EP0048424B1 - Elektrische Überstromsicherung - Google Patents

Elektrische Überstromsicherung Download PDF

Info

Publication number
EP0048424B1
EP0048424B1 EP81107244A EP81107244A EP0048424B1 EP 0048424 B1 EP0048424 B1 EP 0048424B1 EP 81107244 A EP81107244 A EP 81107244A EP 81107244 A EP81107244 A EP 81107244A EP 0048424 B1 EP0048424 B1 EP 0048424B1
Authority
EP
European Patent Office
Prior art keywords
quenching plates
fusible conductor
overcurrent fuse
fuse
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81107244A
Other languages
English (en)
French (fr)
Other versions
EP0048424A3 (en
EP0048424A2 (de
Inventor
Johann Dipl.-Ing. Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0048424A2 publication Critical patent/EP0048424A2/de
Publication of EP0048424A3 publication Critical patent/EP0048424A3/de
Application granted granted Critical
Publication of EP0048424B1 publication Critical patent/EP0048424B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/38Means for extinguishing or suppressing arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member

Definitions

  • the invention relates to an electrical overcurrent protection with a curved fuse element and quenching plates made of electrically conductive material.
  • the fuse element After melting, the fuse element can generally only produce a sufficiently high arc voltage with a correspondingly large length. However, this means a correspondingly large voltage and power drop in nominal operation. In order to reduce this voltage drop, fuse elements with several bottlenecks were used. With this design, however, a further problem is raised, namely the simultaneous melting of all constrictions (US-A-1 946 553).
  • the task therefore arises of designing the fuse in such a way that its voltage drop during nominal operation is low and that it is at the same time able to build up a large countervoltage to interrupt the current, which acts as an extinguishing voltage.
  • extinguishing plates made of electrically conductive material are therefore provided, the flat sides of which are extended transversely to the longitudinal direction of the fuse element and are arranged one behind the other in the longitudinal direction thereof.
  • the quenching plates are provided with openings through which the fuse element is led.
  • This unit is arranged in a chamber, which can be evacuated or contain an extinguishing gas.
  • Another known embodiment contains a fusible link in a zigzag shape, in which a baffle is arranged in each of the bends. After the fuse element has melted, the partial arcs will thus form between the quenching plates, the spacing of which is smaller than the respective partial section of the fuse element. In this known embodiment, the sum of the partial arcs will thus be smaller than the fusible conductor. The arc is thus shortened. In addition, the quenching plates are arranged parallel to one another and a relatively large overall length is thus obtained (US Pat. No. 854,724).
  • the extinguishing plates arranged radially to form a circular fuse element result in a flat construction of the fuse, the height of which is not substantially greater than the height of the extinguishing plates.
  • the mutual distance between the extinguishing plates increases in the direction radially outwards.
  • the partial arcs generated after the fusible link has melted are thus driven outwards due to the electrodynamic forces.
  • the length of the individual partial arcs and the total length of the arc are lengthened and the switching voltage increased accordingly. As a result of these electrodynamic forces, the fusible link is pressed against the sheets in the heated state, thereby ensuring increased cooling.
  • An embodiment of the overcurrent protection for higher voltage with a large number of quenching plates is obtained by the fuse element forming a helical line to which several quenching plates are arranged perpendicularly.
  • the quenching plates can rest directly on the fuse element.
  • the fusible link is cooled by the metal sheets and can conduct a current that is significantly higher than the current intensity that results from the cross section of the uncooled fusible link.
  • the fuse element can expediently be arranged on the jacket of a hollow cylindrical core.
  • the chmelzleiter from the remote S-Enden- the L öschble- surface may preferably be a hollow cylindrical housing of insulating material are disposed in grooves in the inner wall. In this case, the dimensional tolerances of the quenching plates can be correspondingly larger.
  • quenching plates may be expedient to design the quenching plates and to arrange them around the fuse element in such a way that their ends face the fuse element at a predetermined distance.
  • the cooling effect of the quenching plates then only begins at a predetermined current.
  • the ends of the quenching plates facing the fusible conductor can be provided with a coating with low electrical conductivity, which can optionally have good thermal conductivity.
  • the fuse element can also be provided with such a coating.
  • Parts of the hollow cylindrical housing, preferably the outer tube, can consist of gas-permeable material, in particular sieve ceramics, so that any overpressure that occurs can be reduced.
  • a fusible conductor 2 is designed as a ring part or as part of a hollow cylinder, and is provided with a conductor connection at both ends, which are denoted by 3 and 4 in the figure. Extinguishing plates 6 are provided radially to the fusible conductor 2, of which only a few are shown in the figure and the position of the others is only indicated by dashed lines.
  • the fuse element is arranged on the outer jacket of a core 8 made of insulating material, which can preferably be designed as a hollow cylinder.
  • This structural unit is arranged in a housing 10, which can preferably consist of insulating material, in particular ceramic.
  • one end of the extinguishing plates 6 rests on a fusible link 2 designed as a ring cylinder.
  • the outer ends of the quenching plates protrude into grooves 12 of the housing 10.
  • the lower and upper end edges of the extinguishing plates 6 can each be arranged in a groove in a base plate 14 or a cover plate 16.
  • the housing 10 and optionally also at least the outer part of the base plate 14 and the cover plate 16 can expediently consist of a gas-permeable material, in particular a so-called sieve ceramic.
  • a reignition of the arc on the outer casing of the fuse can be prevented if the holes in the bores are not chosen to be significantly larger than 1 mm, in particular smaller than 1 mm.
  • the fuse element 2 is arranged between the core 8 and the housing 10 in such a way that the extinguishing plates 6 extend both radially outwards and radially inwards.
  • the fuse element 2 If the fuse element 2 is positively connected to the extinguishing plates 6, all parts of the fuse heat up slowly in the event of an overcurrent and after a predetermined time, the fuse element 2 melts between the extinguishing plates 6.
  • the partial arcs generated between the individual extinguishing plates become radial due to the electrodynamic forces driven outside; the arc length increases with the increasing distance between the quenching plates 6 and the switching voltage is increased accordingly. Due to the same electrodynamic forces, the fusible conductor 2 is pressed against the extinguishing plates 6 in the heated state and a correspondingly increased cooling is ensured.
  • the quenching plates 6 are designed and arranged around the fuse element 2 such that a gap 18 is formed between them and the fuse element 2.
  • the size of the gap is selected so that the arc which arises after melting through at one point of the fusible conductor 2 causes the fusible conductor 2 to continue melting and its size is generally not significantly below 1 mm.
  • the ends of the quenching plates 6 facing the fusible conductor 2 can each be provided with a coating 20, which consists of a material with low electrical conductivity, as indicated in FIG. 5.
  • This coating 20 prevents fusing with one or more quenching plates 6 during melting and when the fusible conductor 2 melts further.
  • the coating 20 can consist, for example, of a temperature-resistant plastic or a glass-like and enamel-like material.
  • the fuse element 2 is at least partially provided with a coating 22 which in the same way prevents the aforementioned fusion.
  • a coating 22 which in the same way prevents the aforementioned fusion.
  • this can be provided with such a coating on its flat side facing the extinguishing plates 6.
  • an intermediate layer provided with openings is arranged between the fuse element 2 and the quenching plates, the intermediate openings of which permit the arc to pass after the fuse element 2 has melted.

Description

  • Die Erfindung bezieht sich auf eine elektrische Überstromsicherung mit einem gekrümmten Schmelzleiter und Löschblechen aus elektrisch leitendem Material.
  • Eine ausreichend hohe Lichtbogenspannung kann der Schmelzleiter nach dem Durchschmelzen im allgemeinen nur mit einer entsprechend grossen Länge erzeugen. Dies bedeutet aber einen entsprechend grossen Spannungs- und Leistungsabfall im Nennbetrieb. Um diesen Spannungsabfall zu vermindern, hat man Schmelzleiter mit mehreren Engstellen verwendet. Mit dieser Gestaltung wird jedoch ein weiteres Problem aufgeworfen, nämlich das gleichzeitige Durchschmelzen aller Engstellen (US-A-1 946 553).
  • Aber auch mit dieser bekannten Gestaltung beträgt der Spannungsabfall noch jeweils einige Zehntel Volt. In Anlagen mit einer grösseren Anzahl solcher Sicherungen, beispielsweise in Stromrichteranlagen mit Thyristoren, denen jeweils eine Sicherung zugeordnet ist, entsteht somit eine erhebliche Verlustleistung, die als Wärme abgeführt werden muss.
  • Es ergibt sich deshalb die Aufgabe, die Sicherung so zu gestalten, dass ihr Spannungsabfall im Nennbetrieb gering und dass sie zugleich in der Lage ist, zur Stromunterbrechung eine grosse Gegenspannung aufzubauen, die als Löschspannung wirkt.
  • In einer bekannten Ausführungsform einer Schmelzsicherung sind deshalb Löschbleche aus elektrisch leitendem Material vorgesehen, die mit ihren Flachseiten quer zur Längsrichtung des Schmelzleiters ausgedehnt und in dessen Längsrichtung hintereinander angeordnet sind. Die Löschbleche sind mit Öffnungen versehen, durch die der Schmelzleiter hindurchgeführt ist. Diese Baueinheit ist in einer Kammer angeordnet, die evakuiert sein oder auch ein Löschgas enthalten kann. Mit dem Durchschmelzen des Schmelzleiters entstehen Teillichtbögen zwischen den Löschblechen. Als Löschspannung ist die Summenspannung der einzelnen Teillichtbögen wirksam. Für höhere Schaltspannungen, insbesondere über 1000 Volt, mit einer entsprechend grossen Zahl von Löschblechen ergibt sich deshalb eine verhältnismässig grosse Baulänge der Schmelzsicherung (DE-A-2 349 270).
  • Eine weitere bekannte Ausführungsform enthält einen Schmelzleiter in Zickzack-Form, bei dem in den einzelnen Knicken jeweils ein Löschblech angeordnet ist. Nach dem Durchschmelzen des Schmelzleiters werden sich somit die Teillichtbögen zwischen den Löschblechen bilden, deren Abstand kleiner ist als der jeweilige Teilabschnitt des Schmelzleiters. Bei dieser bekannten Ausführungsform wird somit die Summe der Teillichtbögen kleiner sein als der Schmelzleiter. Der Lichtbogen wird somit verkürzt. Ausserdem sind die Löschbleche parallel zueinander angeordnet und man erhält somit eine verhältnismässig grosse Baulänge (US-A-854 724).
  • Die erwähnte Aufgabe wird nun erfindungsgemäss gelöst mit den kennzeichnenden Merkmalen der Ansprüche 1 und 2.
  • Durch die radial zu einem kreisförmigen Schmelzleiter angeordneten Löschbleche erhält man eine Flachbauweise der Sicherung, deren Höhe nicht wesentlich grösser als die Höhe der Löschbleche ist. Der gegenseitige Abstand der Löschbleche wird in der Richtung radial nach aussen grösser. Die nach dem Durchschmelzen des Schmelzleiters erzeugten Teillichtbögen werden somit aufgrund der elektrodynamischen Kräfte nach aussen getrieben. Die Länge der einzelnen Teillichtbögen und die Gesamtlänge des Lichtbogens werden verlängert und die Schaltspannung entsprechend erhöht. Durch diese elektrodynamischen Kräfte wird zugleich der Schmelzleiter im erwärmten Zustand an die Bleche gepresst und dadurch eine erhöhte Kühlung gewährleistet.
  • Eine Ausführungsform der Überstromsicherung für höhere Spannung mit einer grossen Anzahl von Löschblechen erhält man dadurch, dass der Schmelzleiter eine Schraubenlinie bildet, zu der mehrere Löschbleche senkrecht angeordnet sind.
  • In einer Ausführungsform der Schmelzsicherung können die Löschbleche unmittelbar am Schmelzleiter anliegen. Der Schmelzleiter wird durch die Bleche gekühlt und kann einen Strom führen, der wesentlich höher ist als die Stromstärke, die sich aus dem Querschnitt des ungekühlten Schmelzleiters ergibt. Der Schmelzleiter kann zweckmässig auf dem Mantel eines hohlzylindrischen Kerns angeordnet werden. Die vom Schmelzleiter abgewandten-Enden- der Löschble- che können vorzugsweise in Nuten der Innenwand eines hohlzylindrischen Gehäuses aus Isolierstoff angeordnet werden. In diesem Falle können die Masstoleranzen der Löschbleche entsprechend grösser sein.
  • Unter Umständen kann es zweckmässig sein die Löschbleche so zu gestalten und um den Schmelzleiter anzuordnen, dass ihre Enden in einem vorbestimmten Abstand dem Schmelzleiter gegenüberstehen. Die kühlende Wirkung der Löschbleche setzt dann erst bei einer vorbestimmten Stromstärke ein.
  • In einer besonderen Ausführungsform der Überstromsicherung können die dem Schmelzleiter zugewandten Enden der Löschbleche mit einem Überzug mit geringer elektrischer Leitfähigkeit versehen werden, der gegebenenfalls eine gute Wärmeleitfähigkeit haben kann. Anstelle der Löschbleche kann auch der Schmelzleiter mit einem derartigen Überzug versehen werden.
  • Teile des hohlzylindrischen Gehäuses, vorzugsweise das Aussenrohr, können aus gasdurchlässigem Material, insbesondere Siebkeramik, bestehen, damit ein auftretender Überdruck abgebaut werden kann.
  • Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, in deren
    • Fig. 1 ein Ausführungsbeispiel einer Schmelzsicherung nach der Erfindung im Querschnitt schematisch veranschaulicht ist. Die
    • Fig. 2 und 3 zeigen jeweils einen Teil einer besonderen Ausführungsform der Schmelzsicherung, während in den
    • Fig. 4 und 5 jeweils ein Teil einer besonderen Ausführungsform der Löschbleche und in
    • Fig. 6 eine besondere Ausführung des Schmelzleiters dargestellt ist.
  • In der Ausführungsform nach Figur 1 ist ein Schmelzleiter 2 als Ringteil oder als Teil eines Hohlzylinders ausgeführt, und an seinen beiden Enden jeweils mit einem Leiteranschluss versehen, die in der Figur mit 3 und 4 bezeichnet sind. Radial zum Schmelzleiter 2 sind Löschbleche 6 vorgesehen, von denen in der Figur lediglich einige dargestellt und die Lage der übrigen lediglich gestrichelt angedeutet ist. Der Schmelzleiter ist auf dem Aussenmantel eines Kerns 8 aus Isolierstoff angeordnet, der vorzugsweise hohlzylindrisch gestaltet sein kann. Diese Baueinheit ist in einem Gehäuse 10 angeordnet, das vorzugsweise aus Isolierstoff, insbesondere Keramik, bestehen kann.
  • Nach Figur 2 liegt ein Ende der Löschbleche 6 an einem als Ringzylinder gestalteten Schmelzleiter 2 an. Die äusseren Enden der Löschbleche ragen in Nuten 12 des Gehäuses 10 hinein. In gleicher Weise können auch die unteren und oberen Stirnkanten der Löschbleche 6 jeweils in einer Nut einer Grundplatte 14 bzw. einer Deckplatte 16 angeordnet sein.
  • Das Gehäuse 10 und gegebenenfalls auch wenigstens der äussere Teil der Grundplatte 14 und der Deckplatte 16 können zweckmässig aus einem gasdurchlässigen Material, insbesondere einer sogenannten Siebkeramik, bestehen. Ein Wiederzünden des Lichtbogens am Aussenmantel der Schmelzsicherung kann dadurch verhindert werden, dass die Löcher der Bohrungen nicht wesentlich grösser als 1 mm, insbesondere kleiner als 1 mm, gewählt werden.
  • In der Ausführungsform nach Figur 3, die einen Teil des Querschnitts nach Figur 1 darstellt, ist der Schmelzleiter 2 zwischen dem Kern 8 und dem Gehäuse 10 derart angeordnet, dass sich die Löschbleche 6 sowohl radial nach aussen als auch radial nach innen erstrecken.
  • Ist der Schmelzleiter 2 mit den Löschblechen 6 formschlüssig verbunden, so heizen sich alle Teile der Sicherung bei Überstrom langsam auf und nach einer vorbestimmten Zeit schmilzt der Schmelzleiter 2 zwischen den Löschblechen 6. Die zwischen den einzelnen Löschblechen erzeugten Teillichtbögen werden aufgrund der elektrodynamischen Kräfte radial nach aussen getrieben; die Bogenlänge steigt mit dem zunehmenden Abstand der Löschbleche 6 und die Schaltspannung wird entsprechend erhöht. Durch die gleichen elektrodynamischen Kräfte wird der Schmelzleiter 2 im erwärmten Zustand an die Löschbleche 6 gepresst und eine entsprechend erhöhte Kühlung gewährleistet.
  • In der Ausführungsform nach Figur 3 mit sowohl radial nach aussen als auch radial nach innen gerichteten Löschblechen 6 wird die Wärmeabführung aus den Zwischenräumen der Löschbleche 6 erleichtert. Um parallele Entladungskanäle zu vermeiden, können auch in dieser Ausführungsform die Löschbleche sowohl in Nuten des Gehäuses 10 als auch in Nuten am Aussenmantel des Kerns 8 gehalten werden. Man erhält dann eine erhöhte Spannungsfestigkeit aufgrund der meanderförmigen Verlängerung der Kriechstromwege.
  • In der Ausführungsform nach Figur 4 sind die Löschbleche 6 derart gestaltet und um den Schmelzleiter 2 angeordnet, dass zwischen ihnen und dem Schmelzleiter 2 ein Spalt 18 entsteht. Die Grösse des Spalts wird so gewählt, dass der nach dem Durchschmelzen an einer Stelle des Schmelzleiters 2 entstehende Lichtbogen den Schmelzleiter 2 weiterschmelzen lässt und seine Grösse wird im allgemeinen 1 mm nicht wesentlich unterschritten.
  • Unter Umständen können die dem Schmelzleiter 2 zugewandten Enden der Löschbleche 6 jeweils mit einem Überzug 20 versehen sein, der aus einem Material mit geringer elektrischer Leitfähigkeit besteht wie es in Figur 5 angedeutet ist. Durch diesen Überzug 20 wird beim Durchschmelzen und beim Weiterschmelzen des Schmelzleiters 2 ein Verschmelzen mit einem oder mehreren Löschblechen 6 verhindert. Der Überzug 20 kann beispielsweise aus einem temperaturfesten Kunststoff oder einem glasartigen sowie emailleartigen Material bestehen.
  • In der Ausführungsform nach Figur 6 ist der Schmelzleiter 2 wenigstens teilweise mit einem Überzug 22 versehen, der in gleicher Weise das erwähnte Verschmelzen verhindert. Bei Verwendung eines flachen, bandartigen Schmelzleiters 2 kann dieser auf seiner den Löschblechen 6 zugewandten Flachseite mit einem derartigen Überzug versehen sein. Unter Umständen kann es ausreichen, wenn zwischen dem Schmelzleiter 2 und den Löschblechen eine mit Öffnungen versehene Zwischenlage angeordnet wird, dessen Öffnungen ein Hindurchtreten des Lichtbogens nach dem Schmelzen des Schmelzleiters 2 ermöglichen.

Claims (10)

1. Elektrische Überstromsicherung mit einem gekrümmten Schmelzleiter (2) und Löschblechen (6) aus elektrisch leitendem Material, dadurch gekennzeichnet, dass der Schmelzleiter (2) einen einzigen Teilkreis bildet, zu dem mehrere Löschbleche (6) radial angeordnet sind.
2. Überstromsicherung mit einem gekrümmten Schmelzleiter (2) und Löschblechen (6) aus elektrisch leitendem Material, dadurch gekennzeichnet, dass der Schmelzleiter (2) eine Schraubenlinie bildet, zu der mehrere Löschbleche (6) senkrecht angeordnet sind.
3. Überstromsicherung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Schmelzleiter (2) auf dem Mantel eines hohlzylindrischen Kerns (8) angeordnet ist.
4. Überstromsicherung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Enden der Löschbleche (6) mit dem Schmelzleiter (2) einen Spalt (18) bilden.
5. Überstromsicherung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die dem Schmelzleiter (2) zugewandten Enden der Löschbleche (6) mit einem Überzug (20) mit geringer elektrischer Leitfähigkeit versehen sind.
6. Überstromsicherung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Schmelzleiter (2) wenigstens teilweise mit einem Überzug (22) mit geringer elektrischer Leitfähigkeit versehen ist.
7. Überstromsicherung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zwischen dem Schmelzleiter (2) und den Löschblechen (6) eine Zwischenlage mit geringer elektrischer Leitfähigkeit vorgesehen ist, die mit Durchtrittsöffnungen für den Lichtbogen versehen ist.
8. Überstromsicherung nach einem derAnsprüche 1 bis 7, dadurch gekennzeichnet, dass die Löschbleche (6) in Nuten (12) der Innenwand eines hohlzylindrischen Gehäuses (10) aus Isolierstoff hineinragen.
9. Überstromsicherung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass wenigstens ein Teil des Gehäuses aus gasdurchlässigem Material besteht.
10. Überstromsicherung nach Anspruch 9, dadurch gekennzeichnet, dass als gasdurchlässiges Material Siebkeramik vorgesehen ist.
EP81107244A 1980-09-23 1981-09-14 Elektrische Überstromsicherung Expired EP0048424B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803035873 DE3035873A1 (de) 1980-09-23 1980-09-23 Elektrische ueberstromsicherung
DE3035873 1980-09-23

Publications (3)

Publication Number Publication Date
EP0048424A2 EP0048424A2 (de) 1982-03-31
EP0048424A3 EP0048424A3 (en) 1982-12-01
EP0048424B1 true EP0048424B1 (de) 1985-07-24

Family

ID=6112664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81107244A Expired EP0048424B1 (de) 1980-09-23 1981-09-14 Elektrische Überstromsicherung

Country Status (5)

Country Link
US (1) US4458232A (de)
EP (1) EP0048424B1 (de)
JP (1) JPS5787039A (de)
DE (2) DE3035873A1 (de)
NO (1) NO813201L (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9015208U1 (de) * 1990-11-05 1991-01-17 Wickmann-Werke Gmbh, 5810 Witten, De
FR2917532B1 (fr) * 2007-06-18 2011-12-23 Schneider Electric Ind Sas Dispositif de coupure fusible contre les surintensites et dispositif de protection contre les surtensions comportant un tel dispositif de coupure
US20160304268A1 (en) * 2015-04-14 2016-10-20 Malissa Schneider Self-adjusting container

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US854724A (en) * 1904-11-07 1907-05-28 Gen Electric Thermal cut-out.
US1959770A (en) * 1931-10-21 1934-05-22 Westinghouse Electric & Mfg Co Circuit interrupter
US1946553A (en) * 1932-01-20 1934-02-13 Edward V Sundt Low-capacity fuse construction
US2067541A (en) * 1933-10-10 1937-01-12 Nobuhara Kantaro Fusible electric circuit breaking device
CH443459A (de) * 1966-06-14 1967-09-15 Weber Ag Fab Elektro Mit einem Auftragsstoff versehener Schmelzleiter für Schmelzsicherungen
FR2172794B1 (de) * 1972-02-22 1976-07-23 Alsthom Cgee
DE2349270A1 (de) * 1973-10-01 1975-04-10 Siemens Ag Elektrische ueberstromsicherung

Also Published As

Publication number Publication date
JPS5787039A (en) 1982-05-31
DE3035873A1 (de) 1982-05-06
EP0048424A3 (en) 1982-12-01
DE3171489D1 (en) 1985-08-29
US4458232A (en) 1984-07-03
NO813201L (no) 1982-03-24
EP0048424A2 (de) 1982-03-31

Similar Documents

Publication Publication Date Title
DE2804617C2 (de)
DE2822802C2 (de)
DE2907985C2 (de) Überspannungsableiter
DE2652348C2 (de)
DE3042830C2 (de)
DE2723487C2 (de)
DE1589847B2 (de) Halbleitergleichrichteranordnung
DE3116573C2 (de) Überspannungsableiter
DE19859446A1 (de) Strombegrenzende Hochspannungsschmelzsicherung
DE2848252A1 (de) Flachpack-halbleitervorrichtung
DD230958A1 (de) Vakuum-lichtbogenloeschkammer
DE3101354C2 (de) Funkenstrecke für die Begrenzung von Überspannungen
EP0860918A1 (de) Überspannungsableiteinrichtung
DE2337743C3 (de) Funkenstrecke
EP0048424B1 (de) Elektrische Überstromsicherung
DE2207041A1 (de) Niederspannungssicherung
CH635956A5 (de) Schmelzsicherung.
DE2653409C3 (de) Träger Sicherungseinsatz
EP3270403B1 (de) Sicherung
DE19506057B4 (de) Löschfunkenstreckenanordnung
DE3638943A1 (de) Schmelzsicherung
DE19853580C1 (de) Selbsterholende Strombegrenzungseinrichtung mit Flüssigmetall
DE3231841A1 (de) Elektrische schmelzsicherung und dafuer vorgesehenes sicherungselement
DE2420996A1 (de) Vorrichtung zur strombegrenzung
DE497223C (de) Sicherung mit geschlossenem Schmelzeinsatz fuer Motorschutz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811028

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3171489

Country of ref document: DE

Date of ref document: 19850829

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19850930

Ref country code: CH

Effective date: 19850930

Ref country code: BE

Effective date: 19850930

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19850914

GBPC Gb: european patent ceased through non-payment of renewal fee
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860530

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860603

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118