EP0052351A2 - Vorrichtung zum Bereitstellen eines Gases - Google Patents

Vorrichtung zum Bereitstellen eines Gases Download PDF

Info

Publication number
EP0052351A2
EP0052351A2 EP81109652A EP81109652A EP0052351A2 EP 0052351 A2 EP0052351 A2 EP 0052351A2 EP 81109652 A EP81109652 A EP 81109652A EP 81109652 A EP81109652 A EP 81109652A EP 0052351 A2 EP0052351 A2 EP 0052351A2
Authority
EP
European Patent Office
Prior art keywords
capsule
containers
gas
container
interior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81109652A
Other languages
English (en)
French (fr)
Other versions
EP0052351B1 (de
EP0052351A3 (en
Inventor
Helmut Meinass
Bernhard Volz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0052351A2 publication Critical patent/EP0052351A2/de
Publication of EP0052351A3 publication Critical patent/EP0052351A3/de
Application granted granted Critical
Publication of EP0052351B1 publication Critical patent/EP0052351B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/002Use of gas-solvents or gas-sorbents in vessels for acetylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation

Definitions

  • the invention relates to a method and an apparatus for providing a gas, the gas being stored in containers in liquid form or together with a solvent distributed in a porous mass under pressure, and the containers being heated.
  • the invention is therefore based on the object of specifying a method of the type mentioned at the outset which causes only low heating costs, but which results in extensive Emptying the container is not affected and a certain amount of withdrawal per unit of time is still guaranteed.
  • This object is achieved in that one or more containers are installed in a capsule enclosing exclusively gas-tight parts of these containers, the interior of the capsule being at least temporarily heated during gas extraction, while the exterior of the capsule is being ventilated.
  • the containers in which gas is stored under pressure together with a solvent distributed in a porous mass or in which the gas is stored in liquid form are enclosed in a capsule before the gas withdrawal, through which two zones are formed.
  • the first Zore Zone I
  • the interior of the capsule there are only the parts of the container in whose area there are no leaks, i.e. Gas leaks can occur.
  • the gas-tight part of a container is the container housing with the exception of the gas extraction or gas filling point. This area of each container is in the second zone outside the capsule (Zone II). All containers can be installed in one capsule or some of the containers in one capsule. After the containers have been installed in this way in one or more capsules, gas can be removed from the containers.
  • the interior of the capsule is heated while the exterior is being ventilated.
  • the containers have been in large transport containers supplied and heated during removal, the volume to be heated according to the invention, ie the interior of the capsule, is comparatively small. Therefore, the surface of the heated room (the capsule) is smaller than before, which means that the heat losses mentioned under point 2 over the walls of the heated room can be reduced. These losses can also be largely eliminated by using a capsule whose wall is coated with heat-insulating material or which consists of such a material.
  • the containers installed in a capsule outdoors or in a room.
  • gas When gas is extracted outdoors, it would be important to insulate the entire capsule from the point of view of minimizing heat loss through heat conduction.
  • the containers are in a room, e.g. Housed in a mobile container, it is only necessary to provide the parts of the capsule, which are located on an outer wall of the room, with a good heat-insulating material, while the insulating capacity of the walls facing the inside of the room may be less.
  • zone II contains all the parts of the container or the removal device, in the area of which leaks can occur. This zone is therefore ventilated. However, it is not necessary to heat Zore II so that no heating energy is lost.
  • the heating costs can be reduced to a fraction of the previously incurred costs.
  • the containers are heated by means of heated air and the air is circulated within the interior of the capsule.
  • the circulation can be forced by suitable devices.
  • the heat convection caused by temperature differences within a capsule is sufficient. This measure prevents heat accumulation in the capsule area.
  • the temperature of the interior of the capsule is advantageously regulated as a function of the pressure in the containers. This makes it possible to set a low temperature inside the capsule when the container is full, but to set a higher temperature as the pressure in the container decreases. In connection with the installation of the containers in a capsule, this process step leads to a surprisingly large saving in heating costs. Until now, heating energy consumption, which roughly corresponded to that of a family home during the heating period, had to be estimated for the emptying of containers which were mounted in mobile containers and were heated in them, so the energy consumption in the method according to the invention drops to 10% to 20% of this value.
  • one or more containers are or are advantageously installed in a capsule that is closed on all sides such that only the container housing and a heating device are located in the interior of the capsule, while the gas extraction and Gas filling point of the container and the associated removal devices are arranged outside the capsule.
  • the bottles are cooled with cooling water during the filling process.
  • the encapsulation makes it possible to bring the cooling water to the bottles more effectively than before.
  • the Separation ensures that the pipes do not come into contact with water and thus the corrosion is not promoted.
  • all of the containers which are combined into a bundle unit via a common removal line are advantageously arranged in one capsule. If the containers are installed in several capsules, the capsules can be heated separately from each other in this arrangement and the containers of this capsule can be emptied independently of the other containers.
  • the heating device can advantageously be an air heater arranged below the container in the capsule.
  • a heat exchanger with finned tubes through which hot water, hot water or steam flows and which heats air flowing around the tubes can be used.
  • a wall is arranged in the interior of the capsule at a distance and essentially parallel to a vertical capsule wall, the space formed between the wall and the vertical capsule wall connecting the bottom region of the capsule to the ceiling region of the capsule. No containers are arranged in this room.
  • the heated air flows through the thermal buoyancy between the bottle gaps from the area of the capsule bottom to the area of the capsule top, from which the cooled air flows back through the space formed between the capsule wall and the further wall.
  • the further wall prevents the air flowing over the radiators from mixing with the cooler air.
  • FIG 1 In Figure 1, four bottles 1 to 4 are shown.
  • the containers stand on a perforated base plate 5, below which two radiators 6 are arranged.
  • the containers 1 to 4 are surrounded by a capsule consisting of five walls. In the figure, only the two side walls 7, 8 and the ceiling 9 are shown.
  • the containers are mounted in this capsule in such a way that only the container housings are arranged inside the capsule, while the respective bottle valves 10 to 13, hoses 14 to 17 and the common extraction line 18 are accommodated outside the capsule. Together with the space in which the radiators 6 are arranged, the capsule forms a closed, essentially airtight space.
  • the material from which the capsule walls are made has good heat-insulating properties.
  • gas in the exemplary embodiment acetylene, which is stored under pressure in the containers together with a solvent distributed in a porous mass, can be removed from the containers.
  • the containers are heated in order to apply the solution - absorption and / or evaporation heat required for the extraction.
  • a control unit which controls the temperature of the interior of the capsule depending on the container pressure can, not shown. Air heated by the radiators 6 sweeps up through the perforated base plate 5 and between the containers 1 and 2 or 3 and 4. In thermal contact with the containers, the air cools somewhat and flows back to the radiators 6 between the bottles 1 and 4 and the capsule walls 7 and 8 and between the containers 2 and 3.
  • This sketch shows that the interior of the capsule should be kept as small as possible.
  • the containers assembled in the manner described are arranged within a space, it is necessary to ventilate the outer space of the capsule, in which the container valves 10 to 13, the hoses 14 to 17 and the common extraction line 18 are accommodated.
  • FIG. 2 shows a device according to the invention, in which the containers 1, 2, 1 ', 2' are located within a mobile container 20.
  • the containers are combined into two groups 1 to 2 and 1 'to 2', each of which is enclosed in its own capsule.
  • the two groups are arranged to the right and left of an accessible central aisle 22.
  • An outer wall 8, 8 'of the capsules coincides with one of the container walls and is therefore, if possible, particularly well insulated against heat loss.
  • the entire container volume was heated using conventional methods and the entire air content was changed several times per hour (approx. 3 times). According to the container interior is divided into two zones.
  • zone I internal of the capsule
  • zone II the outer area of the two capsules
  • a variant of a device according to the invention is shown in broken lines in FIG. Accordingly, an additional wall 19 or 19 'is mounted between the capsule walls 7 to 7' and the associated containers 1 and 2 'at a distance and parallel to the capsule walls 7 and 7'. A circulation of the air within the two capsules is promoted by the additional walls 19 and 19 '.
  • the air heated by the radiator 6 sweeps up between the containers 1 and 2 or 1 'and 2', cools down and is removed from the area of the capsule cover via the space between the capsule wall 7 and the additional wall 19 (7 'and 19' ) in the bottom area of the capsule.
  • the method according to the invention can achieve a significant reduction in the heating energy requirement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Packages (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Bereitstellen eines Gases, das in Behältern in flüssiger Form oder zusammen mit einem in einer porösen Masse verteilten Lösungsmittel unter Druck gespeichert ist, wobei die Behälter erwärmt werden. Unter dem Gesichtspunkt einer weitgehenden Entleerung der Behälter und der Garantie einer bestimmten Entnahmemenge pro Zeiteinheit, ist eine möglichst hohe Temperatur erstrebenswert. Hierdurch werden beträchtliche Heizkosten verursacht. Um die Heizkosten möglichst niedrig zu halten und dennoch eine weitgehende Entleerung der Behälter nicht zu beeinträchtigen bzw. eine bestimmte Entnahmemenge pro Zeiteinheit zu garantieren, wird vorgeschlagen, einen oder mehrere Behälter in eine ausschließlich gasdichte Teile dieser Behälter umschließende Kapsel einzubauen. Dabei wird der Kapselinnenraum während der Gasentnahme wenigstens zeitweise erwärmt, während der Außenraum der Kapsel belüftet wird.

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum-Bereitstellen eines Gases, wobei das Gas in Behältern in flüssiger Form oder zusammen mit einem in einer porösen Masse verteilten Lösungsmittel unter Druck gespeichert ist, und die Behälter erwärmt werden.
  • Ein derartiges Verfahren ist in der DE-OS 26 50 880 beschrieben. Die Behälter sind dabei in Transportbehältern (Containern) oder in ortsgebundenen Räumen aufgestellt und werden beheizt, um eine bestimmte Entnahmemenge an gespeichertem Gas pro Zeiteinheit garantieren zu können. Unter dem Gesichtspunkt einer weitgehenden Entleerung der Behälter und der Garantie einer bestimmten Entnahmemenge pro Zeiteinheit ist eine möglichst hohe Temperatur erstrebenswert. Die Erwärmung der Behälter auf eine relativ hohe Temperatur führt aber zu einem hohen Energieverbrauch verbunden mit beträchtlichen Heizkosten.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der eingangs erwähnten Art anzugeben, das nur geringe Heizkosten verursacht, durch das jedoch eine weitgehende Entleerung der Behälter nicht beeinträchtigt wird und weiterhin eine bestimmte Entnahmemenge pro Zeiteinheit garantiert ist.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß ein oder mehrere Behälter in eine ausschließlich gasdichte Teile dieser Behälter umschließende Kapsel eingebaut wird bzw. werden, wobei der Kapselinnenraum während der Gasentnahme wenigstens zeitweise erwärmt wird, während der Außenraum der Kapsel belüftet wird.
  • Erfindungsgemäß werden die Behälter zunächst in eine Kapsel montiert. Diese ist so gestaltet, daß einerseits sicherheitstechnische Aspekte berücksichtigt werden und andererseits der zu beheizende Raum möglichst klein gehalten wird. Dabei wurde von folgender Erkenntnis ausgegangen: Der Heizenergieaufwand bei der Entnahme von Gasen aus Flaschen setzt sich hauptsächlich aus folgenden Energiebeiträgen zusammen:
    • 1. Energie für die Entlösung eines Gases aus einem Lösungsmittel, in dem das Gas gelöst ist, wobei das Gas zusammen mit dem Lösungsmittel in einer porösen Masse unter Druck verteilt ist bzw. Energie für die Verdampfung eines flüssig gespeicherten Gases.
    • 2. Energie, die erforderlich ist, um Wärmeverluste durch die Wände des beheizten Raumes auszugleichen.
    • 3. Energie, um die Wärmeverluste auszugleichen, die durch den aus sicherheitstechnischen Gründen vorgeschriebenen Luftwechsel entstehen.Diese Luftwechsel sind erforderlich, um die Bildung von zündfähigen Gas-Luft-Gemischen durch Gas, das durch Undichtigkeiten austritt, zu vermeiden.
  • Erfindungsgemäß werden die Behälter, in denen Gas zusammen mit einem in einer porösen Masse verteilten Lösungsmittel unter Druck gespeichert sind oder in denen das Gas in flüssiger Form gespeichert ist, vor der Gasentnahme in einer Kapsel eingeschlossen, durch die zwei Zonen gebildet werden. In der ersten Zore (Zone I), dem Kapselinnenraum, befinden sich ausschließlich die Teile der Behälter, in deren Bereich keine Undichtigkeiten, d.h. Gaslecks, auftreten können. Der gasdichte Teil eines Behälters ist das Behältergehäuse mit Ausnahme der Gasentnahme- bzw. Gasfüllstelle. Dieser Bereich jedes Behälters befindet sich in der zweiten Zone außerhalb der Kapsel (Zone II). Hierbei können alle Behälter in einer Kapsel oder ein Teil der Behälter in jeweils eine Kapsel eingebaut werden. Nachdem die Behälter in dieser Weise in eine oder mehrere Kapseln eingebaut worden sind, kann den Behältern Gas entnommen werden. Hierbei wird der Kapselinnenraum beheizt, während der Außenraum belüftet wird.
  • Durch diese Maßnahme, insbesondere die Trennung in zwei Zonen, wird folgendes erreicht:
    • Für die Gasentnahme ist es nur erforderlich, Zone I zu beheizen. Im Unterschied zu den bekannten Verfahren muß diese Zone nicht mehr belüftet werden, da innerhalb dieser Zone keine lösbaren Verbindungen, d.h. keine Schläuche, Armaturen und Leitungen untergebracht sind, in deren Bereich Undichtigkeiten auftreten können. Da es erfindungsgemäß unnötig ist, beheizte Luft zu wechseln, wird der unter Punkt 3 angegebene Energiebeitrag, der ein wesentlicher Heizkostenfaktor ist, auf ein Minimum reduziert. Gelingt es, die Kapselung der Behälter möglichst luftdicht vorzunehmen, so kann der auf .Luftwechsel beruhende Wärmeverlust vollständig ausgeschaltet werden.
  • Wurden die Behälter bisher z.B. in großen Transportbehältern geliefert und während der Entnahme beheizt, so ist das erfindungsgemäß zu beheizende Volumen, d.h. der Kapselinnenraum, vergleichsweise klein. Daher ist die Oberfläche des beheizten Raumes (der Kapsel) kleiner als bisher, wodurch die unter Punkt 2 angeführten Wärmeverluste über die Wände des beheizten Raumes reduziert werden können. Diese Verluste können durch die Verwendung einer Kapsel, deren Wand mit wärmeisolierendem Material beschichtet ist oder die aus einem derartigen Material besteht, ebenfalls weitgehend ausgeschaltet werden.
  • Erfindungsgemäß ist es möglich, die in eine Kapsel eingebauten Behälter im Freien oder in einem Raum aufzustellen. Bei einer Gasentnahme im Freien wäre dabei unter dem Gesichtspunkt möglichst geringer Wärmeverluste durch Wärmeleitung eine gute Isolierung der gesamten Kapsel wichtig. Werden die Behälter dagegen in einem Raum, z.B. in einem mobilen Container untergebracht, ist es nur erforderlich, die Teile der Kapsel, die sich an einer Außenwand des Raumes befinden, mit einem gut wärmeisolierenden Material zu versehen, während das Isoliervermögen der zur Innenseite des Raumes weisenden Wände geringer sein kann.
  • Nach einem Merkmal der Erfindung befinden sich in Zone II alle die Teile des Behälter bzw. der Entnahmevorrichtung, in deren Bereich Undichtigkeiten auftreten können. Diese Zone wird daher belüftet. Es ist jedoch nicht notwendig, Zore II zu beheizen, so daß auf diese Weise keine Heizenergie verlorengeht.
  • Mit dem erfindungsgemäßen Verfahren kann der Heizkostenaufwand auf einen Bruchteil der bisher anfallenden Kosten gesenkt werden.
  • In einer vorteilhaften Ausgestaltung des Erfindungsgedankens werden die Behälter mittels erhitzter Luft erwärmt und wird die Luft innerhalb des Kapselinnenraums umgewälzt. Die Umwälzung kann durch geeignete Vorrichtungen erzwungen werden. üblicherweise reicht jedoch die durch Temperaturunterschiede innerhalb einer Kapsel verursachte Wärmekonvektion aus. Durch diese Maßnahme wird ein Wärmestau im Bereich der Kapseldecke verhindert.
  • Mit Vorteil wird nach einer weiteren Ausgestaltung des Erfindungsgedankens die Tmperatur des Kapselinnenraums in Abhängigkeit vom Druck in den Behältern geregelt..Hierdurch ist es möglich, bei vollen Behältern eine niedrige Temperatur innerhalb der Kapsel, mit sinkendem Druck in den Behältern jedoch eine höhere Temperatur einzustellen. Im Zusammenhang mit dem Einbau der Behälter in eine Kapsel führt dieser Verfahrensschritt zu einer überraschend großen Heizkostenersparnis. Mußte bisher für die Entleerung von Behältern, die in mobilen Containern montiert waren und in diesen erwärmt wurden, ein Heizenergieverbrauch veranschlagtwerden, der etwa dem eines Einfamilienhauses während der Heizperiode entsprach, so sinkt der Energieverbrauch beim erfindungsgemäßen Verfahren auf 10% bis 20% dieses Wertes.
  • In einer Vorrichtung zur Durchführung des Verfahrens mit innerhalb eines Raumes angeordneten Behältern mit Entnahmevorrichtungen ist bzw. sind mit Vorteil ein oder mehrere Behälter so in eine allseitig geschlossene Kapsel eingebaut, daß sich nur die Behältergehäuse sowie eine Heizvorrichtung im Kapselinnenraum befinden, während die Gasentnahme- und Gasfüllstelle der Behälter sowie die zugehörigen Entnahmevorrichtungen außerhalb der Kapsel angeordnet sind.Beim Befüllen von Azetylenflaschen z.B. werden die Flaschen während des Füllvorganges mit Kühlwasser gekühlt.Durch die Kapselung ist es möglich, das Kühlwasser wirksamer als bisher an die Flaschen heranbringen zu können. Außerdem wird durch die Trennung erreicht, daß die Leitungen nicht mit Wasser in Berührung kommen und somit die Korrosion nicht gefördert wird.
  • In einer Ausgestaltung des Erfindungsgedankens sind mit Vorteil in einer Kapsel jeweils alle über eine gemeinsame Entnahmeleitung zu einer Bündeleinheit zusammengefaßte Behälter angeordnet. Sind die Behälter in mehreren Kapseln montiert, können'die Kapseln in dieser Anordnung jeweils getrennt voneinander beheizt werden und die Behälter dieser Kapsel unabhängig von den übrigen Behältern entleert werden.
  • Nach einem weiteren Merkmal der Erfindung kann die Heizvorrichtung vorteilhafterweise ein unterhalb der Behälter in der Kapsel angeordneter Lufterhitzer sein. Z.B. kann ein Wärmetauscher mit Rippenrohren, durch die Warmwasser, Heißwasser oder Dampf strömt und dabei die Rohre umspülende Luft erwärmt, Verwendung finden.
  • In einer vorteilhaften Variante dieser Vorrichtung ist im Kapselinnenraum eine Wand mit Abstand und im wesentlichen parallel zu einer vertikalen Kapselwand angeordnet, wobei der zwischen der Wand und der vertikalen Kapselwand gebildete Raum den Bodenbereich der Kapsel mit dem Deckenbereich der Kapsel verbindet. Dabei sind in diesem Raum keine Behälter angeordnet. Die erwärmte Luft strömt hierbei durch den thermischen Auftrieb zwischen den Flaschenlücken vom Bereich des Kapselbodens zum Bereich der Kapseldecke.Aus diesem Bereich strömt die abgekühlte Luft über den zwischen Kapselwand und der weiteren Wand gebildeten Zwischenraum zurück. Die weitere Wand verhindert, daß sich die über den Heizkörpern emporströmende Luft mit der kühleren Luft mischt.
  • Im folgenden soll anhand schematischer Skizzen ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung beschrieben werden:
  • Es zeigen:
    • Figur 1 ein Schnittbild einer schematisch dargestellten erfindungsgemäßen Vorrichtung
    • Figur 2 eine Ausgestaltung einer in einem mobilen Container eingebauten erfindungsgemäßen Vorrichtung.
  • In Figur 1 sind vier Flaschen 1 bis 4 dargestellt. Die Behälter stehen auf einer gelochten Bodenplatte 5, unterhalb deren zwei Heizkörper 6 angeordnet sind. Die Behälter 1 bis 4 sind von einer aus fünf Wänden bestehenden Kapsel umgeben. In der Figur sind lediglich die beiden Seitenwände 7,8 und die Decke 9 dargestellt. Die Behälter werden vor der Gasentnahme so in diese Kapsel montiert, daß lediglich die Behältergehäuse innerhalb der Kapsel angeordnet sind, während die jeweiligen Flaschenventile 10 bis 13, Schläuche 14 bis 17 sowie die gemeinsame Entnahmeleitung 18 außerhalb der Kapsel untergebracht sind. Zusammen mit dem Raum, in dem die Heizkörper 6 angeordnet sind, bildet die Kapsel einen geschlossenen, im wesentlichen luftdichten Raum. Das Material, aus dem die Kapselwände gefertigt werden, besitzt gute wärmeisolierende Eigenschaften.
  • Nachdem die Behälter 1 bis 4 auf die geschilderte Weise in einer Kapsel eingebaut worden sind,kann den Behältern Gas, im Ausführungsbeispiel Azetylen, das zusammen mit einem in einer porösen Masse verteilten Lösungsmittel unter Druck in den Behältern gespeichert ist, entnommen werden. Während der Gasentnahme werden die Behälter beheizt, um die zur Entnahme erforderliche Lösungs-Absorptions- und/ oder Verdampfungswärme aufzubringen. In der Zeichnung ist eine Regeleinheit, über die die Temperatur des Kapselinnenraums in Abhängigkeit vom Behälterdruck geregelt werden kann, nicht dargestellt. Durch die Heizkörper 6 erwärmte Luft streicht durch die gelochte Bodenplatte 5 und zwischen den Behältern 1 und 2 bzw. 3 und 4 empor. Im Wärmekontakt mit den Behältern kühlt die Luft etwas ab und fließt zwischen den Flaschen 1 bzw. 4 und den Kapselwänden 7 bzw. 8 sowie zwischen den Behältern 2 und 3 zu den Heizkörpern 6 zurück. Dieser Skizze ist zu entnehmen, daß der Kapselinnenraum möglichst klein zu halten ist.
  • Sind die auf die beschriebene Weise montierten Behälter innerhalb eines Raumes angeordnet, ist es erforderlich, den Außenraum der Kapsel, in dem die Behälterventile 10 bis 13, die Schläuche 14 bis 17 sowie die gemeinsame Entnahmeleitung 18 untergebracht sind, zu belüften.
  • In Figur 2 ist eine erfindungsgemäße Vorrichtung dargestellt, bei der sich die Behälter 1,2,1',2' innerhalb eines mobilen Containers 20 befinden. Die Behälter sind zu zwei Gruppen 1 bis 2 und 1' bis 2' zusammengefaßt, die jeweils in eine eigene Kapsel eingeschlossen sind. Die beiden Gruppen sind rechts und links von einem begehbaren Mittelgang 22 angeordnet. Eine Außenwand 8, 8' der Kapseln fällt jeweils mit einer der Containerwände zusammen und ist daher nach Möglichkeit besonders gut gegen Wärmeverluste zu isolieren. In der Containerdecke befindet sich eine Lüftungsöffnung 21. Nach herkömmlichen Verfahren wurde das gesamte Containervolumen beheizt und zusätzlich der gesamte Luftinhalt mehrmals pro Stunde (ca. 3mal) gewechselt. Erfindungsgemäß wird der Containerinnenraum in zwei Zonen geteilt. Dabei wird nur die durch die Kapselwände 7 bis 9 bzw. 7' bis 9' gebildete Zone I (Kapselinnenraum) beheizt. In dieser Zone wird jedoch kein Luftwechsel vorgenommen: Dem Außenbereich der beiden Kapseln (Zone II) wird erfindungsgemäß keine Wärme zugeführt, dagegen wird dieser Bereich belüftet. In Figur 2 ist strichpunktiert eine Variante einer erfindungsgemäßen Vorrichtung eingetragen. Demnach wird zwischen den Kapselwänden 7 bis 7' und den zugehörigen Behältern 1 bzw. 2' eine zusätzliche Wand 19 bzw. 19' mit Abstand und parallel zu den Kapselwänden 7 bzw. 7' montiert. Durch die zusätzlichen Wände 19 bzw. 19' wird eine Umwälzung der Luft innerhalb der beiden Kapseln gefördert. Die durch Heizkörper 6 erwärmte Luft streicht zwischen den Behältern 1 und 2 bzw. 1' und 2' empor, kühlt dabei ab und wird aus dem Bereich der Kapseldecke über den Raum zwischen der Kapselwand 7 und der zusätzlichen Wand 19 (7' und 19') in den Bodenbereich der Kapsel geleitet.
  • Zusammenfassend läßt sich feststellen, daß durch das erfindungsgemäße Verfahren eine erhebliche Senkung des Heizenergiebedarfs erzielt werden kann.

Claims (7)

1. Verfahren zum Bereitstellen eines Gases., das in Behältern in flüssiger Form oder zusammen mit einem in einer porösen Masse verteilten Lösungsmittel unter Druck gespeichert ist, wobei die Behälter erwärmt werden, dadurch gekennzeichnet, daß ein oder mehrere Behälter in eine ausschließlich gasdichte Teile dieser Behälter umschließende Kapsel eingebaut wird bzw. werden, wobei der Kapselinnenraum während der Gasentnahme wenigstens zeitweise erwärmt wird, während der Außenraum der Kapsel belüftet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Behälter mittels erhitzter Luft erwärmt und die Luft innerhalb des Kapselinnenraumes umgewälzt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Temperatur des Kapselinnenraumes in Abhängigkeit vom Druck in den Behältern geregelt wird,
4. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, mit innerhalb eines Raumes montierten Behältern mit Entnahmevorrichtungen, dadurch gekennzeichnet, daß ein oder mehrere Behälter (1 bis 4) so in eine allseitig geschlossene Kapsel (7 bis 9) eingebaut ist bzw. sind, daß sich nur die Behältergehäuse sowie eine Heizvorrichtung (6) im Kapselinnenraum befinden, während die Gasentnahme- und Gasfüllstelle der Behälter sowie die zugehörigen Entnahmevorrichtungen (10 bis 18) außerhalb der Kapsel angeordnet sind.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß in einer Kapsel jeweils alle über eine gemeinsame Entnahmeleitung (18) zu einer Bündeleinheit zusammengefaßten Behälter (1 bis 4) angeordnet sind.
6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Heizvorrichtung (6) ein unterhalb der Behälter (1 bis 4) in der Kapsel angeordneter Lufterhitzer ist.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß im Kapselinnenraum eine Wand (19,19') mit Abstand und im wesentlichen parallel zu einer vertikalen Kapselwand (7,7') abgeordnet ist, wobei der zwischen der Wand und der vertikalen Kapselwand gebildete Raum den Bodenbereich der Kapsel mit dem Deckenbereich der Kapsel verbindet und in diesem Raum keine Behälter angeordnet sind.
EP81109652A 1980-11-14 1981-11-12 Vorrichtung zum Bereitstellen eines Gases Expired EP0052351B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3042944 1980-11-14
DE19803042944 DE3042944A1 (de) 1980-11-14 1980-11-14 Verfahren und vorrichtung zum bereitstellen eines gases

Publications (3)

Publication Number Publication Date
EP0052351A2 true EP0052351A2 (de) 1982-05-26
EP0052351A3 EP0052351A3 (en) 1982-09-01
EP0052351B1 EP0052351B1 (de) 1985-02-06

Family

ID=6116750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81109652A Expired EP0052351B1 (de) 1980-11-14 1981-11-12 Vorrichtung zum Bereitstellen eines Gases

Country Status (3)

Country Link
EP (1) EP0052351B1 (de)
AT (1) AT370855B (de)
DE (2) DE3042944A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844431A2 (de) * 1996-11-25 1998-05-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vorrichtung und Verfahren zur gesteuerten Abgabe von Flüssiggas
FR2759146A1 (fr) * 1997-02-05 1998-08-07 Air Liquide Installation de fourniture de gaz de travail
WO2000050804A1 (fr) * 1999-02-25 2000-08-31 Compagnie Des Gaz De Petrole Primagaz Dispositif de chauffage a bruleur de gaz de petrole liquefie et procede d'alimentation en gaz de petrole liquefie
WO2002003000A1 (en) * 2000-07-01 2002-01-10 S J International Limited Glass chiller
EP1354165A2 (de) * 2001-01-05 2003-10-22 Praxair Technology, Inc. Gasablieferung mit hohen strömungsgeschwindigkeiten
EP1515079A2 (de) * 2003-09-12 2005-03-16 Asia Pacific Fuel Cell Technologies, Ltd. Vorrichtung und Verfahren zum Erhitzen eines Wasserstoffsbehälters
WO2005028945A2 (en) * 2003-09-19 2005-03-31 Prototech As Storage of pressurised fluids
WO2008002565A2 (en) * 2006-06-28 2008-01-03 Praxiar Technology, Inc. Energy delivery system for a gas transport vessel
WO2012138306A1 (en) * 2011-04-04 2012-10-11 Ipragaz Anonim Sirketi An embodiment that produces energy from lpg in liquid phase
CN103047534A (zh) * 2013-01-11 2013-04-17 扬州诚德钢管有限公司 卧式站用储气瓶式容器组
US9896578B2 (en) 2012-10-16 2018-02-20 Basf Se Thermoplastically processable transparent blends of thermoplastic polyurethane and poly(meth)acrylates

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388736A (zh) * 2013-07-01 2013-11-13 安徽省旌德县天益医药化工厂 一种氮气瓶组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2216866A (en) * 1938-12-01 1940-10-08 Southern Steel Co Liquefied gas dispensing system
US2241278A (en) * 1940-04-12 1941-05-06 Spivey Wilmer Bennett Storage and dispensing system for liquefied hydrocarbons
FR2354507A1 (fr) * 1976-06-11 1978-01-06 Antargaz Procede et dispositif d'alimentation en gaz d'un appareil generateur d'energie
DE2650880A1 (de) * 1976-11-06 1978-05-18 Linde Ag Vorrichtung zur entnahme von gasen aus flaschen
DE2851862A1 (de) * 1978-11-30 1980-06-04 Linde Ag Verfahren zur entnahme von gasen aus behaeltern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2216866A (en) * 1938-12-01 1940-10-08 Southern Steel Co Liquefied gas dispensing system
US2241278A (en) * 1940-04-12 1941-05-06 Spivey Wilmer Bennett Storage and dispensing system for liquefied hydrocarbons
FR2354507A1 (fr) * 1976-06-11 1978-01-06 Antargaz Procede et dispositif d'alimentation en gaz d'un appareil generateur d'energie
DE2650880A1 (de) * 1976-11-06 1978-05-18 Linde Ag Vorrichtung zur entnahme von gasen aus flaschen
DE2851862A1 (de) * 1978-11-30 1980-06-04 Linde Ag Verfahren zur entnahme von gasen aus behaeltern

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844431A3 (de) * 1996-11-25 1999-04-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vorrichtung und Verfahren zur gesteuerten Abgabe von Flüssiggas
US6076359A (en) * 1996-11-25 2000-06-20 American Air Liquide Inc. System and method for controlled delivery of liquified gases
CN1109128C (zh) * 1996-11-25 2003-05-21 液体空气乔治洛德方法利用和研究有限公司 液化气的受控输送系统及方法
EP0844431A2 (de) * 1996-11-25 1998-05-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Vorrichtung und Verfahren zur gesteuerten Abgabe von Flüssiggas
FR2759146A1 (fr) * 1997-02-05 1998-08-07 Air Liquide Installation de fourniture de gaz de travail
WO2000050804A1 (fr) * 1999-02-25 2000-08-31 Compagnie Des Gaz De Petrole Primagaz Dispositif de chauffage a bruleur de gaz de petrole liquefie et procede d'alimentation en gaz de petrole liquefie
FR2790307A1 (fr) * 1999-02-25 2000-09-01 Gaz De Petrole Appareil d'alimentation en gaz de petrole liquefie a moyens de chauffage
WO2002003000A1 (en) * 2000-07-01 2002-01-10 S J International Limited Glass chiller
EP1354165A4 (de) * 2001-01-05 2009-04-22 Praxair Technology Inc Gasablieferung mit hohen strömungsgeschwindigkeiten
EP1354165A2 (de) * 2001-01-05 2003-10-22 Praxair Technology, Inc. Gasablieferung mit hohen strömungsgeschwindigkeiten
EP1515079A3 (de) * 2003-09-12 2009-07-29 Asia Pacific Fuel Cell Technologies, Ltd. Vorrichtung und Verfahren zum Erhitzen eines Wasserstoffsbehälters
EP1515079A2 (de) * 2003-09-12 2005-03-16 Asia Pacific Fuel Cell Technologies, Ltd. Vorrichtung und Verfahren zum Erhitzen eines Wasserstoffsbehälters
WO2005028945A3 (en) * 2003-09-19 2005-06-16 Prototech As Storage of pressurised fluids
WO2005028945A2 (en) * 2003-09-19 2005-03-31 Prototech As Storage of pressurised fluids
WO2008002565A2 (en) * 2006-06-28 2008-01-03 Praxiar Technology, Inc. Energy delivery system for a gas transport vessel
WO2008002565A3 (en) * 2006-06-28 2008-02-07 Praxiar Technology Inc Energy delivery system for a gas transport vessel
US7778530B2 (en) 2006-06-28 2010-08-17 Praxair Technology, Inc. Energy delivery system for a gas transport vessel containing low vapor pressure gas
US8447175B2 (en) 2006-06-28 2013-05-21 Praxair Technology, Inc. Energy delivery system for a gas transport vessel containing low vapor pressure gas
WO2012138306A1 (en) * 2011-04-04 2012-10-11 Ipragaz Anonim Sirketi An embodiment that produces energy from lpg in liquid phase
US9896578B2 (en) 2012-10-16 2018-02-20 Basf Se Thermoplastically processable transparent blends of thermoplastic polyurethane and poly(meth)acrylates
CN103047534A (zh) * 2013-01-11 2013-04-17 扬州诚德钢管有限公司 卧式站用储气瓶式容器组

Also Published As

Publication number Publication date
EP0052351B1 (de) 1985-02-06
EP0052351A3 (en) 1982-09-01
ATA625480A (de) 1982-09-15
DE3168831D1 (en) 1985-03-21
AT370855B (de) 1983-05-10
DE3042944A1 (de) 1982-07-01

Similar Documents

Publication Publication Date Title
EP0052351B1 (de) Vorrichtung zum Bereitstellen eines Gases
EP0307581B1 (de) Adsorptionseinrichtung zur Gastrennung
DE1119830B (de) Verfahren und Vorrichtung zur Trennung von gas- oder dampffoermigen Stoffen, insbesondere Isotopen
DE4035626C2 (de) Vorrichtung zum Speichern von Wärmeenergie in einem Raumheiz- und Kühlsystem
DE3610332A1 (de) Regenerativheizgeraet
DE2024991A1 (de) Verfahren und Vorrichtung zum Ad sorptionspumpen
DE2755540A1 (de) Verfahren zum aushaerten von betonteilen
DE615845C (de) Verfahren und Vorrichtungen zum Verdampfen von Fluessigkeiten
EP0088221B1 (de) Vorrichtung zum Kühlen eines in einem Vergaser erzeugten Gases
EP0442107A1 (de) Verfahren und Vorrichtung zum Einfrieren eines der Gefriertrocknung zu unterwerfenden Produktes
EP0250420B1 (de) Vorrichtung zur kühlung von koks
DE69432831T2 (de) Verfahren und vorrichtung zum kühlen und karbonisieren von flüssigkeiten
DE1551599A1 (de) System zum Abkühlen, Spülen und Erwärmen von Flüssiggas-Lagerbehältern und zur Steuerung der Verdampfungsgeschwindigkeit der darin befindlichen Ladung
CH622336A5 (de)
DE2650880A1 (de) Vorrichtung zur entnahme von gasen aus flaschen
DE1583325A1 (de) Waermebehandlungsofen
DE2720118A1 (de) Temperatur-schutzgefaess fuer messeinrichtung
DE3106753C2 (de) Verfahren und Vorrichtung zur Kühlung von Transportbehältern
DE687952C (de) Vorrichtung zur Verteilung eines Reaktions-, Regenerations- oder Reinigungsstromes in einer mit einer Kontaktmasse gefuellten Kammer
DE10111436B4 (de) Vorrichtung und Verfahren zur Dampfkondensation in einem Druckgargerät
DE3010704C2 (de) Vorrichtung zur Trockenkühlung von Koks
DE69006692T2 (de) Heizkörper für Kessel für Wärmeträgerflüssigkeit.
EP0355519A2 (de) Verfahren und Vorrichtung zur Kühlung eines mit Flüssigkeit gefüllten Behälters
DE3201186A1 (de) Verfahren zum schnellkuehlen, kuehllagern und erwaermen von speisen und eine vorrichtung zur durchfuehrung des verfahrens
DE639081C (de) Vorrichtung zur Behandlung von Gasen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE CH DE FR

17P Request for examination filed

Effective date: 19820723

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR LI

REF Corresponds to:

Ref document number: 3168831

Country of ref document: DE

Date of ref document: 19850321

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19881130

Ref country code: CH

Effective date: 19881130

Ref country code: BE

Effective date: 19881130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19881219

Year of fee payment: 8

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 19881130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900801