EP0048316B1 - Verfahren und Anlage zur Rückverdampfung von flüssigem Erdgas - Google Patents

Verfahren und Anlage zur Rückverdampfung von flüssigem Erdgas Download PDF

Info

Publication number
EP0048316B1
EP0048316B1 EP19810104348 EP81104348A EP0048316B1 EP 0048316 B1 EP0048316 B1 EP 0048316B1 EP 19810104348 EP19810104348 EP 19810104348 EP 81104348 A EP81104348 A EP 81104348A EP 0048316 B1 EP0048316 B1 EP 0048316B1
Authority
EP
European Patent Office
Prior art keywords
natural gas
circuit
evaporator
transfer medium
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19810104348
Other languages
English (en)
French (fr)
Other versions
EP0048316A1 (de
Inventor
Lothar Ing.-Grad. Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
Uhde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6112350&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0048316(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Uhde GmbH filed Critical Uhde GmbH
Publication of EP0048316A1 publication Critical patent/EP0048316A1/de
Application granted granted Critical
Publication of EP0048316B1 publication Critical patent/EP0048316B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content

Definitions

  • the invention relates to a process for the re-evaporation of liquid natural gas, using a heat transfer medium which is conducted in a closed circuit containing a heat dispenser, in particular a seawater-charged heat exchanger and a natural gas evaporator, and a second circulating circuit with a further energy supply, and to a plant to carry out this process.
  • a heat dispenser in particular a seawater-charged heat exchanger and a natural gas evaporator
  • a second circulating circuit with a further energy supply
  • a heat transfer medium is condensed in two pressure stages, a main stream evaporating in an evaporator exposed to sea water and condensed with heat being given off to a heat exchanger through which natural gas flows, and a secondary stream of the heat transfer medium branching off from this main stream from one Pressure increasing device brought to a higher pressure level and releases its energy in a natural gas superheater and then brought back to the pressure of the main stream in a pressure reducing device and supplied to it.
  • the known method has the particular disadvantage that it cannot be adapted to the respective site conditions of such a system to the desired extent and, in particular, can react very clumsily to different temperatures of the evaporator exposed to sea water.
  • pressure booster and pressure reduction systems consume energy that is lost in the overall process.
  • This object is achieved in a method of the type described in the introduction in that the heat transfer medium in the first partial circuit between the sea water heat exchanger and the natural gas evaporator is circulated in the natural cycle and in the second partial circuit as a liquid phase another heat exchanger as a secondary heat source and the natural gas evaporator in the first partial circuit the same pressure is supplied in the natural gas evaporator, the partial quantity being regulated via the seawater inlet temperature.
  • the overall process without external heat supply i.e. H. be operated exclusively with sea water if its inlet temperature is correspondingly high.
  • the sea water temperature drops in winter, additional energy can be supplied via a partial flow, the partial flow circuits generally being able to be maintained over very wide areas in natural circulation. This means that the external energy can be adapted to the individual environmental conditions.
  • the invention provides that the natural gas evaporator is followed by a natural gas superheater, which is supplied with additional energy by a further, independent heat transfer medium circuit, and in particular it can also be provided that the heat transfer medium circuit of the natural gas superheater is operated at a higher pressure level than that in the natural gas evaporator .
  • the energy supply to the second sub-circuit and / or to the additional circuit of the heat transfer medium takes place via a secondary heat source, it being possible for the liquid natural gas to be evaporated in one or two stages from the heat transfer medium in tube bundle heat exchangers, where In a further embodiment it can be provided that an immersion flame evaporator and / or the exhaust gas from a power plant is used as the secondary heat source.
  • the invention also provides a system for carrying out the above-described method, which is characterized in particular by at least one heat exchanger acted upon by sea water as an evaporator of the heat transfer medium and a heat exchanger arranged in its circuit as a natural gas evaporator and a heat exchanger medium collector associated with or downstream of the natural gas evaporator distinguishes first partial circuit and a second partial circuit and a regulation for regulating the partial amount in the second partial circuit via the seawater inlet temperature.
  • This inventive design of the system has the advantage that large amounts of sea water can be used, as well as the Ge total volume of the partial flows of the heat transfer medium can be kept very large, so that an overall very large plant performance can be achieved.
  • a wide range of sea water temperatures can be driven without the need for an external energy supply if the sea water has a correspondingly high inlet temperature into the system.
  • a further heat exchanger is connected downstream as a natural gas superheater in the direction of the natural gas flow, the heat exchanger and the collector of the heat transfer medium being connected together with the further heat supply devices in the circuits.
  • immersion flame evaporators are provided as further heat supply devices for the heat transfer medium and these are heated with natural gas, or that the immersion flame evaporators are externally heated or circulated via an exhaust gas cooler of a thermal power plant, which can also be provided according to the invention .
  • To control the entire system is a control that switches on the heat transfer medium circuit via the secondary heat source when the permissible sea water temperature drops, the partial circuit being conducted via the hot water of the submersible flame evaporator heated by power plant waste heat and switching on a burner of the submersible flame evaporator or additional additional heat transfer medium circuit for additional energy requirements Switches on the superheater.
  • a heat transfer medium preferably propane (hereinafter only the heat transfer medium is referred to as propane) is conducted in a first sub-circuit I between a propane evaporator 1 exposed to sea water and a natural gas evaporator 2.
  • propane a heat transfer medium
  • the sea water enters the propane evaporator 1 at 3 and leaves it at 4.
  • the natural gas enters the natural gas evaporator at 5 and leaves it via line 6.
  • the natural gas which is initially still liquid in the propane evaporator 1 is evaporated by the sea water and exits via a line 7 from the gas dome 8 of the propane evaporator 1 and into the natural gas evaporator 2 at the top.
  • the propane condenses with heat being given off at the evaporator coils of the natural gas evaporator 2 and is deposited as liquid propane in the sump 9 of the natural gas evaporator 2, from where it is fed back to the propane evaporator 1 in liquid form via a line 10, closing the circuit.
  • a further propane circuit 11 is provided in parallel to the former.
  • a partial flow of the propane is withdrawn from the propane evaporator 1 via a line 11 and, if necessary, via a pump 12, in particular to overcome the pipeline losses, to a heat source, for.
  • B. a submersible flame evaporator 13, passed there and evaporated via a line 14 to the natural gas evaporator 2, condensed there and given as condensate via line 10 again closing the circuit 11 to the propane evaporator 1.
  • the circuits I and 11 can be operated in natural circulation, should large pipe friction losses or other system losses occur, both circuits can, however, be operated in the forced circulation at the same pressure level.
  • a natural gas superheater 15 is shown with a natural gas line 16, which is also acted upon by propane.
  • This further propane circuit is designated 111 and leads from the natural gas superheater 15 via a line 17, possibly via a pump 18 to a further heat source, e.g. B. a submersible flame evaporator 19, and a line 20 back to the natural gas superheater.
  • the heat source 19 and the heat source 13 can be identical or can be provided within the same component.
  • both the heat exchanger coils of the heat source 19 and that of the heat source 13 can be arranged within the same basin.
  • the higher energy level required for overheating is achieved in that the circuit 111 is operated at a higher total pressure than the circuits and 11.
  • FIG. 2 a modified process control is shown as a schematic diagram compared to the arrangement of FIG. 1.
  • the refrigerant circuit I in FIG. 1 corresponds to two propane circuits "A" and "A '", the propane being conducted via seawater-heated propane evaporators 21 and 21' and a natural gas evaporator 22 and a propane collector 23.
  • the circuit lines of the circuits "A" and "A '" are not specified.
  • the seawater inlet and outlet is designated 3 'or 4' in accordance with FIG. 1, just as the inlet of the liquid natural gas is designated 5 'and the outlet of the gaseous superheated natural gas is designated 6' or 16 'in accordance with FIG. 1.
  • the The partial quantity circuit 11 corresponding to FIG. 1 is designated by “B” in FIG. 2.
  • the propane is supplied to the natural gas evaporator 22 via a line 11 ', a pump 12' and a submerged flame evaporator 13 'and via a line 14'.
  • the additional propane circuit 111 according to FIG. 1 is designated by “C” in FIG. It leads from the immersion flame evaporator 13 'via a line 24 to a natural gas superheater 25 and via the natural gas evaporator 22, the propane collector 23, the line 11', the pump 12 'back to the immersion flame evaporator 13'.
  • the water of the submerged flame evaporator 13 ′ can be passed through a further circuit labeled “D” and, if appropriate, preheated in a waste gas cooler 27 by exhaust gas from a power plant, the inlet of which is labeled 26.
  • the burner 28 of the immersion flame evaporator 13 ' can be acted upon by natural gas via the line 29.
  • the water supply to the submerged flame evaporator 13 ' is designated 30.
  • the system is regulated in connection with FIG. 1 as follows: depending on the water temperature at the seawater inlet 3, the additional heat supply via the circuit 11 at the heat source 13 is regulated by means of appropriate regulators.
  • the subset of the circuit 11 can be driven from 0-100%, i. H. the circuit 11 can be switched off (0%) or the entire amount of propane, including that of the circuit I; Promote via the secondary heat source (100%).
  • the discharge temperature of the gasified natural gas is measured at 6 and, if necessary, the additional circuit 111 is switched on in order to obtain the required natural gas temperature at 16.
  • This regulation is basically the same in the exemplary embodiment according to FIG. 2, where larger quantities can be implemented by connecting at least two seawater-heated propane evaporators in parallel. In the event of a device failure or icing, appropriate measures can be taken to return heated propane through these evaporators and thus de-icing. Depending on the occurrence of power plant exhaust gases in the circuit "D", the burner 28 can be switched off completely or can be operated with a slight excess.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

  • Die Erfindung richtet sich auf ein Verfahren zur Rückverdampfung von flüssigem Erdgas, unter Einsatz eines Wärmeübertragungsmediums, welches in einem geschlossenen, einen Wärmespender, insbesondere einen meerwasserbeaufschlagten Wärmetauscher und einen Erdgasverdampfer enthaltenden ersten Kreislauf und einem zweiten im Zwangsumlauf geführten Teilkreislauf mit einer weiteren Energiezufuhr geführt ist sowie auf eine Anlage zur Durchführung dieses Verfahrens.
  • Bei einem bekannten Verfahren (DE-B-2 751 642) wird ein Wärmeübertragungsmedium in zwei Druckstufen kondensiert, wobei ein Hauptstrom in einem meerwasserbeaufschlagten Verdampfer verdampft und unter Wärmeabgabe an einem vom Erdgas durchströmten Wärmetauscher kondensiert und ein von diesem Hauptstrom abzweigender Nebenstrom des Wärmeübertragungsmediums von einer Druckerhöhungseinrichtung auf ein höheres Druckniveau gebracht und seine Energie in einem Erdgasüberhitzer abgibt und anschließend in einer Druckminderungseinrichtung wieder auf den Druck des Hauptstromes gebracht und diesem zugeführt wird. Das bekannte Verfahren hat insbesondere den Nachteil, daß es nicht im gewünschten Maße den jeweiligen Standortbedingungen einer solchen Anlage anpaßbar ist und insbesondere sehr schwerfällig auf unterschiedliche Temperaturen des meerwasserbeaufschlagten Verdampfers reagieren kann. Darüber hinaus verbrauchen Druckerhöhungs- und Druckniedrigungsanlagen Energie, die dem Gesamtprozeß verlorengeht.
  • Demgegenüber ist es Aufgabe der Erfindung, ein Verfahren sowie eine Anlage zur Durchführung eines eingangs bezeichneten Verfahrens anzugeben, bei dem eine Anpassung an Meerwassertemperaturschwankungen in einfacher Weise möglich und die Zufuhr von Fremdenergie auf ein Mindestmaß reduzierbar ist.
  • Diese Aufgabe wird bei einem Verfahren der eingangs bezeichneten Art dadurch gelöst, daß das Wärmeübertragungsmedium im ersten Teilkreislauf zwischen dem Meerwasser-Wärmetauscher und dem Erdgasverdampfer im Naturumlauf geführt wird und im zweiten Teilkreislauf als flüssige Phase einem weiteren Wärmetauscher als Sekundärwärmequelle und dem Erdgasverdampfer bei zum ersten Teilkreislauf gleichem Druck im Erdgasverdampfer zugeführt wird, wobei eine Regelung der Teilmenge über die Meerwassereintrittstemperatur erfolgt.
  • Durch das Vorsehen von Teilkreisläufen, bereits im Bereich des Erdgasverdampfers, mit neben der Möglichkeit der bekannten Wärmezufuhr durch Meerwasser gesonderter Wärmezufuhr in einem Teilkreislauf und die Regelung über die Meerwassereintrittstemperatur kann je nach Außenbedingungen der Gesamtprozeß ohne externe Wärmezufuhr, d. h. ausschließlich mit Meerwasser betrieben werden, wenn dessen Eintrittstemperatur entsprechend hoch ist. Wenn beispielsweise jedoch im Winter die Meerwassertemperatur absinkt, kann über einen Teilstrom zusätzliche Energie zugeführt werden, wobei die Teilstromkreisläufe in der Regel über sehr weite Bereiche im Naturumlauf aufrechterhalten werden können. Dies bedeutet, daß die Fremdenergie jeweils den individuellen Umgebungsbedingungen angepaßt werden kann.
  • In Ausgestaltung sieht die Erfindung vor, daß dem Erdgasverdampfer ein Erdgasüberhitzer nachgeschaltet wird, der von einem weiteren, unabhängigen Wärmeübertragungsmediumkreislauf mit zusätzlicher Energiezufuhr beaufschlagt wird, wobei insbesondere auch vorgesehen sein kann, daß der Wärmeübertragungsmediumkreislauf des Erdgasüberhitzers bei einem höheren Druckniveau betrieben wird als demjenigen im Erdgasverdampfer.
  • Aus der eingangs erwähnten DE-A-2 751 642 ist das Vorsehen eines Überhitzers bekannt, der von einem Wärmeübertragungsmedium mit höherem Druck beaufschlagt ist. Wesentlich für die Erfindung ist im vorliegenden Fall, daß der Überhitzungskreislauf des Wärmeübertragungsmediums in sich geschlossen auf einem höheren Druckniveau betrieben wird, so daß in einem solchen Kreislauf Druckerhöhungs- bzw. Druckminderungsanlagen entbehrlich sind, die das Wärmeübertragungsmedium den Drücken der Teilkreisläufe der vorgeschalteten Prozesse anpassen müßten. Damit ist eine weitere, gegenüber der bekannten Verfahrensweise wirtschaftlichere Lösung des Prozeßablaufes gegeben.
  • Nach der Erfindung kann auch vorgesehen sein, daß die Energiezufuhr zu dem zweiten Teilkreislauf und/oder zum zusätzlichen Kreislauf des Wärmeübertragungsmediums über eine Sekundärwärmequelle erfolgt, wobei es vorteilhaft sein kann, wenn das flüssige Erdgas in Rohrbündelwärmetauschern ein- oder zweistufig vom Wärmeübertragungsmedium verdampft wird, wobei in weiterer Ausgestaltung vorgesehen sein kann, daß als Sekundärwärmequelle ein Tauchflammenverdampfer und/oder das Abgas aus einem Kraftwerk eingesetzt wird.
  • Die Erfindung sieht auch eine Anlage zur Durchführung des vorbeschriebenen Verfahrens vor, welches sich insbesondere durch wenigstens einen vom Meerwasser beaufschlagten Wärmetauscher als Verdampfer des Wärmeübertragungsmediums sowie einen in dessen Kreislauf angeordneten Wärmetauscher als Erdgasverdampfer und einen dem Erdgasverdampfer zu- bzw. nachgeordneten Wärmetauschermedium-Sammler mit einem ersten Teilkreislauf und einem zweiten Teilkreislauf und einer Regelung zur Regelung der Teilmenge im zweiten Teilkreislauf über die Meerwassereintrittstemperatur auszeichnet.
  • Diese erfindungsgemäße Ausgestaltung der Anlage hat den Vorteil, daß große Mengen Meerwasser einsetzbar sind, ebenso wie das Gesamtvolumen der Teilströme des Wärmeübertragungsmediums sehr groß gehalten werden kann, so daß sich eine insgesamt sehr große Anlagenleistungen erreichen läßt. Gleichzeitig kann durch entsprechende Steuerung des Natur- bzw. Zwangsumlaufes bei der gewählten Anordnung ein breiter Bereich von Meerwassertemperaturen gefahren werden, ohne daß es einer externen Energiezufuhr bedarf, wenn das Meerwasser eine entsprechend hohe Eintrittstemperatur in die Anlage aufweist. Es ist auch möglich, z. B. bei Frostgefahr, einen Wärmetauscher wärme- übertragungsmediumseitig abzuschalten, wobei das Meerwasser weiterströmt. Dadurch wird das Wärmeübertragungsmedium in den Sammler verlagert und der Wärmetauscher entsprechend vom Meerwasser erwärmt.
  • In Ausgestaltung ist nach der Erfindung vorgesehen, daß in Richtung des Erdgasdurchflusses einem ersten Wärmetauscher ein weiterer Wärmetauscher als Erdgasüberhitzer nachgeschaltet ist, wobei die Wärmetauscher sowie der Sammler des Wärmeübertragungsmediums mit den weiteren Wärmezuführeinrichtungen in den Kreisläufen zusammengeschaltet sind.
  • Nach der Erfindung kann auch vorgesehen sein, daß als weitere Wärmezuführeinrichtungen für das Wärmeübertragungsmedium Tauchflammenverdampfer vorgesehen und diese mit Erdgas beheizt sind, oder aber daß die Tauchflammenverdampfer fremdbeheizt bzw. im Kreislauf über einen Abgaskühler eines Wärmekraftwerkes geführt sind, was nach der Erfindung auch vorgesehen sein kann.
  • Zur Steuerung der Gesamtanlage ist eine Regelung, die bei Absinken der zulässigen Seewassertemperatur den Wärmeübertragungsmittelkreislauf über die Sekundärwärmequelle zuschaltet, wobei der Teilkreislauf über das von einer Kraftwerksabwärme beheizte Warmwasser des Tauchflammenverdampfers geführt und bei zusätzlichem Energiebedarf einen Brenner des Tauchflammenverdampfers zuschaltet bzw. den weiteren zusätzlichen Wärmeübertragungsmittelkreislauf zum Überhitzer einschaltet.
  • Die Erfindung ist nachstehend anhand der Zeichnung beispielsweise näher erläutert. Diese zeigt in
    • Fig. 1 ein Prinzipschaltbild des erfindungsgemäßen Verfahrens sowie in
    • Fig. 2 ein Prinzipschaltbild einer Anlage zur Durchführung des Verfahrens nach der Erfindung in einem bevorzugten Ausführungsbeispiel.
  • Nach dem in Fig. 1 dargestellten Prinzipschaltbild wird ein Wärmeübertragungsmedium, vorzugsweise Propan (im folgenden wird ausschließlich das Wärmeübertragungsmedium als Propan bezeichnet) in einem ersten Teilkreislauf I zwischen einem meerwasserbeaufschlagten Propan-Verdampfer 1 und einen Erdgasverdampfer 2 geführt. Das Meerwasser tritt bei 3 in den Propan-Verdampfer 1 ein und verläßt diesen bei 4. Das Erdgas tritt in den Erdgasverdampfer bei 5 ein und verläßt ihn über die Leitung 6. Das im Propan-Verdampfer 1 zunächst noch flüssige Erdgas wird durch das Meerwasser verdampft und tritt über eine Leitung 7 aus dem Gasdom 8 des Propan-Verdampfers 1 aus und in den Erdgasverdampfer 2 oben ein. Dort kondensiert das Propan unter Wärmeabgabe an den Verdampferschlangen des Erdgasverdampfers 2 und schlägt sich als flüssiges Propan im Sumpf 9 des Erdgasverdampfers 2 nieder, von wo es über eine Leitung 10 flüssig dem Propan-Verdampfer 1 unter Schließung des Kreises wieder zugeführt wird.
  • Neben dem Propankreislauf ist ein weiterer Propankreislauf 11 parallel zum ersteren vorgesehen. Ein Teilstrom des Propans wird über eine Leitung 11 dem Propan-Verdampfer 1 entzogen und ggf. über eine Pumpe 12, insbesondere zur Überwindung der Rohrleitungsverluste, weiter zu einer Wärmequelle, z. B. einem Tauchflammenverdampfer 13, geführt, dort verdampft und über eine Leitung 14 dem Erdgasverdampfer 2 zugeführt, dort kondensiert und als Kondensat über die Leitung 10 unter Schließung des Kreises 11 erneut dem Propan-Verdampfer 1 aufgegeben.
  • Die Kreisläufe I und 11 können im Naturumlauf gefahren werden, sollten große Rohrreibungsverluste oder sonstige Systemverluste auftreten, können beide Kreisläufe im Zwangsumlauf jedoch auf gleichem Druckniveau geführt werden.
  • In Fig. 1 ist noch ein Erdgasüberhitzer 15 mit einer Erdgasleitung 16 dargestellt, der ebenfalls von Propan beaufschlagt ist. Dieser weitere Propankreislauf ist mit 111 bezeichnet und führt von dem Erdgasüberhitzer 15 über eine Leitung 17, ggf. über eine Pumpe 18 zu einer weiteren Wärmequelle, z. B. einem Tauchflammenverdampfer 19, und eine Leitung 20 zurück zum Erdgasüberhitzer. Die Wärmequelle 19 und die Wärmequelle 13 können identisch bzw. innerhalb eines gleichen Bauteils vorgesehen sein. So können sowohl die Wärmetauscherschlangen der Wärmequelle 19 als auch die der Wärmequelle 13 innerhalb eines gleichen Beckens angeordnet sein. Das zur Überhitzung erforderliche höhere Energieniveau wird dadurch erreicht, daß der Kreislauf 111 bei einem höheren Gesamtdruck betrieben wird als die Kreisläufe und 11.
  • In Fig. 2 ist gegenüber der Anordnung nach Fig. 1 eine modifizierte Prozeßführung als Prinzipskizze dargestellt. Zur besseren Identifizierung der unterschiedlichen Kältemittel-Kreisläufe sind in Fig. 2 zur Bezeichnung der Kreisläufe Großbuchstaben herangezogen. So entspricht dem Kältemittel-Kreislauf I in Fig. 1 zwei Propankreisläufen »A« und »A'«, wobei das Propan über meerwasserbeheizte Propan-Verdampfer 21 und 21' und einen Erdgasverdampfer 22 sowie einen Propansammler 23 geführt ist.
  • Die Kreislaufleitungen der Kreisläufe »A« und »A'« sind nicht näher bezeichnet. Der Meerwassereintritt und -austritt ist entsprechend Fig. 1 mit 3' bzw. 4' bezeichnet, ebenso wie der Eintritt des flüssigen Erdgases mit 5' und der Austritt des gasförmigen überhitzten Erdgases entsprechend Fig. 1 mit 6' bzw. 16' bezeichnet ist. Der der Fig. 1 entsprechende Teilmengenkreislauf 11 ist in Fig. 2 mit »B« bezeichnet. Das Propan wird bei diesem Kreislauf über eine Leitung 11', eine Pumpe 12' und einen Tauchflammenverdampfer 13' sowie über eine Leitung 14' dem Erdgasverdampfer 22 zugeführt.
  • Der zusätzliche Propankreislauf 111 nach Fig. 1 ist in Fig.2 mit »C« bezeichnet. Er führt vom Tauchflammenverdampfer 13' über eine Leitung 24 zu einem Erdgasüberhitzer 25 und über den Erdgasverdampfer 22, dem Propansammler 23, die Leitung 11', die Pumpe 12'zurück zum Tauchflammenverdampfer 13'.
  • Das Wasser des Tauchflammenverdampfers 13' kann über einen weiteren mit »D« bezeichneten Kreislauf geführt und ggf. von Abgas aus einem Kraftwerk, dessen Eintritt mit 26 bezeichnet ist, in einem Abgaskühler 27 vorgewärmt sein. Der Brenner 28 des Tauchflammenverdampfers 13' kann von Erdgas über die Leitung 29 beaufschlagt sein. Die Wasserzufuhr zum Tauchflammenverdampfer 13' ist mit 30 bezeichnet.
  • Die Regelung der Anlage erfolgt dabei in Verbindung mit Fig. 1 wie folgt: Je nach Wassertemperatur am Meerwassereinlauf 3 wird über entsprechende Regler die zusätzliche Wärmezufuhr über den Kreislauf 11 bei der Wärmequelle 13 geregelt. Die Teilmenge des Kreislaufes 11 kann von 0-100% gefahren werden, d. h. der Kreislauf 11 kann abgeschaltet sein (0%) oder die gesamte Propanmenge, auch die des Kreislaufes I; über die Sekundärwärmequelle fördern (100%). Dabei wird zusätzlich die Abgabetemperatur des vergasten Erdgases bei 6 gemessen und ggf. der zusätzliche Kreislauf 111 zugeschaltet, um bei 16 die erforderliche Erdgastemperatur zu erhalten.
  • Diese Regelung ist grundsätzlich beim Ausführungsbeispiel nach Fig. 2 die gleiche, dort können durch die Parallelschaltung von mindestens zwei meerwasserbeheizten Propan-Verdampfern größere Mengen umgesetzt werden. Auch kann bei Ausfall eines Gerätes oder bei Vereisung durch entsprechende Maßnahmen ein Rückfluß von erwärmten Propan durch diese Verdampfer und damit die Enteisung erreicht werden. Je nach Anfall von Kraftwerk-Abgasen im Kreislauf »D« kann der Brenner 28 vollständig abgeschaltet sein oder aber mit geringfügigem Überschuß gefahren werden.
  • Neben den paarweise gefahrenen meerwasserbeaufschlagten Propan-Verdampfern können noch weitere Verdampfer ebenso wie weitere Überhitzer für das Erdgas in vergleichsweiser Schaltung vorgesehen sein. Auch ist die Erfindung nicht auf eine bestimmte zusätzliche Sekundärenergiequelle beschränkt. Hier können je nach Standort die ortsüblichen Zusatzenergiequellen herangezogen werden.

Claims (11)

1. Verfahren zur Rückverdampfung von flüssigem Erdgas, unter Einsatz eines Wärmeübertragungsmediums, welches in einem geschlossenen, einen Wärmespender, insbesondere einen meerwasserbeaufschlagten Wärmetauscher und einen Erdgasverdampfer enthaltenden ersten Kreislauf und einem zweiten im Zwangsumlauf geführten Teilkreislauf mit einer weiteren Energiezufuhr geführt ist, dadurch gekennzeichnet, daß das Wärmeübertragungsmedium im ersten Teilkreislauf zwischen dem Meerwasser-Wärmetauscher und dem Erdgasverdampfer im Naturumlauf geführt wird und im zweiten Teilkreislauf als flüssige Phase einem weiteren Wärmetauscher als Sekundärwärmequelle und dem Erdgasverdampfer bei zum ersten Teilkreislauf gleichem Druck im Erdgasverdampfer zugeführt wird, wobei eine Regelung der Teilmenge über die Meerwassereintrittstemperatur erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß dem Erdgasverdampfer ein Erdgasüberhitzer nachgeschaltet wird, der von einem weiteren, unabhängigen Wärmeübertragungsmediumkreislauf mit zusätzlicher Energiezufuhr beaufschlagt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß der Wärmeübertragungsmediumkreislauf des Erdgasüberhitzers bei einem höheren Druckniveau betrieben wird als demjenigen im Erdgasverdampfer.
4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Energiezufuhr zu dem zweiten Teilkreislauf und/ oder zum zusätzlichen Kreislauf des Wärmeübertragungsmediums über eine Sekundärwärmequelle erfolgt.
5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das flüssige Erdgas in Rohrbündelwärmetauschern ein- oder zweistufig vom Wärmeübertragungsmedium verdampft wird.
6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß als Sekundärwärmequelle ein Tauchflammenverdampfer und/oder das Abgas aus einem Kraftwerk eingesetzt wird.
7. Anlage zur Durchführung des Verfahrens nach Anspruch 1 zur Rückverdampfung von flüssigem Erdgas unter Einsatz eines im Kreislauf geführten Wärmeübertragungsmediums, gekennzeichnet durch wenigstens einen vom Meerwasser beaufschlagten Wärmetauscher (8 bzw. 21) als Verdampfer des Wärmeübertragungsmediums sowie einen in dessen Kreislauf (1, 11 bzw. A) angeordneten Wärmetauscher als Erdgasverdampfer (2 bzw. 22) und einen dem Erdgasverdampfer zu- bzw. nachgeordneten Wärmetauschermedium-Sammler (9 bzw. 23) mit einem ersten Teilkreislauf (1) und einem zweiten Teilkreislauf (11) und einer Regelung zur Regelung der Teilmenge im zweiten Teilkreislauf (11) über die Meerwassereintrittstemperatur.
8. Anlage nach Anspruch 7, dadurch gekennzeichnet, daß in Richtung des Erdgasdurchflusses einem ersten Wärmetauscher (2 bzw. 22) ein weiterer Wärmetauscher als Erdgasüberhitzer (15 bzw. 25) nachgeschaltet ist, wobei die Wärmetauscher (2,15 bzw. 22, 25) sowie der Sammler (23) mit den weiteren Wärmezuführeinrichtungen (13) in den Kreisläufen (11, 111 bzw. B, C) zusammengeschaltet sind.
9. Anlage nach Anspruch 8, dadurch gekennzeichnet, daß als weitere Wärmezuführeinrichtungen für das Wärmeübertragungsmedium Tauchflammenverdampfer (13) vorgesehen und diese mit Erdgas beheizt sind.
10. Anlage nach Anspruch 9, dadurch gekennzeichnet, daß die Tauchflammenverdampfer (13) fremdbeheizt bzw. im Kreislauf (D) über einen Abgaskühler (27) eines Wärmekraftwerkes geführt sind.
11. Anlage nach Anspruch 8, 9 oder 10, dadurch gekennzeichnet, daß eine Regelung, die bei Absinken der zulässigen Seewassertemperatur den Wärmeübertragungsmittelkreislauf (11 bzw. B) über die Sekundärwärmequelle (13) zuschaltet, wobei der Teilkreislauf (11 bzw. B) über das von einer Kraftwerksabwärme beheizte Warmwasser des Tauchflammenverdampfers (13) geführt und bei zusätzlichem Energiebedarf einen Brenner (28) des Tauchflammenverdampfers (13) zuschaltet bzw. den weiteren zusätzlichen Wärmeübertragungsmittelkreislauf (111 bzw. C) zum Überhitzer (15 bzw. 25) einschaltet.
EP19810104348 1980-09-19 1981-06-05 Verfahren und Anlage zur Rückverdampfung von flüssigem Erdgas Expired EP0048316B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3035349 1980-09-19
DE3035349A DE3035349C2 (de) 1980-09-19 1980-09-19 Anlage zur Verdampfung von flüssigem Erdgas

Publications (2)

Publication Number Publication Date
EP0048316A1 EP0048316A1 (de) 1982-03-31
EP0048316B1 true EP0048316B1 (de) 1985-02-13

Family

ID=6112350

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19810104348 Expired EP0048316B1 (de) 1980-09-19 1981-06-05 Verfahren und Anlage zur Rückverdampfung von flüssigem Erdgas

Country Status (3)

Country Link
EP (1) EP0048316B1 (de)
JP (1) JPS5783798A (de)
DE (2) DE3035349C2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017802A1 (de) * 2014-12-02 2016-06-02 Linde Aktiengesellschaft Effektivere Arbeitsgewinnung bei der Erwärmung kryogener Flüssigkeiten

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149599U (ja) * 1984-03-15 1985-10-04 東京ガス・エンジニアリング株式会社 低温液化ガス気化装置
US7293600B2 (en) 2002-02-27 2007-11-13 Excelerate Energy Limited Parnership Apparatus for the regasification of LNG onboard a carrier
ES2333301T3 (es) 2002-03-29 2010-02-19 Excelerate Energy Limited Partnership Buque metanero mejorado.
US6598408B1 (en) 2002-03-29 2003-07-29 El Paso Corporation Method and apparatus for transporting LNG
US6644041B1 (en) * 2002-06-03 2003-11-11 Volker Eyermann System in process for the vaporization of liquefied natural gas
WO2004031644A1 (en) * 2002-10-04 2004-04-15 Hamworthy Kse A.S. Regasification system and method
WO2005056377A2 (en) 2003-08-12 2005-06-23 Excelerate Energy Limited Partnership Shipboard regasification for lng carriers with alternate propulsion plants
JP4677338B2 (ja) * 2005-12-15 2011-04-27 石油コンビナート高度統合運営技術研究組合 冷熱供給方法
US8069677B2 (en) 2006-03-15 2011-12-06 Woodside Energy Ltd. Regasification of LNG using ambient air and supplemental heat
US20070214805A1 (en) 2006-03-15 2007-09-20 Macmillan Adrian Armstrong Onboard Regasification of LNG Using Ambient Air
ES2328619T3 (es) * 2006-05-12 2009-11-16 BLACK & VEATCH CORPORATION Sistema y metodo para vaporizar liquidos criogenicos usando un refrigerante intermedio en circulacion natural.
EP2309165A1 (de) * 2009-10-09 2011-04-13 Cryostar SAS Umwandlung von verflüssigtem Erdgas
NO331474B1 (no) 2009-11-13 2012-01-09 Hamworthy Gas Systems As Installasjon for gjengassing av LNG
AU2011255490B2 (en) 2010-05-20 2015-07-23 Excelerate Energy Limited Partnership Systems and methods for treatment of LNG cargo tanks
JP5750251B2 (ja) * 2010-09-17 2015-07-15 中国電力株式会社 Lng気化設備
AU2012216352B2 (en) 2012-08-22 2015-02-12 Woodside Energy Technologies Pty Ltd Modular LNG production facility
CN110382347B (zh) * 2017-03-06 2021-10-29 株式会社神户制钢所 海上浮动式设施
DE102017007009A1 (de) 2017-07-25 2019-01-31 Eco ice Kälte GmbH Kälteversorgungsanlage, gekoppelt an die Regasifizierungseinrichtung eines Liquified Natural Gas Terminals

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU37293A1 (de) * 1958-06-11
DE2751642C3 (de) * 1977-11-17 1981-10-29 Borsig Gmbh, 1000 Berlin Verfahren zur Umwandlung einer tiefsiedenden Flüssigkeit, insbesondere unter Atmosphärendruck stehendem Erdgas oder Methan, in den gasförmigen Zustand mit anschließender Erwärmung
GB2018967B (en) * 1978-03-28 1982-08-18 Osaka Gas Co Ltd Apparatus and process for vaporizing liquefied natural gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014017802A1 (de) * 2014-12-02 2016-06-02 Linde Aktiengesellschaft Effektivere Arbeitsgewinnung bei der Erwärmung kryogener Flüssigkeiten

Also Published As

Publication number Publication date
EP0048316A1 (de) 1982-03-31
DE3168877D1 (en) 1985-03-28
DE3035349C2 (de) 1985-06-27
JPS5783798A (en) 1982-05-25
DE3035349A1 (de) 1982-04-08

Similar Documents

Publication Publication Date Title
EP0048316B1 (de) Verfahren und Anlage zur Rückverdampfung von flüssigem Erdgas
EP0561220B1 (de) Verfahren zum Betreiben einer Anlage zur Dampferzeugung und Dampferzeugeranlage
DE2632777C2 (de) Dampfkraftanlage mit Einrichtung zur Spitzenlastdeckung
DE1758221B1 (de) Vorrichtung zum erhitzen eines in einem rohrleitungssystem durch einen ofen gefuehrten mediums
EP0099501B1 (de) Verfahren zum Verändern der Abgabe von elektrischer Energie eines Heizkraftwerkes ohne Beeinflussung der Wärmeabgabe an angeschlossene Wärmeverbraucher
EP2442061A2 (de) Vorrichtung mit einem Wärmetauscher und Verfahren zum Betreiben eines Wärmetauschers einer Dampfzeugungsanlage
EP0149002A1 (de) Einrichtung zum Regeln einer Verfahrensgrösse eines strömenden Mediums
DE2751642C3 (de) Verfahren zur Umwandlung einer tiefsiedenden Flüssigkeit, insbesondere unter Atmosphärendruck stehendem Erdgas oder Methan, in den gasförmigen Zustand mit anschließender Erwärmung
DE2544799B2 (de) Gasbeheizter Dampferzeuger
DE1957217C3 (de) Dampfkraftanlage
DE1214701B (de) Anordnung einer Dampfkraftanlage
EP0232746A2 (de) Verfahren und Einrichtung zur energiesparenden automatischen Einhaltung der Konzentration von verdampfenden Kältemittelgemischen
DE2536760A1 (de) Vorrichtung zur kondensation des kuehlmittels einer waermekraftanlage mit hilfe von umgebungsluft
CH663268A5 (de) Heizanlage an einem fernheizsystem.
DE341457C (de) Verfahren zur Nutzbarmachung der durch die adiabatische Kompression erzeugten Waermehoeherer Temperatur bei Kompressionskaeltemaschinen
DE102013204396A1 (de) Kondensatvorwärmer für einen Abhitzedampferzeuger
DE964502C (de) Dampfkraftanlage mit Vorwaermung durch Anzapfdampf und durch Rauchgase
DE10348536B4 (de) Anordnung zur Erwärmung von Brauchwasser
DE962080C (de) Dampfkesselanlage mit mehreren Abhitzekesseln
EP3472515B1 (de) Vertikaler abhitzedampferzeuger
DE1753420C (de) Heizanlage
DE1815969B2 (de) Ueberkritischer zwangsdurchlaufdampferzeuger
DE102012223782A1 (de) System und Verfahren zum Bereiten von warmer Flüssigkeit
DE1551269C (de) Wärmekraftanlage mit einem durch einen Reaktor geheizten Wärmetauscher
CH382189A (de) Verfahren und Einrichtung zur mehrstufigen Speisewasservorwärmung mittels aus verschiedenen Stufen der Dampfturbine einer Dampfkraftanlage entnommenen Anzapfdampfes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811026

AK Designated contracting states

Designated state(s): BE DE FR GB LU NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UHDE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Designated state(s): BE DE FR GB LU NL

REF Corresponds to:

Ref document number: 3168877

Country of ref document: DE

Date of ref document: 19850328

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19850630

Year of fee payment: 5

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT, WIESBADEN

Effective date: 19851113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860218

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19860630

BERE Be: lapsed

Owner name: UHDE G.M.B.H.

Effective date: 19860630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19870101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870227

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

RIN2 Information on inventor provided after grant (corrected)

Inventor name: BAUER, LOTHAR, ING.-GRAD.