MELTING FURNACES
JPS56500178A (en) * 1979-01-31 1981-02-19

Also Published As

Publication number Publication date
EP0059181A1 (en) 1982-09-01
ATA86681A (en) 1990-11-15
DE3261404D1 (en) 1985-01-17
AT392751B (en) 1991-06-10
US4483708A (en) 1984-11-20
CA1169899A (en) 1984-06-26
ZA821238B (en) 1983-01-26
BR8200937A (en) 1983-01-04

Similar Documents

Publication Publication Date Title
DE2238090C3 (en) Device for cutting profile grooves in the treads of pneumatic tires
DE60103451T2 (en) Method and device for simulating loads on hoists
DE2044199A1 (en) Programme controlled sheet metal bending - using open tooling
DE3245070A1 (en) METHOD AND DEVICE FOR THE ACCURATE ADJUSTMENT OF THE ANODE LEVEL OF AN ELECTROLYSIS CELL FOR THE PRODUCTION OF ALUMINUM
EP0059181B1 (en) Method and apparatus for controlling the melting rate of an electrode by electroslag remelting
DE1932884A1 (en) Device for controlling a continuous casting plant
DE60034273T2 (en) Method and device for casting a metal strand
DE3917545A1 (en) Apparatus and method of turning loads
DE2732873C2 (en)
EP0298218B1 (en) Remelting furnace with ingot gravimetric control
DE2440273B1 (en) PROCEDURE FOR CONTROLLING THE CONTINUOUS CASTING PROCESS DURING STEEL PASTING, AND ARRANGEMENT FOR PERFORMING THE PROCESS
DE3626888C2 (en)
EP3002534A1 (en) Remelting furnace comprising a weighing cell
DE3346650A1 (en) Process and apparatus for the determination and control of a level of a metal melt
DE2328804B1 (en) Process for electroslag remelting in a funnel-shaped mold
EP1152850A1 (en) Method for detecting and controlling the level of liquid metal in an ingot mold
EP3464654B1 (en) Device and method for sensing a conveying rate of a liquid material
EP0094378B1 (en) Fusion device with consumable electrodes
DE1924364A1 (en) Control device for a device for the electrorefining of metals
DE2448141A1 (en) HANDLING DEVICE FOR MEASURING CARTRIDGES FOR MEASURING PHYSICAL AND / OR CHEMICAL QUANTITIES IN MELTES, IN PARTICULAR IN POURS OR CONVERTERS
DE3917403C2 (en) Method and device for filling a continuous casting mold with a metallic melt
DE4342498C2 (en) Method and device for controlling the position of the tip of an electric furnace electrode
DE2814699C2 (en) Method for detecting the end of pouring when pouring metals
DE2617049A1 (en) GUIDE DEVICE FOR A CONTINUOUS CASTING MACHINE
DE4027679A1 (en) Control of glass level in glass melting appts. - by weighing glass and appts. to calculate glass wt. and comparing to a preset wt. permitting controlled addn. of raw glass

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19830131

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 3261404

Country of ref document: DE

Date of ref document: 19850117

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19920219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920220

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19920221

Year of fee payment: 11

Ref country code: CH

Payment date: 19920221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920229

Year of fee payment: 11

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19930219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930220

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19930228

Ref country code: CH

Effective date: 19930228

Ref country code: BE

Effective date: 19930228

BERE Be: lapsed

Owner name: VEREINIGTE EDELSTAHLWERKE A.G. VEW

Effective date: 19930228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930901

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940126

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940127

Year of fee payment: 13

EUG Se: european patent has lapsed

Ref document number: 82890025.8

Effective date: 19930912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950219

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19951031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST