EP0052351B1 - Vorrichtung zum Bereitstellen eines Gases - Google Patents

Vorrichtung zum Bereitstellen eines Gases Download PDF

Info

Publication number
EP0052351B1
EP0052351B1 EP81109652A EP81109652A EP0052351B1 EP 0052351 B1 EP0052351 B1 EP 0052351B1 EP 81109652 A EP81109652 A EP 81109652A EP 81109652 A EP81109652 A EP 81109652A EP 0052351 B1 EP0052351 B1 EP 0052351B1
Authority
EP
European Patent Office
Prior art keywords
capsule
containers
gas
wall
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81109652A
Other languages
English (en)
French (fr)
Other versions
EP0052351A2 (de
EP0052351A3 (en
Inventor
Helmut Meinass
Bernhard Volz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0052351A2 publication Critical patent/EP0052351A2/de
Publication of EP0052351A3 publication Critical patent/EP0052351A3/de
Application granted granted Critical
Publication of EP0052351B1 publication Critical patent/EP0052351B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/002Use of gas-solvents or gas-sorbents in vessels for acetylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • F17C7/04Discharging liquefied gases with change of state, e.g. vaporisation

Definitions

  • the invention relates to a device for providing a gas, which is stored in containers in liquid form or together with a solvent distributed in a porous mass under pressure, each container being provided with a gas filling and gas extraction device, a heating device being provided and wherein the containers are installed in a capsule that is closed on all sides and as airtight as possible.
  • Such a device is described in DE-A-26 50 880.
  • the containers are set up in transport containers or in local spaces and are heated in order to guarantee a certain amount of gas stored per unit of time. From the point of view of extensive emptying of the containers and the guarantee of a certain withdrawal quantity per unit of time, the highest possible temperature is desirable. However, heating the containers to a relatively high temperature leads to high energy consumption combined with considerable heating costs.
  • the invention is therefore based on the object of specifying a device of the type mentioned at the outset which causes only low heating costs, but which does not impair extensive emptying of the containers and which also guarantees a certain removal quantity per unit of time.
  • this object is achieved in that only the gas-tight housing of the containers and the heating device are located inside the capsule, so that the interior of the capsule is minimal, while the gas filling and gas extraction devices are arranged in the ventilated outer space of the capsule.
  • the containers in which gas is stored under pressure together with a solvent distributed in a porous mass or in which the gas is stored in liquid form are enclosed in a capsule before the gas withdrawal, through which two zones are formed.
  • the first zone the interior of the capsule, there are only the parts of the container in whose area there are no leaks, i.e. Gas leaks can occur.
  • the gas-tight part of a container is the container housing with the exception of the gas extraction or gas filling point.
  • This area of each container is in the second zone outside the capsule (zone 11). All containers can be installed in one capsule or some of the containers in one capsule. After the containers have been installed in one or more capsules in this way, gas can be removed from the containers.
  • the interior of the capsule is heated while the exterior is being ventilated.
  • Zone I it is only necessary to heat Zone I for gas extraction. In contrast to the known methods, this zone no longer needs to be ventilated, since within this zone there are no detachable connections, i.e. there are no hoses, fittings and lines in the area where leaks can occur. Since, according to the invention, it is unnecessary to change heated air, the energy contribution specified in point 3, which is a significant heating cost factor, is reduced to a minimum. If the containers can be encapsulated as airtight as possible, the heat loss due to air exchange can be completely eliminated.
  • the volume to be heated according to the invention i.e. the capsule interior, comparatively small. Therefore, the surface of the heated room (the capsule) is smaller than before, which means that the heat losses mentioned under point 2 over the walls of the heated room can be reduced. These losses can also be largely eliminated by using a capsule whose wall is coated with heat-insulating material or which consists of such a material.
  • the containers it is possible to set up the containers installed in a capsule outdoors or in a room.
  • gas When gas is extracted outdoors, it would be important to insulate the entire capsule from the point of view of minimizing heat loss through heat conduction.
  • the containers are accommodated in a room, for example in a mobile container, it is only necessary to provide the parts of the capsule which are on an outer wall of the room with a good heat-insulating material, while the insulating capacity of the Walls facing inside the room may be less.
  • the parts of the container or of the removal device are located in zone H, in the area of which leaks can occur. This zone is therefore ventilated. However, it is not necessary to heat Zone II, so that no heating energy is lost.
  • the heating costs can be reduced to a fraction of the previously incurred costs.
  • the bottles When filling acetylene bottles e.g. the bottles are cooled with cooling water during the filling process.
  • the encapsulation makes it possible to bring the cooling water to the bottles more effectively than before.
  • the separation ensures that the pipes do not come into contact with water and thus corrosion is not promoted.
  • all of the containers combined into a bundle unit via a common removal line are advantageously arranged in one capsule. If the containers are mounted in several capsules, the capsules can be heated separately in this arrangement and the containers of this capsule can be emptied independently of the other containers.
  • the heating device can advantageously be an air heater arranged below the container in the capsule.
  • a heat exchanger with finned tubes through which hot water, hot water or steam flows and which heats air flowing around the tubes, can be used.
  • the air inside the capsule interior can be circulated.
  • the circulation can be forced by suitable devices.
  • the heat convection caused by temperature differences within a capsule is sufficient. This measure prevents heat build-up in the capsule area.
  • a wall is arranged in the interior of the capsule at a distance and essentially parallel to a vertical capsule wall, the space formed between the wall and the vertical capsule wall connecting the bottom region of the capsule to the ceiling region of the capsule.
  • FIG 1 In Figure 1, four bottles 1 to 4 are shown.
  • the containers stand on a perforated base plate 5, below which two radiators 6 are arranged.
  • the containers 1 to 4 are surrounded by a capsule consisting of five walls. In the figure, only the two side walls 7, 8 and the ceiling 9 are shown.
  • the containers are mounted in this capsule such that only the container housings are arranged inside the capsule, while the respective bottle valves 10 to 13, hoses 14 to 17 and the common extraction line 18 are accommodated outside the capsule. Together with the space in which the radiators 6 are arranged, the capsule forms a closed, essentially airtight space.
  • the material from which the capsule walls are made has good heat-insulating properties.
  • gas in the exemplary embodiment acetylene, which is stored together with a solvent distributed in a porous mass under pressure in the containers, can be removed from the containers.
  • the containers are heated in order to apply the heat of solution, absorption and / or evaporation required for the extraction.
  • the drawing does not show a control unit by means of which the temperature of the interior of the capsule can be regulated as a function of the container pressure. Such a regulation makes it possible to set a low temperature inside the capsule when the containers are full, but to set a higher temperature as the pressure in the containers decreases. In connection with the installation of the containers in a capsule, this measure leads to a surprisingly large saving in heating costs.
  • Air heated by the radiator 6 sweeps up through the perforated base plate 5 and between the containers 1 and 2 or 3 and 4. The air cools somewhat in thermal contact with the containers and flows back to the radiators 6 between the bottles 1 and 4 and the capsule walls 7 and 8 and between the containers 2 and 3.
  • This sketch can be seen; that the interior of the capsule should be kept as small as possible.
  • the containers assembled in the manner described are arranged within a space, the outer space of the capsule, in which the container valves 10 to 13, the hoses, is required 14 to 17 and the common sampling line 18 are housed to vent.
  • FIG. 2 shows a device according to the invention in which the containers 1, 2, 1 ', 2' are located within a mobile container 20.
  • the containers are combined into two groups 1 to 2 and 1 'to 2', each of which is enclosed in its own capsule.
  • the two groups are arranged to the right and left of an accessible central aisle 22.
  • An outer wall 8, 8 'of the capsules coincides with one of the container walls and is therefore, if possible, particularly well insulated against heat loss.
  • the entire container volume was heated and, in addition, the entire air content was changed several times per hour (approx. 3 times). According to the container interior is divided into two zones.
  • zone I internal of the capsule
  • zone 11 no heat is supplied to the outer area of the two capsules (zone 11), but this area is ventilated.
  • FIG. 1 A variant of a device according to the invention is shown in broken lines in FIG. Accordingly, an additional wall 19 or 19 'is mounted between the capsule walls 7 to 7' and the associated containers 1 and 2 'at a distance and parallel to the capsule walls 7 and 7'. A circulation of the air within the two capsules is promoted by the additional walls 19 and 19 '. The air heated by the radiator 6 sweeps up between the containers 1 and 2 or 1 'and 2', cools down and is removed from the area of the capsule ceiling via the space between the capsule wall 7 and the additional wall 19 (7 'and 19' directed into the bottom area of the capsule.
  • the device according to the invention can achieve a significant reduction in the heating energy requirement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Packages (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum Bereitstellen eines Gases, das in Behältern in flüssiger Form oder zusammen mit einem in einer porösen Masse verteilten Lösungsmittel unter Druck gespeichert ist, wobei jeder Behälter mit einer Gasfüll- und Gasentnahmevorrichtung vorgesehen ist, wobei eine Heizvorrichtung vorgesehen ist und wobei die Behälter so in eine allseitig geschlossene und möglichst luftdichte Kapsel eingebaut sind.
  • Eine derartige Vorrichtung ist in der DE-A-26 50 880 beschrieben. Die Behälter sind dabei in Transportbehältern (Containern) oder in ortsgebundenen Räumen aufgestellt und werden beheizt, um eine bestimmte Entnahmemenge an gespeichertem Gas pro Zeiteinheit garantieren zu können. Unter dem Gesichtspunkte einer weitgehenden Entleerung der Behälter und der Garantie einer bestimmten Entnahmemenge pro Zeiteinheit ist eine möglichst hohe Temperatur erstrebenswert. Die Erwärmung der Behälter auf eine relativ hohe Temperatur führt aber zu einem hohen Energieverbrauch verbunden mit beträchtlichen Heizkosten.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung der eingangs erwähnten Art anzugeben, die nur geringe Heizkosten verursacht, durch die jedoch eine weitgehende Entleerung der Behälter nicht beeinträchtigt wird und weiterhin eine bestimmte Entnahmemenge pro Zeiteinheit garantiert ist.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass sich nur die gasdichten Gehäuse der Behälter und die Heizvorrichtung innerhalb der Kapsel befinden, so dass der Innenraum der Kapsel minimal wird, während die Gasfüll- und Gasentnahmevorrichtungen im belüfteten Aussenraum der Kapsel angeordnet sind.
  • Erfindungsgemäss werden die Behälter zunächst in eine Kapsel montiert. Dies ist so gestaltet, dass einerseits sicherheitstechnische Aspekte berücksichtigt werden und andererseits der zu beheizende Raum möglichst klein gehalten wird. Dabei wurde von folgender Erkenntnis ausgegangen: Der Heizenergieaufwand bei der Entnahme von Gasen aus Flaschen setzt sich hauptsächlich aus folgenden Energiebeiträgen zusammen:
    • 1. Energie für die Entlösung eines Gases aus einem Lösungsmittel, in dem das Gas gelöst ist, wobei das Gas zusammen mit dem Lösungsmittel in einer porösen Masse unter Druck verteilt ist bzw. Energie für die Verdampfung eines flüssig gespeicherten Gases.
    • 2. Energie, die erforderlich ist, um Wärmeverluste durch die Wände des beheizten Raumes auszugleichen.
    • 3. Energie, um die Wärmeverluste auszugleichen, die durch den aus sicherheitstechnischen Gründen vorgeschriebenen Luftwechsel entstehen. Diese Luftwechsel sind erforderlich, um die Bildung von zündfähigen Gas-Luft-Gemischen durch Gas, das durch Undichtigkeiten austritt, zu vermeiden.
  • Erfindungsgemäss werden die Behälter, in denen Gas zusammen mit einem in einer porösen Masse verteilten Lösungsmittel unter Druck gespeichert sind oder in denen das Gas in flüssiger Form gespeichert ist, vor der Gasentnahme in einer Kapsel eingeschlossenen, durch die zwei Zonen gebildet werden. In der ersten Zone (Zone I), dem Kapselinnernraum, befinden sich ausschliesslich die Teile der Behälter, in deren Bereich keine Undichtigkeiten, d.h. Gaslecks, auftreten können. Der gasdichte Teil eines Behälters ist das Behältergehäuse mit Ausnahme der Gasentnahme- bzw. Gasfüllstelle. Dieser Bereich jedes Behälters befindet sich in der zweiten Zone ausserhalb der Kapsel (Zone 11). Hierbei können alle Behälter in einer Kapsel oder ein Teil der Behälter in jeweils eine Kapsel eingebaut werden. Nachdem die Behälter in dieser Weise in eine oder mehrere Kapseln eingebaut worden sind, kann den Behältern Gas entnommen werden. Hierbei wird der Kapselinnenraum geheizt, während der Aussenraum belüftet wird.
  • Durch diese Massnahme, insbesondere die Trennung in zwei Zonen, wird folgendes erreicht:
  • Für die Gasentnahme ist es nur erforderlich, Zone I zu beheizen. Im Unterschied zu den bekannten Verfahren muss diese Zone nicht mehr belüftet werden, da innerhalb dieser Zone keine lösbaren Verbindungen, d.h. keine Schläuche, Armaturen und Leitungen untergebracht sind, in deren Bereich Undichtigkeiten auftreten können. Da es erfindungsgemäss unnötig ist, beheizte Luft zu wechseln, wird der unter Punkt 3 angegebene Energiebeitrag, der ein wesentlicher Heizkostenfaktor ist, auf ein Minimum reduziert. Gelingt es, die Kapselung der Behälter möglichst luftdicht vorzunehmen, so kann der auf Luftwechsel beruhende Wärmeverlust vollständig ausgeschaltet werden.
  • Wurden die Behälter bisher z.B. in grossen Transportbehältern geliefert und während der Entnahme beheizt, so ist das erfindungsgemäss zu beheizende Volumen, d.h. der Kapselinnenraum, vergleichsweise klein. Daher ist die Oberfläche des beheizten Raumes (der Kapsel) kleiner als bisher, wodurch die unter Punkt 2 angeführten Wärmeverluste über die Wände des beheizten Raumes reduziert werden können. Diese Verluste können durch die Verwendung einer Kapsel, deren Wand mit wärmeisolierendem Material beschichtet ist oder die aus einem derartigen Material besteht, ebenfalls weitgehend ausgeschaltet werden.
  • Erfindungsgemäss ist es möglich, die in eine Kapsel eingebauten Behälter im Freien oder in einem Raum aufzustellen. Bei einer Gasentnahme im Freien wäre dabei unter dem Gesichtspunkt möglichst geringer Wärmeverluste durch Wärmeleitung eine gute Isolierung der gesamten Kapsel wichtig. Werden die Behälter dagegen in einem Raum, z.B. in einem mobilen Container untergebracht, ist es nur erforderlich, die Teile der Kapsel, die sich an einer Aussenwand des Raumes befinden, mit einem gut wärmeisolierenden Material zu versehen, während das Isoliervermögen der zur Innenseite des Raumes weisenden Wände geringer sein kann.
  • Nach einem Merkmal der Erfindung befinden sich in Zone Hatte die Teile des Behälters bzw. der Entnahmevorrichtung, in deren Bereich Undichtigkeiten auftreten können. Diese Zone wird daher belüftet. Es ist jedoch nicht notwendig, Zone II zu beheizen, so dass auf diese Weise keine Heizenergie verlorengeht.
  • Mit dem erfindungsgemässen Verfahren kann der Heizkostenaufwand auf einen Bruchteil der bisher anfallenden Kosten gesenkt werden.
  • Beim Befüllen von Acetylenflaschen z.B. werden die Flaschen während des Füllvorganges mit Kühlwasser gekühlt. Durch die Kapselung ist es möglich, das Kühlwasser wirksamer als bisher an die Flaschen heranbringen zu können. Ausserdem wird durch die Trennung erreicht, dass die Leitungen nicht mit Wasser in Berührung kommen und somit die Korrosion nicht gefördert wird.
  • In einer Ausgestaltung des Erfindungsgedankens sind mit Vorteil in einer Kapsel jeweils alle über eine gemeinsame Entnahmeleitung zu einer Bündeleinheit zusammengefassten Behälter angeordnet. Sind die Behälter in mehreren Kapseln montiert, können die Kapseln in dieser Anordnung jeweils getrennt voneinander beheizt werden und die Behälter dieser Kapsel unabhängig von den übrigen Behältern entleert werden.
  • Nach einem weiteren Merkmal der Erfindung kann die Heizvorrichtung vorteilhafterweise ein unterhalb der Behälter in der Kapsel angeordneter Lufterhitzer sein. Z.B. kann ein Wärmetauscher mit Rippenrohren, durch die Warmwasser, Heisswasser oder Dampf strömt und dabei die Rohre umspülende Luft erwärmt, Verwendung finden. Die Luft innerhalb des Kapselinnenraums kann umgewälzt werden. Die Umwälzung kann durch geeignete Vorrichtungen erzwungen werden. Üblicherweise reicht jedoch die durch Temperaturunterschiede innerhalb einer Kapsel verursachte Wärmekonvektion aus. Durch diese Massnahme wird ein Wärmestau im Bereich der Kapseldecke verhindert. In einer vorteilhaften Variante dieser Vorrichtung ist im Kapselinnenraum eine Wand mit Abstand und im wesentlichen parallel zu einer vertikalen Kapselwand angeordnet, wobei der zwischen der Wand und der vertikalen Kapselwand gebildete Raum den Bodenbereich der Kapsel mit dem Deckenbereich der Kapsel verbindet. Dabei sind in diesem Raum keine Behälter angeordnet. Die erwärmte Luft strömt hierbei durch den thermischen Auftrieb zwischen den Flaschenlücken vom Bereich des Kapselbodens zum Bereich der Kapseldecke. Aus diesem Bereich strömt die abgkühlte Luft über den zwischen Kapselwand un der weiteren Wand gebildeten Zwischenraum zurück. Die weitere Wand verhindert, dass sich die über den Heizkörpern emporströmende Luft mit der kühleren Luft mischt.
  • Im folgenden soll anhand schematischer Skizzen ein Ausführungsbeispiel einer erfindungsgemässen Vorrichtung beschrieben werden:
    • Es zeigen:
    • Figur 1 ein Schnittbild einer schematisch dargestellten erfindungsgemässen Vorrichtung
    • Figur 2 eine Ausgestaltung einer in einem mobilen Container eingebauten erfindungsgemässen Vorrichtung.
  • In Figur 1 sind vier Flaschen 1 bis 4 dargestellt. Die Behälter stehen auf einer gelochten Bodenplatte 5, unterhalb deren zwei Heizkörper 6 angeordnet sind. Die Behälter 1 bis 4 sind von einer aus fünf Wänden bestehenden Kapsel umgeben. In der Figur sind lediglich die beiden Seitenwände 7, 8 und die Decke 9 dargestellt. DieBehälter werden vor der Gasentnahme so in diese Kapsel montiert, dass lediglich die Behältergehäuse innerhalb der Kapsel angeordnet sind, während die jeweiligen Flaschenventile 10 bis 13, Schläuche 14 bis 17 sowie die gemeinsame Entnahmeleitung 18 ausserhalb der Kapsel untergebracht sind. Zusammen mit dem Raum, in dem die Heizkörper 6 angeordnet sind, bildet die Kapsel einen geschlossenen, im wesentlichen luftdichten Raum. Das Material, aus dem die Kapselwände gefertigt werden, besitzt gute wärmeisolierende Eigenschaften.
  • Nachdem die Behälter 1 bis 4 auf die geschilderte Weise in einer Kapsel eingebaut worden sind, kann den Behältern Gas, im Ausführungsbeispiel Azetylen, das zusammen mit einem in einer porösen Masse verteilten Lösungsmittel unter Druck in den Behältern gespeichert ist, entnommen werden. Während der Gasentnahme werden die Behälter beheizt, um die zur Entnahme erforderlichen Lösungs-, Absorptions- und/oder Verdampfungswärme aufzubringen. In der Zeichnung ist eine Regeleinheit, über die die Temperatur des Kapselinnenraums in Abhängigkeit vom Behälterdruck geregelt werden kann, nicht dargestellt. Durch eine derartige Regelung ist es möglich, bei vollen Behältern eine niedrige Temperatur innerhalb der Kapsel, mit sinkendem Druck in den Behältern jedoch eine höhere Temperatur einzustellen. Im Zusammenhang mit dem Einbau der Behälter in eine Kapsel führt diese Massnahme zu einer überraschend grossen Heizkostenersparnis. Musste bisher für die Entleerung von Behältern, die in mobilen Containern montiert waren und in diesen erwärmt wurden, ein Heizenergieverbrauch veranschlagt werden, der etwa dem eines Einfamilienhauses während der Heizperiode entsprach, so sinkt der Energieverbrauch einer erfindungsgemässen Vorrichtung auf 10% bis 20% dieses Wertes.
  • Durch die Heizkörper 6 erwärmte Luft streicht durch die gelochte Bodenplatte 5 und zwischen den Behältern 1 und 2 bzw. 3 und 4 empor. Im Wärmekontakt mit den Behältern kühlt die Luft etwas ab und fliesst zwischen den Flaschen 1 bzw. 4 und den Kapselwänden 7 bzw. 8 sowie zwischen den Behältern 2 und 3 zu den Heizkörpern 6 zurück. Dieser Skizze ist zu entnehmen; dass der Kapselinnenraum möglichst klein zu halten ist.
  • Sind die auf die beschriebene Weise montierten Behälter innerhalb eines Raumes angeordnet, ist es erforderlich, den Aussenraum der Kapsel, in dem die Behälterventile 10 bis 13, die Schläuche 14 bis 17 sowie die gemeinsame Entnahmeleitung 18 untergebracht sind, zu belüften.
  • In Figur 2 ist eine erfindungsgemässe Vorrichtung dargestellt, bei der sich die Behälter 1 , 2, 1 ', 2' innerhalb eines mobilen Containers 20 befinden. Die Behälter sind zu zwei Gruppen 1 bis 2 und 1' bis 2' zusammengefasst, die jeweils in eine eigene Kapsel eingeschlossen sind. Die beiden Gruppen sind rechts und links von einem begehbaren Mittelgang 22 angeordnet. EineAussenwand 8,8' der Kapseln fällt jeweils mit einer der Containerwände zusammen und ist daher nach Möglichkeit besonders gut gegen Wärmeverluste zu isolieren. In der Containerdecke befindet sich eine Lüftungsöffnung 21. Bei herkömmlichen Vorrichtungen wurde das gesamte Containervolumen beheizt und zusätzlich der gesamte Luftinhalt mehrmals pro Stunde (ca. 3 mal) gewechselt. Erfindungsgemäss wird der Containerinnerraum in zwei Zonen geteilt. Dabei wird nur die durch die Kapselwände 7 bis 9 bzw. 7' bis 9' gebildete Zone I (Kapselinnenraum) beheizt. In dieser Zone wird jedoch kein Luftwechsel vorgenommen. Dem Aussenbereich der beiden Kapseln (Zone 11) wird erfindungsgemäss keine Wärme zugeführt, dagegen wird dieser Bereich belüftet.
  • In Figur 2 ist strichpunktiert eine Variante einer erfindungsgemässen Vorrichtung eingetragen. Demnach wird zwischen den Kapselwänden 7 bis 7' und den zugehörigen Behältern 1 bzw. 2' eine zusätzliche Wand 19 bzw. 19' mit Abstand und parallel zu den Kapselwänden 7 bzw. 7' montiert. Durch die zusätzlichen Wände 19 bzw. 19' wird eine Umwälzung der Luft innerhalb der beiden Kapseln gefördert. Die durch Heizkörper 6 erwärmte Luft streicht zwischen den Behältern 1 und 2 bzw. 1' und 2' empor, kühlt dabei ab und wird aus dem Bereich der Kapseldecke über den Raum zwischen der Kapselwand 7 und der zusätzlichen Wand 19 (7' und 19' in den Bodenbereich der Kapsel geleitet.
  • Zusammenfassend lässt sich feststellen, dass durch die erfindungsgemässe Vorrichtung eine erhebliche Senkung des Heizenergiebedarfs erzielt werden kann.

Claims (5)

1. Vorrichtung zum Bereitstellen eines Gases, das in mehreren Behältern (1-4) in flüssiger Form oder zusammen mit einem in einer porösen Masse verteilten Lösungsmittel unter Druck gespeichert ist, wobei jeder Behälter (1-4) mit einer Gasfüll-und Gasentnahmevorrichtung (10-18) versehen ist, wobei eine Heizvorrichtung (6) vorgesehen ist und wobei die Behälter (1 bis 4) so in eine allseitig geschlossene und möglichst luftdichte Kapsel (7 bis 9) eingebaut sind, dadurch gekennzeichnet, dass sich nur die gasdichten Gehäuse der Behälter und die Heizvorrichtung (6) innerhalb der Kapsel (7 bis 9) befinden, so dass der Innenraum der Kapsel minimal wird, während die Gasfüll- und Gasentnahmevorrichtungen (10 bis 18) im belüfteten Aussenraum der Kapsel (7 bis 9) angeordnet sind.
2. Vorrichung nach Anspruch 1, dadurch gekennzeichnet, dass in einer Kapsel (7 bis 9) jeweils alle über eine gemeinsame Entnahmeleitung (18) zu einer Bündeleinheit zusammengefassten Behälter (1 bis 4) angeordnet sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Heizvorrichtung (6) ein unterhalb der Behälter (1 bis 4) in der Kapsel (7 bis 9) angeordneter Lufterhitzer ist.
Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass im Kapselinnenraum eine Wand (19,19') mit Abstand und im wesentlichen parallel zu einer vertikalen Kapselwand (7, 7') angeordnet ist, wobei der zwischen der Wand und der vertikalen Kapselwand gebildete Raum den Bodenbereich der Kapsel mit dem Deckenbereich der Kapsel verbindet und in diesem Raum keine Behälter angeordnet sind.
5. Vorrichtung nach einem der Ansprüche 1, 3 oder 4, dadurch gekennzeichnet, dass anstelle von mehreren Behältern nur ein Behälter vorgesehen ist.
EP81109652A 1980-11-14 1981-11-12 Vorrichtung zum Bereitstellen eines Gases Expired EP0052351B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3042944 1980-11-14
DE19803042944 DE3042944A1 (de) 1980-11-14 1980-11-14 Verfahren und vorrichtung zum bereitstellen eines gases

Publications (3)

Publication Number Publication Date
EP0052351A2 EP0052351A2 (de) 1982-05-26
EP0052351A3 EP0052351A3 (en) 1982-09-01
EP0052351B1 true EP0052351B1 (de) 1985-02-06

Family

ID=6116750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81109652A Expired EP0052351B1 (de) 1980-11-14 1981-11-12 Vorrichtung zum Bereitstellen eines Gases

Country Status (3)

Country Link
EP (1) EP0052351B1 (de)
AT (1) AT370855B (de)
DE (2) DE3042944A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388736A (zh) * 2013-07-01 2013-11-13 安徽省旌德县天益医药化工厂 一种氮气瓶组

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6076359A (en) * 1996-11-25 2000-06-20 American Air Liquide Inc. System and method for controlled delivery of liquified gases
FR2759146A1 (fr) * 1997-02-05 1998-08-07 Air Liquide Installation de fourniture de gaz de travail
FR2790307B1 (fr) * 1999-02-25 2001-04-06 Gaz De Petrole Appareil d'alimentation en gaz de petrole liquefie a moyens de chauffage
GB0016074D0 (en) * 2000-07-01 2000-08-23 S J International Limited Glass chiller
US20020124575A1 (en) * 2001-01-05 2002-09-12 Atul Pant Gas delivery at high flow rates
CN100423340C (zh) * 2003-09-12 2008-10-01 亚太燃料电池科技股份有限公司 储氢容器的加热装置及方法
GB0322027D0 (en) * 2003-09-19 2003-10-22 Prototech As Storage of pressurised fluids
US7778530B2 (en) 2006-06-28 2010-08-17 Praxair Technology, Inc. Energy delivery system for a gas transport vessel containing low vapor pressure gas
WO2012138306A1 (en) * 2011-04-04 2012-10-11 Ipragaz Anonim Sirketi An embodiment that produces energy from lpg in liquid phase
JP6433905B2 (ja) 2012-10-16 2018-12-05 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 熱可塑性ポリウレタン及びポリ(メタ)アクリレートの熱可塑処理が可能な透明混合物
CN103047534A (zh) * 2013-01-11 2013-04-17 扬州诚德钢管有限公司 卧式站用储气瓶式容器组

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2216866A (en) * 1938-12-01 1940-10-08 Southern Steel Co Liquefied gas dispensing system
US2241278A (en) * 1940-04-12 1941-05-06 Spivey Wilmer Bennett Storage and dispensing system for liquefied hydrocarbons
FR2354507A1 (fr) * 1976-06-11 1978-01-06 Antargaz Procede et dispositif d'alimentation en gaz d'un appareil generateur d'energie
DE2650880C2 (de) * 1976-11-06 1986-04-03 Linde Ag, 6200 Wiesbaden Vorrichtung zur Entnahme von Gasen aus Flaschen
DE2851862A1 (de) * 1978-11-30 1980-06-04 Linde Ag Verfahren zur entnahme von gasen aus behaeltern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388736A (zh) * 2013-07-01 2013-11-13 安徽省旌德县天益医药化工厂 一种氮气瓶组

Also Published As

Publication number Publication date
AT370855B (de) 1983-05-10
EP0052351A2 (de) 1982-05-26
ATA625480A (de) 1982-09-15
EP0052351A3 (en) 1982-09-01
DE3168831D1 (en) 1985-03-21
DE3042944A1 (de) 1982-07-01

Similar Documents

Publication Publication Date Title
EP0052351B1 (de) Vorrichtung zum Bereitstellen eines Gases
DE69924505T2 (de) Verfahren und gerät zur kontrolle der temperatur
DE2720120C2 (de) Vorrichtung zur Behandlung eines organische Substanzen enthaltenden Gases mit Aktivkohle
DE2450847B2 (de) Wassererhitzer mit einem nach dem Vakuum-Verdampfungsprinzip arbeitenden Wärmetauscher
DE3490119C2 (de) Wärmeaustauscher
DE3711314A1 (de) Vorrichtung zum kuehlen eines synthesegases in einem quenchkuehler
DE1619741A1 (de) Mehrstufiger Verdampfer
EP0160161A1 (de) Wärmetauscher zum Kühlen von Gasen
DE615845C (de) Verfahren und Vorrichtungen zum Verdampfen von Fluessigkeiten
EP0250420B1 (de) Vorrichtung zur kühlung von koks
EP0088221A2 (de) Vorrichtung zum Kühlen eines in einem Vergaser erzeugten Gases
DE69432831T2 (de) Verfahren und vorrichtung zum kühlen und karbonisieren von flüssigkeiten
DE1551599A1 (de) System zum Abkühlen, Spülen und Erwärmen von Flüssiggas-Lagerbehältern und zur Steuerung der Verdampfungsgeschwindigkeit der darin befindlichen Ladung
EP1238613B1 (de) Vorrichtung und Verfahren zur Dampfkondensation in einem Druckgargerät
DE4029260C1 (en) Appts. for dry evaporation of technical gases - includes insulating vessel contg. gas tube surrounded by heating tube with flow path between them
DE69006692T2 (de) Heizkörper für Kessel für Wärmeträgerflüssigkeit.
DE687952C (de) Vorrichtung zur Verteilung eines Reaktions-, Regenerations- oder Reinigungsstromes in einer mit einer Kontaktmasse gefuellten Kammer
DE3010704C2 (de) Vorrichtung zur Trockenkühlung von Koks
DE639081C (de) Vorrichtung zur Behandlung von Gasen
DE556002C (de) Verfahren und Einrichtung zur Erzielung einer Kochsaeure mit hohem SO-Gehalt bei der Herstellung von Cellulose nach dem Sulfitverfahren
AT139112B (de) Vorrichtung zum Verteilen eines Mediums in einer eine Reaktionsvorrichtung füllenden Kontaktmasse.
AT222624B (de) Vorrichtung zum kontinuierlichen Eindampfen von Kühlsole
DE961524C (de) Verfahren und Vorrichtung zum Kuehlen waermeleitender Wandflaechen, insbesondere vonReaktionsraeumen, mittels aufgewirbelter feinverteilter fester Waermetraeger
AT143222B (de) Verfahren und Vorrichtung zum Betriebe von Siedekühlern, insbesondere für Vakuumentladungsgefäße.
DE2824667C2 (de) Dampfbeheizter Wärmeübertrager, insbesondere für kondensatseitige Regelung der Wärmeübertragung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE CH DE FR

17P Request for examination filed

Effective date: 19820723

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR LI

REF Corresponds to:

Ref document number: 3168831

Country of ref document: DE

Date of ref document: 19850321

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19881130

Ref country code: CH

Effective date: 19881130

Ref country code: BE

Effective date: 19881130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19881219

Year of fee payment: 8

BERE Be: lapsed

Owner name: LINDE A.G.

Effective date: 19881130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900801