EP0051237A1 - Verfahren zur Gewinnung wasserlöslicher Saccharide aus cellulosehaltigem Material - Google Patents
Verfahren zur Gewinnung wasserlöslicher Saccharide aus cellulosehaltigem Material Download PDFInfo
- Publication number
- EP0051237A1 EP0051237A1 EP81108878A EP81108878A EP0051237A1 EP 0051237 A1 EP0051237 A1 EP 0051237A1 EP 81108878 A EP81108878 A EP 81108878A EP 81108878 A EP81108878 A EP 81108878A EP 0051237 A1 EP0051237 A1 EP 0051237A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- wood
- hydrogen fluoride
- cellolignin
- cellulose
- glucose
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13K—SACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
- C13K1/00—Glucose; Glucose-containing syrups
- C13K1/02—Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
Definitions
- Cellulose-containing materials are found in nature in large numbers and diversity.
- a known such natural cellulosic material is e.g. the wood. It consists essentially of cellulose (a material mainly composed of glucose), hemicellulose (a substance mainly composed of pentoses and hexoses) and lignin (a polymeric substance with aromatic rings substituted by methoxy groups). Wood is recycled in a variety of ways, e.g. for heat generation (firing), as a building material in the furniture and building materials sector, etc .; A purely chemical recycling of the wood is also possible.
- Chemical digestion processes that not only separate wood into its components, hemicellulose, cellulose and lignin, but also break it down and transform it, have long been known.
- the chemical processes generally provide aqueous solutions of mono-, di- and oligomeric saccharides, which may be subjected to post-hydrolysis to glucose or directly fermented to ethanol, concentrated or evaporated to dryness. Possible areas of application for products obtained in this way are e.g. in the field of animal feed additives or preferably that of fermentation raw materials.
- DE-PS 560 535 describes the digestion of wood with liquid or vaporous pure HF at low temperatures, the HF being recirculated by evaporation or blowing off and subsequent condensation.
- a process for the digestion of wood with gaseous hydrogen fluoride is described in DE-PS 585 318, which involves three stages via an absorption of HF on wood at 10 ° to 20 ° C, the digestion at 20 ° to 50 ° C and desorption works at 100 ° - 150 ° C, the HF can be diluted with an inert gas stream.
- the cooling effort for the condensation of HF has a disadvantage here, as does the fact that when condensation occurs, only a very uneven distribution of the hydrogen fluoride on the reaction material occurs, a circumstance which can only be counteracted by very long dwell times or a sharp increase in the use of hydrogen fluoride otherwise the yields can be severely impaired.
- the distribution form of the hydrogen fluoride which is present as a fine mist in the air, is very uneven, all the more so since the air present complicates the uniformity of the reaction that when saccharifying wood with concentrated hydrogen fluoride, both in the liquid and in the gaseous state, the wood particles react quickly on the surface with the concentrated hydrogen fluoride, form a hard, rather impenetrable skin and shrink, which inhibits the further penetration of the gas into the interior Furthermore, d It is difficult for the wood particles to penetrate the air in the cells. It An outer crust forms very quickly, which includes unsugared material and prevents further saccharification.
- wood consists only of the smallest part of wood mass itself and for the most part of air, which is located between and in the wooden cells.
- practically water-free wood consists of approximately 15% wood mass and approximately 85% air. Since the wooden cells are extremely small in relation to the size of the wood, no matter how small it is, the air content plays a major role even with sawdust.
- Another problem is the separation of the acetic acid formed in the hydrolysis of hemicellulose, which makes the loss of HF in the circle as difficult as possible, as well as the easy decomposition of the pentoses to furfural.
- “Cellolignin” here means vegetable materials such as wood, straw, bagasse and similar raw materials which have been subjected to a pre-hydrolysis which is known per se.
- This pre-hydrolysis of the wood which is known per se, consists of a relatively short-term treatment with highly dilute mineral acid at higher temperatures and pressures, with essentially the pentosans and hexosans contained in the hemicelluloses down to the monomer units, e.g. Xylose or mannose, split. Depending on the reaction conditions, these can then be isolated as such or undergo further changes, e.g. Dehydration to furfural or hydroxymethylfurfural (see Ullmann, loc. Cit., Vol. 7 (1957), p.711). Apart from fermentation, the reduction of xylose to xylitol is another example of a technical use of hemicellulose degradation products. It is therefore possible to obtain valuable products from wood by pre-hydrolysis before the digestion process according to the invention is used.
- cellolignin is also understood to mean paper material (e.g. waste paper) which is low in hemicelluloses. During the pre-hydrolysis of wood, its structure is largely preserved, but the cellolignin that can be obtained in this way has a much more wear-resistant and porous quality than the native state, so that HF, even when mixed with air or another inert carrier gas, can easily penetrate without one Encrustation of the surface occurs. Working in a vacuum is not necessary.
- reaction material is significantly easier to handle in terms of process technology.
- this is due to the fact that cellolignin has a bulk volume of only about half that of wood of the same grain size and therefore has a significantly lower degree of shrinkage when digested with hydrogen fluoride gas, which e.g. a great relief for the dimensioning of reactors.
- reaction material made of cellolignin remains pourable and free-flowing even when it is loaded with hydrogen fluoride, whereas that made from native wood tends to stick together due to resinous accompanying substances and fission products of the hemicelluloses and is difficult to promote.
- Another advantage is the possibility the absorption of HF on cellolignin above the boiling point of HF, so that external cooling is no longer necessary. It was also surprising that in the process according to the invention yields of> 90% glucose or oligomeric glucose based on the cellulose used in cellolignin can be achieved in a simple manner, the resulting sugars being of high quality, ie almost colorless.
- the subject of the invention is therefore a process for obtaining water-soluble saccharides (glucose or oligomeric glucose) from cellulose-containing material by treating the same with gaseous hydrogen fluoride, optionally diluted with an inert gas, at temperatures between about 20 and 120 ° C. between about 40 and 80 ° C; the process is characterized in that cellolignin is subjected to a treatment with hydrogen fluoride.
- gaseous hydrogen fluoride optionally diluted with an inert gas
- cellolignin is understood to mean a material largely consisting of cellulose and lignin.
- the cellolignin which is particularly suitable according to the invention for degradation to water-soluble sugars is obtained by pre-hydrolysis of natural cellulose-containing material (wood, straw, bagasse, etc.) with dilute aqueous mineral acid, preferably dilute hydrochloric or sulfuric acid.
- Prehydrolysis is - as already indicated in the description of the prior art - known in wood saccharification and can also be found in the more recent literature such as Ullmann's Encyclopedia of Industrial Chemistry, 3rd Edition, Volume 8 (-1957), pp. 591-595 as well as in the book by W. Sandermann, "Chemische Holzvertechnisch", Bayrischerêtverlag, Kunststoff 1963, p. 253.
- They are preferably used as fermentation raw materials or for the extraction of xylitol.
- Waste paper low in hemicellulose is also well suited for use.
- the digestion according to the invention can be accomplished, for example, in such a way that the pre-digested material (cellolignin or, for example, paper shredder material) dried to a moisture content of 0 - about 20%, advantageously about 2 - 5% and crushed if necessary, either discontinuously in one suitable mixing vessel made of hydrogen fluoride - resistant material in contact with HF gas, possibly in a mixture with air or another inert carrier gas, or that an HF-containing gas mixture is advantageously countered in a conveyor system to a continuous flow of the substrate to be digested.
- the pre-digested material cellolignin or, for example, paper shredder material
- the contact of the substrate with hydrogen fluoride gas is maintained until one part by weight of the material has absorbed about 0.2 to 3.0, preferably about 0.4 to 0.8, part by weight of hydrogen fluoride.
- the reaction is now advantageously carried out in such a way that, depending on the type of substrate and the conditions of HFw absorption, a residence time is selected which Achieving the high yield is sufficient.
- Longer dwell times are not disadvantageous, but they are also of no advantage. They can be between about 15 minutes and several hours. Reaction conditions are preferred in which the residence time does not exceed about one hour.
- the subsequent HF desorption can, according to the prior art, be carried out by heating the reaction material and / or by evacuation or by treatment with an inert gas stream (for example nitrogen, air, CO 2 or noble gas) of suitable strength, in turn with or without simultaneous heating and / or evacuation , respectively.
- an inert gas stream for example nitrogen, air, CO 2 or noble gas
- the hydrogen fluoride thus recovered can be isolated by condensation or reacted directly with fresh substrate, so that a cycle of gaseous hydrogen fluoride is formed.
- the further processing of the now digested (“saccharified”) material can also be carried out in a manner known per se, as described, for example, by K. Fredenhagen and G. Cadenbach, Angewandte Chemie 46 (1933), pp. 113 to 117 Hot water, filtered from the insoluble lignin, neutralized the small amount of hydrogen fluoride carried in the filtrate by means of calcium carbonate or hydroxide and concentrated.
- the amount of "wood sugar” (or “straw sugar” etc.) obtained after drying the evaporation residue in the procedure according to the invention is consistently over about 90% of the cellulose contained in the substrate (calculated on dry substance).
- the invention represents a not inconsiderable advance in this area.
- the oligomeric glucose building blocks can be subjected to further utilization in the form obtained (fermentation to ethanol, concentration or evaporation and use as animal feed additives or as fermentation raw materials etc.) or also in a manner known per se for post-hydrolysis to monomeric glucose.
- spruce wood cellolignin 59% cellulose + 41% lignin
- a grain size of approx. 2 mm 500 g were placed in a round 2 1 container made of transparent polyethylene with a stirrer, thermometer and gas inlet and with a mixture of air and fluorine gas which was obtained prepared by passing air over liquid hydrogen fluoride at 20 ° C (water bath) treated. The material was slowly stirred and turned dark brown. The air flow and HF evaporation were regulated so that the internal temperature did not exceed 70 ° C.
- the contents of the reactor were then digested with about 2 liters of hot water for 15 minutes, filtered off with suction and washed with a little water.
- the dark brown filter residue weighed about 250 g after drying and thus consisted of 82% lignin and 18% undigested cellulose.
- the filtrate was made alkaline while still hot with technical calcium hydroxide, the excess hydroxyl ion was neutralized with carbon dioxide, and the calcium fluoride and carbonate were filtered off, possibly with the aid of a filtration aid.
- the clear, pale yellow, neutral solution was brought to dryness in a vacuum. This gave about 250 g of slightly yellowish wood sugar, corresponding to a yield of 85% of theory
- the product was clearly water-soluble and contained between 2 and 10% monomeric glucose, the rest consisted of oligomeric glucose.
- a jacketed, hydrogen fluoride-resistant tube 30 cm long and 4 cm wide was filled in the horizontal position with 30 g cellolignin with a grain size of 1-2 mm approximately half-way and closed at both ends with pierced rubber stoppers.
- cellolignin layer as well as in the free space above was a thin steel tube perforated over the entire length.
- These pipes led on both sides through bores of the sealing plugs to the outside and were used for supplying and discharging the HF-air mixture. In this way it was possible to gas the cellolignin perpendicular to the surface of the bed.
- the material was allowed to absorb hydrogen fluoride and, during the subsequent dwell time, an internal temperature of 50 ° C. was ensured by appropriate heating. Subsequently, instead of the HF Air mixture was blown hot air through the bed for 15 minutes and the reaction product thus obtained and freed from the majority of the hydrogen fluoride was worked up as described in Example 1.
- the following table shows the yields as a function of the amount of HF absorbed and the residence time.
- a cellulose lignin filling was entrained with a hydrogen fluoride / carrier gas mixture demonstrated that the material at the HF inlet end of the tube had a content of approx. 60% HF, based on cellolignin, but only pure carrier gas flowed out at the cellolignin inlet end.
- the reaction material was continuously discharged at the HF inlet end, while fresh cellolignin was supplied on the opposite side.
- the material discharged was freed of hydrogen fluoride by blowing off after passing through a half-hour residence time and the HF-rich gas mixture thus obtained was returned to the reaction tube.
- the digested cellolignin is worked up in the manner already described in Example 1. The yield of wood sugar was approx. 85% of theory
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Emergency Medicine (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Saccharide Compounds (AREA)
- Processing Of Solid Wastes (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Jellies, Jams, And Syrups (AREA)
- Absorbent Articles And Supports Therefor (AREA)
Abstract
Description
- Cellulosehaltige Materialien kommen in großer Zahl und Vielfalt in der Natur vor. Ein bekanntes derartiges natürliches cellulosehaltiges Material ist z.B. das Holz. Es besteht im wesentlichen aus Cellulose (einem hauptsächlich aus Glucose aufgebauten Material), Hemicellulose (einem hauptsächlich aus Pentosen und Hexosen aufgebauten Stoff) und Lignin (einer polymeren Substanz mit aromatischen, durch Methoxygruppen substituierten Ringen). Die Verwertung von Holz geschieht auf mannigfache Weise, z.B. zur Wärmeerzeugung (Verfeuern), als Baustoff auf den Möbel- und Baustoffsektor etc.; auch eine rein chemische Verwertung des Holzes ist möglich.
- Chemische Aufschlußverfahren, die nicht nur die Auftrennung des Holzes in seine Bestandteile, Hemicellulose, Cellulose und Lignin, bewirken, sondern auch deren Abbau und Umwandlung, sind schon lange bekannt. Die chemischen Verfahren liefern in der Regel wäßrige Lösungen von mono-, di- und oligomeren Sacchariden, die evt. einer Nachhydrolyse zu Glucose unterzogen oder direkt der Vergärung zu Ethanol, der Aufkonzentrierung oder dem Eindampfen zur Trockne unterworfen werden können. Mögliche Anwendungsbereiche so gewonnener Produkte liegen z.B. auf dem Gebiet der Viehfuttcr-Zusätze oder bevorzugt dem der Fermentationsrohstoffe.
- Unter den chemischen Verfahren zur Holzverzuckerung sind in der Vergangenheit zwei Prinzipien großtechnisch angewandt worden: der Holzaufschluß mit konzentrierter wäßriger Salzsäure (Bergius-Rheinau-Udic) und der Aufschluß mit verdünnter Schwefelsäure (Scholler-Tornesch-Madison); siehe hierzu z.B. Ullmanns Encyclopädie der technischen Chemie, 3. Aufl., Bd. 8 (1957), S. 591 ff.
- Der Aufschluß von Cellulose-haltigen Rohstoffen mit wasserfreier Flußsäure ist ebenfalls bereits mehrfach untersucht worden. Hier haben aber alle bisher bekannt gewordenen Verfahren noch zu keiner technisch befriedigenden Lösung geführt. In derDE-PS 560 535 wird der Aufschluß von Holz mit flüssigem oder dampfförmigem reinem HF bei niedrigen Temperaturen beschrieben, wobei die Rückführung der HF über Abdampfen oder Abblasen und anschließende Kondensation erfolgt. In Weiterführung dieser Arbeiten wird in der DE-PS 585 318 ein Verfahren zum Aufschluß von Holz mit gasförmigem Fluorwasserstoff beschrieben, welches dreistufig über eine Absorption von HF auf Holz bei 10 ° - 20 °C, dem Aufschluß bei 20 ° - 50 °C und der Desorption bei 100 ° - 150 °C arbeitet, wobei die HF mit einem Inertgasstrom verdünnt sein kann. Nachteilig wirkt sich hier der Kühlaufwand zur Kondensation der HF aus,sowie die Tatsache, daß beim Aufkondensieren zunächst eine nur sehr ungleichmäßige Verteilung des Fluorwasserstoffes auf dem Reaktionsgut zustandekommt, ein Umstand, dem nur durch sehr lange Verweilzeiten oder starke Erhöhung des Fluorwasserstoff-Einsatzes entgegengewirkt werden kann, anderenfalls die Ausbeuten stark beeinträchtigt werden.
- In der DE-PS 606 009 wird eine Extraktion mit flüssiger HF beschrieben, welche aber große HF-Mengen erfordert und mit dem Nachteil behaftet ist, daß zur Verdampfung des Fluorwasserstoffes aus dem Extrakt und Extraktionsrückstand (Lignin) große Wärmemengen zu-, und bei der anschließenden Kondensation wieder abgeführt werden müssen.
- Genauere Angaben über Ausbeuten bei Verfahren dieser Art finden sich in Angew.Chem. 46 (1933). 113/7, wobei bei der Absorption der HF aus der Gasphase in einem Gefäß unter Außenkühlung von 0 °C bei einer Beladung von 50 Gew.-% HF bez. auf Holz 32 % Zucker bez. auf vorhandene Kohlehydrate und bei 100 Gew.-% Beladung 86 % Zucker bez. auf Kohlenhydrate erzielt wird. Ueber die Rückführung der HF sind dort keine weiteren Angaben gemacht.
- All diese Verfahren besitzen den Nachteil, daß sie große Mengen der teuren Flußsäure verbrauchen, wobei die Wiedergewinnung von HF aus den Reaktionsprodukten sehr kostspielig ist und in der Praxis große HF-Verluste eintreten.
- Ein weitergehendes Verfahren wird in der AT-PS 147 494 beschrieben, wobei dort der bisherige Stand der Technik foJ.gendermaßen dargestellt wird: "Arbeitet man mit hochkonzentrierter oder wasserfreier Flußsäure in flüssigem oder gasförmigem Zustande bei niederen Temperaturen, so geht der Abbau des Holzes nur sehr ungleichmäßig und daher unvollkommen vor sich. Zunächst ist bei so niederen Temperaturen die Verteilungsform des Fluorwasserstoffes, der als feiner Nebel in der Luft vorhanden ist, eine sehr ungleichmäßige, um so mehr, als die vorhandene Luft die Gleichmäßigkeit der Reaktion erschwert. Anderseits ist bekannt, daß bei der Verzuckerung von Holz mit konzentriertem Fluorwasserstoff sowohl im flüssigen als auch im gasförmigen Zustande die Holzteilchen rasch an der Oberfläche mit dem konzentrierten Fluorwasserstoff reagieren, eine harte, ziemlich undurchdringliche Haut bilden und zusammsnschrumpfen, wodurch das weitere Eindringen des Gases in das Innere gehemmt wird. Ueberdies wird die Durchdringung der Holzteilchen schon durch die in den Zellen vorhandene Luft erschwert. Es bildet sich also sehr rasch eine äußere Kruste, welche unverzuckertes Material einschließt und eine weitere Verzuckerung verhindert. Zur Beseitigung dieser übelstände hat man auch bereits vorgeschlagen, den Aufschluß mit konzentrierter flüssiger Flußsäure nach einem Extraktionsverfahren durchzuführen oder die Krustenbildung durch Zumischung inerter Gase zur Flußsäure zu vermeiden, um dadurch einen gleichmäßigeren und vollständigeren Aufschluß zu erzielen. Das Extraktionsverfahren arbeitet jedoch mit einem unverhältnismäßig hohen Flußsäureüberschuß, und das Reaktionsgut hält große Flußsäuremengen zurück, ohne die Krustenbildung mit all ihren Nachteilen zu verhindern. Die Verdünnung mit inerten Gasen kann die Krustenbildung zwar etwas vermindern, aber nie aufheben und auch nicht dazu führen, daß das Gas gleichmäßig in das Innere des Holzes eindringt, da ja das Holz mit Luft erfüllt ist. Denn bekanntlich besteht Holz nur zum geringsten Teile aus Holzmasse selbst und zum weitaus größten Teile aus Luft, die sich zwischen und in den Holzzellen befindet. Ein praktisch wasserfreies Holz besteht bei- spielsweise aus zirka 15 % Holzmasse und zirka 85 % Luft. Da die Holzzellen im Verhältnis zu der Größe eines noch so weitgehend zerkleinerten Holzes außerordentlich klein sind, spielt selbst bei Sägespänen der Luftgehalt eine überragende Rolle.
- Verhärtungen der Oberfläche von Holzteilchen scheinen auch bei der Holzverzuckerung mit wäßrigen Mineralsäuren wie wäßriger Salz- oder Schwefelsäure festgestellt worden zu sein, weil etwa in Z. Angew. Chem. 37 (1924) 221 die im Holz vorhandenen Stoffe wie Lignin, Mannan, Galaktan etc. als "Inkrusten" bezeichnet werden, welche auch wegen störender Abbauprodukte (Furfurol, Essigsäure, Ameisensäure etc. ) möglichst vor der eigentlichen Holzverzuckerung zu entfernen waren. Für die Entfernung hätte man - da die Hydrolysierbarkeit dieser "Inkrusten" bekannt war - auch im Falle der Holzverzuckerung mittels Fluorwasserstoff an eine Art "Vorhydrolyse" mit verdünnter Mineralsäure bei erhöhter Temperatur und gegebenenfalls erhöhtem Druck denken können. Jedoch war eine derartige Vorhydrolyse nicht in Betracht gezogen worden; vielmehr wurde zur Vermeidung der oben geschilderten Nachteile von Hoch und Bohunek vorgeschlagen, bei der Holzverzuckerung mit Fluorwasserstoff Vakuum von ca. 30 Torr anzulegen [AT-PS 147 494 + Zusatz 151 241; das Holzverzuckerungsverfahren mit Fluorwasserstoff nach Hoch und Bohunek ist auch beschrieben in der Zeitschrift "Holz Roh- und Werkstoff" 1, S. 342-344 (193817.
- Nachteile dieser Verfahren sind die beim Arbeiten im Vakuum zwangsläufig auftretenden Schwierigkeiten der techn. Realisierung, sowie der relativ komplizierten Reaktionsführung. Ein allen Verfahren anhaftender Mangel ist das Entstehen von Gemischen aus Pentosen und Hexosen durch gleichzeitige Hydrolyse der Hemicellulosen und der Cellulose des Holzes.
- Ein weiteres Problem ist die Abtrennung der bei der Hydrolyse von Hemicellulose entstehenden Essigsäure, welche die möglichst verlustfreie "im Kreis-Fülzrung" der HF erschwert, sowie die leichte Zersetzung der Pentosen zu Furfurol.
- Ueberraschenderweise wurde nun gefunden, daß diese beschriebenen Nachteile des Standes der Technik vermieden werden können und eine leichte Verzuckerung von Cellulose möglich ist, wenn man die pflanzlichen Materialien nicht in ihrer nativen Form, sondern nach einer Vorbehandlung in Form von "Cellolignin" mit wässerfreier, gasförmiger HF aufschließt.
- Unter "Cellolignin" werden hier pflanzliche Materialien wie Holz, Stroh, Bagasse und ähnliche Rohstoffe verstanden, welche einer an sich bekannten Vorhydrolyse unterworfen waren.
- Diese an sich bekannte Vorhydrolyse des Holzes besteht aus einer relativ kurzzeitigen Behandlung mit stark verdünnter Mineralsäure bei höheren Temperaturen und Drücken, wobei im wesentlichen die in den Hemicellulosen enthaltenen Pentosane und Hexosane bis zu den Monomereinheiten, wie z.B. Xylose oder Mannose, gespalten werden. Diese sind je nach den Reaktionsbedingungen anschließend als solche isolierbar oder gehen weitere Veränderungen ein, z.B. Dehydratisierung zum Furfurol bzw. Hydroxymethylfurfurol (vgl. Ullmann, loc. cit., Bd. 7 (1957), S.711). Abgesehen von der Vergärung, sei als weiteres Beispiel für eine technische Verwendung von Hemicellulose-Abbauprodukten die Reduktion von Xylose zu Xylit genannt. Es ist also möglich, bereits vor Anwendung des erfindungsgemäßen Aufschlußverfahrens Wertprodukte aus Holz durch Vorhydrolyse zu gewinnen.
- Weiterhin wird hier unter Cellolignin auch Papiermaterial (z.B. Altpapier),welches arm an Hemicellulosen ist,verstanden. Bei der Vorhydrolyse von Holz bleibt dessen Struktur weitgehend erhalten, das so gewinnbare Cellolignin besitzt jedoch eine gegenüber dem nativen Zustand viel mürbere und porösere Beschaffenheit, so daß HF, auch im Gemisch mit Luft oder einem anderen inerten Trägergas, leicht eindringen kann, ohne daß eine Verkrustung der Oberfläche eintritt. Ein Arbeiten im Vakuum ist nicht nötig.
- Als weiterer Vorteil des Einsatzes von Cellolignin an Stelle von nativem Holz fällt ins Gewicht, daß dabei das Reaktionsgut verfahrenstechnisch bedeutend einfacher zu handhaben ist. Dies rührt einerseits daher, daß Cellolignin gegenüber Holz gleicher Korngröße ein nur ca. halb so großes Schüttvolumen und damit beim Aufschluß mit Fluorwasserstoffgas einen bedeutend kleineren Schrumpfungsgrad aufweist, was z.B. für die Dimensionierung von Reaktoren eine große Erleichterung bedeutet. Zum anderen bleibt Reaktionsgut aus Cellolignin auch in mit Fluorwasserstoff beladenem Zustand schüttbar und rieselfähig, wohingegen solches aus nativem Holz durch harzige Begleitstoffe, sowie Spaltprodukte der Hemicellulosen stark zum Verkleben neigt und schwierig zu fördern ist.
- Naturgemäß erschwert eine solche Neigung zum Verkleben auch die Fluorwasserstoff-Desorption, insbesondere wenn diese rasch und möglichst quantitativ verlaufen soll. Dies ist jedoch bei Verwendung von Cellolignin als Substrat ohne weiteres möglich.
- Weiterhin ist bei diesem Verfahren eine Abtrennung der bei Hydrolyse von Hemicellulose entstehenden Zuckergemische von den bei der Hydrolyse von Cellulose entstandenen oligomeren Glucosebausteine bzw. von Glucose nicht mehr nötig, was eine leichtere fermentative Verwertbarkeit dieser verschiedenen Zucker ermöglicht.
- Vorteilhaft ist ebenfalls, daß bei dem Aufschluß von Cellolignin keine Essigsäure und kein Furfurol mehr entstehen, so daß man die HF im Kreis führen kann ohne diese Komponenten kondensieren zu müssen. Dadurch werden Trennschwierigkeit und HF-Verluste vermieden.
- Ein weiterer Vorteil ist die Möglichkeit
der Absorption von HF auf Cellolignin oberhalb des Siedepunktes von HF, so daß keine äußere Kühlung mehr notwendig ist. Ebenfalls überraschend war, daß bei dem erfindungsgemäßen Verfahren in einfacher Weise Ausbeuten von > 90 % Glucose bzw. oligomerer Glucose bezogen auf eingesetzte Cellulose in Cellolignin erreicht werden, wobei die anfallenden Zucker qualitativ hochwertig, d.h. nahezu farblos sind. - Erfindungsgegenstand ist daher ein Verfahren zur Gewinnung wasserlöslicher Saccharide(Glucose bzw. oligomere Glucose) aus cellulosehaltigem Material durch eine Behandlung desselben mit gasförmigem - gegebenenfalls mit einem Inertgas verdünnten - Fluorwasserstoff bei Temperaturen zwischen etwa 20 und 120°C, vorzw. zwischen etwa 40 und 80°C; das Verfahren ist dadurch gekennzeichnet, daß man Cellolignin einer Behandlung mit Fluorwasserstoff unterwirft.
- Unter Cellolignin wird hier, wie vorher definiert, ein weitgehend aus Cellulose und Lignin bestehendes Matcrial, verstanden.
- Angesichts des Standes der Technik, dessen jüngstes in größerem Umfang ausgearbeitetes Verf. (Hoch und Bohunek, loc.cit.) die mit dem ungleichmäßigen Aufschluß und der Krustenbildung zusammenhängenden Nachteile durch Anwendung der aufwendigen Vakuummethode zu beheben versucht - obwohl die leichte Hydrolysierbarkeit von Hemicellulosen bekannt war (Oesterr. Cheme-Zeitg. 40, 5 ff (1937), war der Einsatz von vorhydrolysiertem Material keineswegs naheliegend. Es war daher außerordentlich überraschend, daß diese Maßnahme, von welcher der Stand der Technik gerade wegführte, eine glatte und problemlose Verzuckerung von Holz und holz- ähnlichen Materialien erlaubt.
- Das sich erfindungsgemäß für den Abbau zu wasserlöslichen Zuckern besonders gut eignende Cellolignin wird durch Vorhydrolyse von natürlichem cellulosehaltigem Material (Holz, Stroh, Bagasse etc.) mit verdünnter wäßriger Mineralsäure, vorzugsweise verdünnter Salz- oder Schwefelsäure, gewonnen. Die Vorhydrolyse ist - wie bereits bei der Beschreibung des Standes der Technik angedeutet - bei der Holzverzuckerung bekannt und findet sich auch in der neueren Literatur wie Ullmanns Encyclopädie der technischen Chemie, 3. Auflage, Band 8 (-1957), S. 591-595 sowie in dem Buch von W. Sandermann, "Chemische Holzverwertung", Bayrischer Landwirtschaftverlag, München 1963, S. 253, beschrieben.
- Sie besteht in einer relativ kurzzeitigen Behandlung des natürlichen Ausgangsmaterials mit einer stark verdünnten Mineralsäure bei erhöhter Temperatur (vorzugsweise zwischen etwa 100 und 160 °C) und erhöhtem Druck (vorzugsweise bis etwa 10 atm), wobei im wesentlichen die in den Hemicellulosen enthaltenen Pentosane und Hexosane bis zu den Monomereneinheiten (Xylose, Arabinose, Mannose etc.)
- gespalten werden. Diese sind je nach den Reaktionsbedingungen anschließend als solche isolierbar oder gehen weitere Veränderungen ein,z.B. durch Dehydratisierung zum Furfurol, etc.
- Bevorzugt werden sie als Fermentationsrohstoffe oder zur Gewinnung von Xylit eingesetzt.
- Weiterhin sind Hemicellulose-arme Altpapiere zum Einsatz gut geeignet.
- Der erfindungsgemäße Aufschluß kann beispielsweise in der Weise bewerkstelligt werden, daß man das auf einen Feuchtegehalt von 0 - etwa 20%, vorteilhaft etwa 2 - 5% getrocknete und bei Bedarf zerkleinerte, voraufgeschlossene Material (Cellolignin oder z.B. Papier- Reißwolfmaterial) entweder diskontinuierlich in einem geeigneten Rührgefäß aus Fluorwasserstoff - resistentem Werkstoff mit HF-Gas in Berührung bringt, ggf. im Gemisch mit Luft oder einen anderen inerten Trägergas, oder daß man ein HF-haltiges Gasgemisch vorteilhaft in einer Förderanlage einem kontinuierlichen Strom des aufzuschließenden Substrats entgegenführt.
- Durch die spontan freiwerdende Reaktionswärme steigt die Temperatur an undkann durch geeignete Reaktionsführung wie z.B. Verdünnung mit Inertgasen im gewünschten Bereich zwischen etwa 20 - 120°C, bevorzugt zwischen 40 und 80°C gehalten werden.
- Der Kontakt des Substrats mit Fluorwasserstoffgas wird solange aufrechterhalten, bis ein Gewichtsteil des Matcrials etwa 0,2 bis 3,0 ,bevorzugt etwa 0,4 bis 0,8,Gewichtsteile Fluorwasserstoff aufgenommen hat.
- Vorteilhaft wird die Reaktion nun so weitergeführt, daß je nach Art des Substrats und nach den Bedingungen der HFw-Absorption eine Verweilzeit gewählt wird, die zur Erreichung der hohen Ausbeute ausreicht. Längere Verweilzeiten sind nicht nachteilig, aber auch ohne Vorteil. Sie.können zwischen etwa 15minund mehreren Stunden liegen. Bevorzugt sind Reaktionsbedingungen, bei welchen die Verweilzeit etwa Stunde nicht überschreitet.
- Die sich anschließende HF-Desorption kann gemäß dem Stand der Technik durch Erwärmen des Reaktionsgutes und/oder durch Evakuieren oder durch Behandeln mit einem InertgasStrom (z.B. Stickstoff, Luft, CO2 oder Edelgas) geeigneter Stärke wiederum mit oder ohne gleichzeitiges Erwärmen und/ oder Evakuieren, erfolgen. Der so zurückgewonnene Fluorwasserstoff kann durch Kondensation isoliert oder unmittelbar mit frischem Substrat umgesetzt werden, so daß ein Kreislauf von gasförmigem Fluorwasserstoff zustandekommt. Auch die weitere Aufarbeitung des nunmehr aufgeschlossenen ("verzuckerten") Materials kann in an sich bekannter Weise erfolgen wie z.B. beschrieben von K. Fredenhagen und G. Cadenbach, Angewandte Chemie 46 (1933), S. 113 bis 117. Man extrahiert also etwa mit Heißwasser, filtriert vom unlöslichen Lignin ab, neutralisiert im Filtrat die geringe Menge mitgeführten Fluorwasserstoffs mittels Calciumcarbonat oder -hydroxyds und engt ein.
- Die Menge des nach dem Trocknen des Eindampfrückstandes erhaltenen "Holzzuckers" (bzw. "Strohzuckers" etc.) beträgt bei der erfindungsgemäßen Verfahrensweise durchweg über etwa 90 % der im Substrat enthaltenen Cellulose (berechnet auf Trockensubstanz).
- Wegen der hohen "Zucker"-Ausbeute, der außerordentlich einfachen und glatten Verfahrensdurchführung (Erhöhung der Porosität des Substrates und dadurch Erleichterung des Eindringens von HF!). sowie auch'der einergiegünstigen Fluorwasserstoff-Absorption (keine Kühlung notwendig, kein Vakuum) , stellt die Erfingung einen nicht unerheblichen Fortschritt auf diesem Gebiet dar.
- Die oligomeren'Glucosebausteine können in der anfallenden Form einer weiteren Verwertung zugeführt (Vergärung zu Ethanol, Aufkonzentrierung oder Eindampfen und Verwendung als Viehfutterzusätze oder als Fermentationsrohstoffe etc.) oder auch in an und für sich bekannter Weise einer Nachhydrolyse zu monomerer Glucose unterworfen werden.
- Die Erfindung wird nun durch die folgenden Beispiele näher erläutert:
- In einem runden 2 1-Gefäß aus transparentem Polyethylen mit Rührer, Thermometer und Gaseinleitung wurden 500 g Fichtenholz-Cellolignin (59 % Cellulose + 41 % Lignin) von ca-2 mm Korngröße vorgelegt und mit einem Gemisch aus Luft und Fluorwsserstoffgas, das man sich durch Ueberleiten von Luft über flüssigen Fluorwasserstoff bei 20 °C (Wasserbad) herstellt, behandelt. Das Material wurdedabei langsam gerührt und färbte sich dunkelbraun. Man regulierte den Luftstrom und die HF-Verdampfung so ein, daß die Innentemperatur 70 °C nicht überschritt.
- Nach Aufnahme von 300 g Fluorwasserstoff sorgte man 30 min lang für Aufrechterhaltung einer Innentemperatur von 50 °C. Unter weiterem Rühren wurde sodann der Fluorwasserstoff durch Einleiten von Warmluft ausgetrieben. Dabeiwurde ein Teil der nötigen Desorptionswärme auch durch Außenheizung aufgebracht. Man führte die Desorption unter stetig steigender Temperatur bis zu einem Fluorwasserstoffgehalt von etwa 5 % im Substrat weiter. Dann überführte man das Material in einen Wirbelbett-Trockner und blies, Fluorwasserstoff bis auf eine Restmenge von ca. 0,5 % ab. Die dabei entstehenden HF-LuftGemische konnten unmittelbar für weitere Ansätze verwendet werden.
- Anschließend digerierte man den Reaktorinhalt 15 min lang mit ca. 2 1 Heißwasser, saugte scharf ab und wusch mit wenig Wasser nach. Der dunkelbraune Filterrückstand wog nach dem Trocknen etwa 250 g und bestand somit zu 82 % aus Lignin sowie zu 18 % aus nicht aufgeschlossener Cellulose. Das Filtrat wurde noch heiß mit technischem Calciumhydroxid alkalisch gestellt, der Hydroxylionen- überschuß mit Kohlendioxid neutralisiert, und vom Calciumfluorid und -carbonat, evt. unter Zuhilfenahme eines Filtrationshilfsmittels, abfiltriert. Die klare, schwach gelb gefärbte,neutrale Lösung wurde im Vakuum zur Trockne gebracht. Man erhielt so ca. 250 g schwach gelblich gefärbten Holzzucker, entsprechend einer Ausbeute von 85 % d.Th. Das Produkt war klar wasserlöslich und enthielt zwischen 2 und 10 % monomere Glucose, der Rest bestand aus oligomerer Glucose.
- Ein ummanteltes, Fluorwasserstoff-beständiges Rohr von 30 cm Länge und 4 cm lichter Weitewurde in waagrechter Stellung mit 30 g Cellolignin der Körnung 1-2 mm etwa halb hoch gefüllt und an beiden Enden mit durchbohrten Gummistopfen verschlossen. In der Celloligninschicht sowie auch im freien Raum darüber lag jeweils ein dünnes, über die ganze Länge perforiertes Stahlrohr. Diese Rohre führten beidseitig durch-Bohrungen der Verschlußstopfen nach außen und dienten der Zu- bzw. Ableitung von HF-Luft-Gemisch. Auf diese Weise war es möglich, das Cellolignin senkrecht zur Oberfläche der Schüttung zu begasen. Man ließ das Material Fluorwasserstoff absorbieren und sorgte während der darauf folgenden Verweilzeit durch entsprechende Heizung für eine Innentemperatur von 50 °C. Anschließend wurde anstelle des HF-Luft-Gemisches 15 min lang Heißluft durch die Schüttung geblasen und das so erhaltene, von der Hauptmenge des Fluorwasserstoffs befreite Reaktionsgut aufgearbeitet, wie im Beispiel 1 beschrieben.
-
- In einem waagrecht angeordneten, langen Rohr aus fluorwasserstoff-resistentem Material, in dem ein rieselfähiger Feststoff mittels Förderschnecke kontinuierlich weiterbewegt werden kann, wurde einer Cellolignin-Füllung ein Fluorwasserstoff-Trägergasgemisch dergestalt entgegengeführt, daß das Material am HF-Eintrittsende des Rohres einen Gehalt von ca. 60 % HF, bezogen auf Cellolignin, aufwies am Cellolignin-Eintrittsende hingegen nur noch reines Trägergas ausströmte. Das Reaktionsgut wurde am HF-Eintrittsende kontinuierlich ausgetragen, während auf der Gegenseite frisches Cellolignin nachgeliefert wurde., Das ausgetragene Materialwurde nach Durchlaufen einer halbstündigen Verweilzeitstrecke durch Abblasen vom Fluorwasserstoff befreit und das so erhaltene, HF-reiche Gasgemisch in das Reaktionsrohr zurückgeleitet. Die Aufarbeitung des aufgeschlossenen Cellolignins erfolge auf die in Beispiel 1 bereits beschriebene Weise. Die Ausbeute an Holzzucker belief sich auf ca. 85 % d.Th.
- 150 g Reißwolfmaterial aus Zeitungspapier wurden auf die in Beispiel 1 näher beschriebene Art mit einem Fluorwasserstoff-Luft-Gemisch begast. Nach einstündigem Stehenlassen des Reaktionsgemisches bei 50 °C wurde der Fluorwasserstoff durch Einleiten eines Warmluftstromes bis auf einen Restgehalt von 2 % entfernt und der dunkelfarbige Rückstand mit Heißwasser digeriert. Nach Filtrieren und Trocknen ergaben sich so 50 g unlösliches Material, vorwiegend aus Lignin bestehend. Das Filtrat wurde mit Kalkhydrat neutralisiert und vom Calciumfluorid abgesaugt. Der Eindampfrückstand des Filtrats wog 80 g und enthielt ca. 10 % monomere Glucose (Rest: oligomere Glucose).
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AT81108878T ATE26129T1 (de) | 1980-10-30 | 1981-10-24 | Verfahren zur gewinnung wasserloeslicher saccharide aus cellulosehaltigem material. |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE3040850A DE3040850C2 (de) | 1980-10-30 | 1980-10-30 | Verfahren zur Gewinnung wasserlöslicher Saccharide aus cellulosehaltigem Material |
| DE3040850 | 1980-10-30 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| EP0051237A1 true EP0051237A1 (de) | 1982-05-12 |
| EP0051237B1 EP0051237B1 (de) | 1987-03-25 |
Family
ID=6115523
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP81108878A Expired EP0051237B1 (de) | 1980-10-30 | 1981-10-24 | Verfahren zur Gewinnung wasserlöslicher Saccharide aus cellulosehaltigem Material |
Country Status (14)
| Country | Link |
|---|---|
| EP (1) | EP0051237B1 (de) |
| JP (1) | JPS57105200A (de) |
| AT (1) | ATE26129T1 (de) |
| AU (1) | AU7694281A (de) |
| BR (1) | BR8107016A (de) |
| CA (1) | CA1181397A (de) |
| DD (1) | DD208173A5 (de) |
| DE (2) | DE3040850C2 (de) |
| DK (1) | DK478381A (de) |
| FI (1) | FI813370L (de) |
| NZ (1) | NZ198780A (de) |
| PH (1) | PH17341A (de) |
| PL (1) | PL233621A1 (de) |
| ZA (1) | ZA817493B (de) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2515210A1 (fr) * | 1981-10-24 | 1983-04-29 | Hoechst Ag | Procede de desagregation des matieres cellulosiques avec de l'acide fluorhydrique gazeux |
| FR2515209A1 (fr) * | 1981-10-24 | 1983-04-29 | Hoechst Ag | Procede de desagregation d'une matiere cellulosique par de l'acide fluorhydrique gazeux |
| EP0078023A1 (de) * | 1981-10-24 | 1983-05-04 | Hoechst Aktiengesellschaft | Verfahren zum Aufschluss von zellulosehaltigem Material mit gasförmigem Fluorwasserstoff |
| FR2597872A1 (fr) * | 1986-04-25 | 1987-10-30 | Beghin Say Sa | Procede de preparation d'oligo- et polyosides ramifies notamment a partir de l'amidon |
| US6265037B1 (en) | 1999-04-16 | 2001-07-24 | Andersen Corporation | Polyolefin wood fiber composite |
| WO2012097781A1 (de) * | 2010-11-25 | 2012-07-26 | Studiengesellschaft Kohle Mbh | Verfahren zur säurekatalysierten depolymerisation von cellulose |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3312450C2 (de) * | 1983-04-07 | 1985-02-07 | Knauth, Hans, Dipl.-Ing., 7758 Meersburg | Zweistufiges Verfahren zur Herstellung von Furfurol und Glucose aus cellulosehaltigen Stoffen durch saure Hydrolyse |
| RU2135510C1 (ru) * | 1998-12-21 | 1999-08-27 | Общество с ограниченной ответственностью "ПлУГ" | Способ переработки древесины лиственницы и установка для его осуществления |
| BRPI1011773B1 (pt) * | 2009-04-30 | 2018-11-13 | Eve Res Inc | método para produzir um biocombustível sólido a partir de uma matéria-prima |
| WO2010124380A1 (en) * | 2009-04-30 | 2010-11-04 | Evegenetics Canada Inc. | Process and apparatus for recycling coated paper products |
| DE102016013620A1 (de) | 2016-11-15 | 2018-05-17 | Christine Apelt | Verfahren zur stofflichen und energetischen Verwertung von Reststoffen der Zuckerrohrverarbeitung und Anordnung zur Durchführung des Verfahrens |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB271410A (en) * | 1926-05-20 | 1928-01-05 | Brevets Etrangers Lefranc Et C | Process for the hydrolysis of cellulosic substances |
| DE560535C (de) * | 1927-03-15 | 1932-10-05 | I G Farbenindustrie Akt Ges | Verfahren zur Umwandlung von Polysacchariden |
| DE577764C (de) * | 1930-03-18 | 1933-06-03 | I G Farbenindustrie Akt Ges | Verfahren zur Umwandlung von Polysacchariden |
| CH246473A (de) * | 1944-01-12 | 1947-01-15 | Scholler Heinrich Ing Dr | Verfahren zur Herstellung von nicht hauptsächlich zur Ernährung bestimmtem Zucker. |
-
1980
- 1980-10-30 DE DE3040850A patent/DE3040850C2/de not_active Expired
-
1981
- 1981-10-24 AT AT81108878T patent/ATE26129T1/de not_active IP Right Cessation
- 1981-10-24 DE DE8181108878T patent/DE3176031D1/de not_active Expired
- 1981-10-24 EP EP81108878A patent/EP0051237B1/de not_active Expired
- 1981-10-28 PH PH26410A patent/PH17341A/en unknown
- 1981-10-28 FI FI813370A patent/FI813370L/fi not_active Application Discontinuation
- 1981-10-28 DD DD81234420A patent/DD208173A5/de not_active IP Right Cessation
- 1981-10-28 NZ NZ198780A patent/NZ198780A/en unknown
- 1981-10-29 BR BR8107016A patent/BR8107016A/pt unknown
- 1981-10-29 ZA ZA817493A patent/ZA817493B/xx unknown
- 1981-10-29 JP JP56172177A patent/JPS57105200A/ja active Pending
- 1981-10-29 PL PL23362181A patent/PL233621A1/xx unknown
- 1981-10-29 AU AU76942/81A patent/AU7694281A/en not_active Abandoned
- 1981-10-29 CA CA000389579A patent/CA1181397A/en not_active Expired
- 1981-10-29 DK DK478381A patent/DK478381A/da not_active Application Discontinuation
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB271410A (en) * | 1926-05-20 | 1928-01-05 | Brevets Etrangers Lefranc Et C | Process for the hydrolysis of cellulosic substances |
| DE560535C (de) * | 1927-03-15 | 1932-10-05 | I G Farbenindustrie Akt Ges | Verfahren zur Umwandlung von Polysacchariden |
| DE577764C (de) * | 1930-03-18 | 1933-06-03 | I G Farbenindustrie Akt Ges | Verfahren zur Umwandlung von Polysacchariden |
| CH246473A (de) * | 1944-01-12 | 1947-01-15 | Scholler Heinrich Ing Dr | Verfahren zur Herstellung von nicht hauptsächlich zur Ernährung bestimmtem Zucker. |
Non-Patent Citations (1)
| Title |
|---|
| CHEMICAL ABSTRACTS, Band 80, Nr. 16, 22. April 1974, seite 101, Nr. 84884d Columbus, Ohio, U.S.A. L.V. KOZLOVA et al.: "Effect of the Concentration of Acid on the Compositions of Compounds of Sulfuric Acid with Products of the Hydrolysis of Cellolignin Polysaccharides" & Gidroliz. Lesohkim. Prom. 1973, (8), 3-5 * Zusammenfassung * * |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2515210A1 (fr) * | 1981-10-24 | 1983-04-29 | Hoechst Ag | Procede de desagregation des matieres cellulosiques avec de l'acide fluorhydrique gazeux |
| FR2515209A1 (fr) * | 1981-10-24 | 1983-04-29 | Hoechst Ag | Procede de desagregation d'une matiere cellulosique par de l'acide fluorhydrique gazeux |
| EP0078023A1 (de) * | 1981-10-24 | 1983-05-04 | Hoechst Aktiengesellschaft | Verfahren zum Aufschluss von zellulosehaltigem Material mit gasförmigem Fluorwasserstoff |
| US4556432A (en) * | 1981-10-24 | 1985-12-03 | Hoechst Aktiengesellschaft | Process for hydrolyzing cellulose-containing material with gaseous hydrogen fluoride |
| US4556431A (en) * | 1981-10-24 | 1985-12-03 | Hoechst Aktiengesellschaft | Process for hydrolyzing cellulose-containing material with gaseous hydrogen fluoride |
| US4589924A (en) * | 1981-10-24 | 1986-05-20 | Hoechst Aktiengesellschaft | Process for hydrolyzing cellulose-containing material with gaseous hydrogen fluoride |
| FR2597872A1 (fr) * | 1986-04-25 | 1987-10-30 | Beghin Say Sa | Procede de preparation d'oligo- et polyosides ramifies notamment a partir de l'amidon |
| WO1987006592A1 (fr) * | 1986-04-25 | 1987-11-05 | Beghin-Say Sa | Procede de preparation, a haute concentration dans le fluorure d'hydrogene, d'oligo et polyosides ramifies notamment a partir de l'amidon |
| US6265037B1 (en) | 1999-04-16 | 2001-07-24 | Andersen Corporation | Polyolefin wood fiber composite |
| WO2012097781A1 (de) * | 2010-11-25 | 2012-07-26 | Studiengesellschaft Kohle Mbh | Verfahren zur säurekatalysierten depolymerisation von cellulose |
| EA023989B1 (ru) * | 2010-11-25 | 2016-08-31 | Штудиенгезельшафт Коле Мбх | Способ кислотно-катализируемой деполимеризации целлюлозы |
Also Published As
| Publication number | Publication date |
|---|---|
| AU7694281A (en) | 1982-05-06 |
| DD208173A5 (de) | 1984-03-28 |
| BR8107016A (pt) | 1982-07-13 |
| PL233621A1 (de) | 1982-06-07 |
| CA1181397A (en) | 1985-01-22 |
| NZ198780A (en) | 1984-12-14 |
| PH17341A (en) | 1984-08-01 |
| FI813370A7 (fi) | 1982-05-01 |
| DE3040850A1 (de) | 1982-05-13 |
| DK478381A (da) | 1982-05-01 |
| JPS57105200A (en) | 1982-06-30 |
| FI813370L (fi) | 1982-05-01 |
| ZA817493B (en) | 1982-11-24 |
| EP0051237B1 (de) | 1987-03-25 |
| DE3040850C2 (de) | 1982-11-18 |
| ATE26129T1 (de) | 1987-04-15 |
| DE3176031D1 (en) | 1987-04-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE69333708T2 (de) | Verfahren zu vorbehandlung von biomasse | |
| DE2737118C2 (de) | ||
| DE19916347C1 (de) | Verfahren zum Auftrennen lignocellulosehaltiger Biomasse | |
| DE2732289C2 (de) | ||
| DE60217303T2 (de) | Methode zur behandlung von lignin- und zellulosehaltigen beschickungen zur erhöhten produktion von xylose und ethanol | |
| DE2830476C2 (de) | Verfahren zur Behandlung von Lignocellulosematerial und dadurch gewonnenes Lignocelluloseprodukt in Teilchenform | |
| EP0051237B1 (de) | Verfahren zur Gewinnung wasserlöslicher Saccharide aus cellulosehaltigem Material | |
| DE2732327A1 (de) | Verfahren zur gewinnung von xylan und faserstoffen aus xylanhaltigen pflanzlichen rohstoffen | |
| WO1979000119A1 (fr) | Procede permettant la delignification et la transformation en sucre de materiaux vegetaux lignocellulosiques par utilisation de solvants organiques | |
| EP2265721B1 (de) | Verfahren zur Herstellung von Ethanol aus lignocellulosehaltiger Biomasse | |
| EP0078023B1 (de) | Verfahren zum Aufschluss von zellulosehaltigem Material mit gasförmigem Fluorwasserstoff | |
| WO2003025280A1 (de) | Verfahren zum abtrennen von hemicellulosen aus hemicellulosehaltiger biomasse | |
| AT407871B (de) | Verfahren zur herstellung von aktivkohle aus pflanzlichem material | |
| EP2981626A2 (de) | Verfahren zum aufschluss lignocellulosischer biomasse | |
| DE69013652T2 (de) | Verfahren und Einrichtung zur Herstellung einer zumindest 80% Xylose enthaltende Zuckermischung aus einem lignocellulosischen Substrat. | |
| DE644500C (de) | Verfahren zur Verzuckerung von cellulosehaltigen Stoffen | |
| EP0346836A2 (de) | Verfahren und Vorrichtung zur kontinuierlichen Herstellung von 2-Furaldehyd, Cellulose und Lignin aus Lignocellulosematerialien | |
| DE3142216C2 (de) | ||
| DE102015210161B4 (de) | Festkörpersäurekatalysator zur Herstellung eines Monosaccharids und Verfahren zur Herstellung eines Monosaccharids aus Seegras unter Verwendung von Selbigem | |
| WO2019038373A2 (de) | Lignocellulose-biomasse-presslinge zur herstellung von organischen molekülen durch enzymatische hydrolyse | |
| DE3142214C2 (de) | ||
| DE607927C (de) | Verfahren zur Gewinnung von fluechtigen Fettsaeuren, insbesondere Essigsaeure, aus Gaerfluessigkeiten | |
| DE3435451A1 (de) | Verfahren zur herstellung von zellstoff und furfurol | |
| AT369787B (de) | Verfahren zur gewinnung von zuckern aus cellulosehaeltigem pflanzlichem material | |
| CH646584A5 (de) | Verfahren und vorrichtung zum herstellen eines tierfutters aus einem ruebenmaterial. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Designated state(s): AT CH DE FR GB IT NL SE |
|
| 17P | Request for examination filed |
Effective date: 19821001 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE FR GB IT LI NL SE |
|
| REF | Corresponds to: |
Ref document number: 26129 Country of ref document: AT Date of ref document: 19870415 Kind code of ref document: T |
|
| ITF | It: translation for a ep patent filed | ||
| REF | Corresponds to: |
Ref document number: 3176031 Country of ref document: DE Date of ref document: 19870430 |
|
| ET | Fr: translation filed | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19871031 Year of fee payment: 7 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 19890918 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19890927 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19890929 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19890930 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19891212 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19891218 Year of fee payment: 9 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19900501 |
|
| NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19901024 Ref country code: AT Effective date: 19901024 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19901025 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19901031 Ref country code: CH Effective date: 19901031 |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19910628 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19910702 |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
| EUG | Se: european patent has lapsed |
Ref document number: 81108878.0 Effective date: 19910603 |
