EP0048316A1 - Verfahren und Anlage zur Rückverdampfung von flüssigem Erdgas - Google Patents
Verfahren und Anlage zur Rückverdampfung von flüssigem Erdgas Download PDFInfo
- Publication number
- EP0048316A1 EP0048316A1 EP81104348A EP81104348A EP0048316A1 EP 0048316 A1 EP0048316 A1 EP 0048316A1 EP 81104348 A EP81104348 A EP 81104348A EP 81104348 A EP81104348 A EP 81104348A EP 0048316 A1 EP0048316 A1 EP 0048316A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- natural gas
- circuit
- heat
- transfer medium
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/032—Hydrocarbons
- F17C2221/033—Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
- F17C2223/0161—Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/035—High pressure (>10 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/036—Very high pressure (>80 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0302—Heat exchange with the fluid by heating
- F17C2227/0309—Heat exchange with the fluid by heating using another fluid
- F17C2227/0316—Water heating
- F17C2227/0318—Water heating using seawater
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0388—Localisation of heat exchange separate
- F17C2227/0393—Localisation of heat exchange separate using a vaporiser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/0636—Flow or movement of content
Definitions
- the invention is directed to a process for the re-evaporation of liquid natural gas, using a heat transfer medium, which is conducted in a closed, via a first partial circuit guided by a heat donor, in particular seawater-loaded heat exchanger and a second partial circuit with a further energy supply, and to a system for Implementation of this procedure.
- a heat transfer medium is condensed in two pressure stages, a main stream evaporating in an evaporator exposed to sea water and condensed with heat being given off to a heat exchanger through which natural gas flows, and a secondary stream of the heat transfer medium branching off from this main stream from a pressure booster brought to a higher pressure level and releases its energy in a natural gas superheater and then brought back to the pressure of the main stream in a pressure reducing device and supplied to it.
- the known method has the particular disadvantage that it cannot be adapted to the respective site conditions of such a system to the desired extent and, in particular, can react very clumsily to different temperatures of the evaporator exposed to sea water.
- pressure booster and pressure reduction systems consume energy that is lost in the overall process.
- This object is achieved in a method of the type mentioned above in that the heat transfer medium in the first sub-circuit between the natural gas evaporator and the heat exchanger in natural circulation and in the second sub-circuit between the heat exchanger and natural gas evaporator in natural or forced circulation at the same pressure level as the first sub-circuit is such that in the natural gas evaporator and in the heat exchanger have the same pressures for the two subsets of the heat transfer medium.
- the overall process can be operated without external heat supply, i.e. exclusively with sea water if its system inlet temperature is correspondingly high.
- the sea water temperature drops in winter, additional energy can be supplied via a partial flow, the partial flow cycles can usually be maintained over very wide areas in natural circulation. This means that the external energy can be adapted to the individual environmental conditions.
- the invention provides that the natural gas evaporator is followed by a superheater, which is supplied with additional energy by a further, independent heat transfer medium circuit, and in particular it can also be provided that the heat transfer medium circuit of the superheater is operated at a higher pressure level than that Partial cycles of the natural gas evaporator.
- the energy supply to the second sub-circuit and / or to the additional circuit of the heat transfer medium takes place via a secondary heat source, it being possible for the liquid natural gas to be evaporated in one or two stages from the heat transfer medium in tube bundle heat exchangers, where In a further embodiment it can be provided that an immersion flame evaporator and / or the exhaust gas from a power plant is used as the secondary heat source.
- the invention also provides a system for performing the above-described method, which is characterized in particular by two heat exchangers acted upon by sea water as evaporators of the heat transfer medium and heat exchangers arranged in its circuit as natural gas evaporators and a heat exchanger medium collector.
- This inventive design of the system has the advantage that large amounts of sea water can be used, and the total volume of the partial flows of the heat transfer medium can be kept very large, so that an overall very high system performance can be achieved.
- a wide range of sea water temperatures can be achieved be operated without the need for an external energy supply if the sea water has a correspondingly high inlet temperature into the system.
- a first heat exchanger is followed by a further heat exchanger as the natural gas superheater, the heat exchangers and the collector of the heat transfer medium being connected to the further heat supply devices in the circuits.
- immersion flame evaporators are provided as further heat supply devices for the heat transfer medium and these are heated with natural gas, or that the immersion flame evaporators are heated externally or in a circuit via an exhaust gas cooler of a thermal power plant, which can also be provided according to the invention .
- a heat transfer medium preferably propane (hereinafter only the heat transfer medium is referred to as propane) is conducted in a first sub-circuit I between a propane evaporator 1 exposed to sea water and a natural gas evaporator 2.
- propane a heat transfer medium
- the seawater enters the propane evaporator 1 at 3 and leaves it at 4.
- the natural gas enters the natural gas evaporator at 5 and leaves it via line 6.
- liquid natural gas is evaporated by the sea water and exits the gas dome 8 of the propane evaporator 1 via a line 7 and enters the natural gas evaporator 2 at the top.
- the propane condenses with heat being given off at the evaporator coils of the natural gas evaporator 2 and is precipitated as liquid propane in the sump 9 of the natural gas evaporator 2, from where it is fed back to the propane evaporator 1 in liquid form via line 10, with the circuit I being closed again.
- a further propane circuit II is provided in parallel with the former.
- a partial flow of the propane is withdrawn from the propane evaporator 1 via a line 11 and optionally to a heat via a pump 12, in particular to overcome the pipeline losses.
- source e.g. a submersible flame evaporator 13, passed there, evaporated and fed to the natural gas evaporator 2 via a line 14, condensed there and, as condensate, passed again to the propane evaporator 1 via line 10 while closing the circuit II.
- Circles I and II can be operated in natural circulation, should large pipe friction losses or other system losses occur, both circuits can be run at the same pressure level in forced circulation.
- Fig. 1 is a natural gas superheater 15 with an earth shown gas line 16, which is also acted upon by propane.
- This further propane circuit is designated III and leads from the natural gas superheater 15 via a line 17, possibly via a pump 18 to a further heat source, for example an immersion flame evaporator 19, and a line 20 back to the natural gas superheater.
- the heat source 19 and the heat source 13 can be identical or can be provided within the same component.
- both the heat exchanger coils of the heat source 19 and that of the heat source 13 can be arranged within the same basin.
- the higher energy level required for overheating is achieved by operating circuit III at a higher total pressure than circuits I and II.
- a modified process control is shown as a schematic diagram.
- capital letters are used in FIG. 2 to designate the circuits. So corresponds to the refrigerant circuit I in Fig. 1, two propane circuits "A" and 'R' ", the propane via seawater-heated propane evaporators 21 and 21 'and a Erdgasverdam fer 22 and a propane collector 23 is performed.
- the circuit lines of the circuits "A" and "A"' are not specified.
- the seawater entry and exit 1 is denoted by 3 'or 4' in accordance with FIG. 1, just as the entry of the liquid natural gas is denoted by 5 'and the outlet of the gaseous superheated natural gas in accordance with FIG. 1 by 6' or 16 '.
- the subset circuit II corresponding to FIG. 1 is designated "B" in FIG. 2.
- the propane is supplied to the natural gas evaporator 22 via a line 11 ', a pump 12' and a submerged flame evaporator 13 'and via a line 14'.
- the additional propane circuit III according to FIG. 1 is designated "C" in FIG. 2. It leads from the immersion flame evaporator 13 'via a line 24 to a natural gas superheater 25 and via the natural gas evaporator 22, the propane collector 23, the line 11', the pump 12 'back to the immersion flame evaporator 13.
- the system is controlled in conjunction with 1 as follows: Depending on the water temperature at the seawater inlet 3, the additional heat supply via the circuit II at the heat source 13 is regulated by means of appropriate regulators.
- the part of circuit II can be operated from 0 - 100%, ie circuit II can be switched off (0%) or the entire propane quantity, including that of circuit I, can be pumped via the secondary heat source (100%).
- the discharge temperature of the gasified natural gas is measured at 6 and, if necessary, the additional circuit III is switched on in order to obtain the required natural gas temperature at 16.
- This regulation is fundamentally the same in the exemplary embodiment according to FIG. 2, where larger quantities can be converted by connecting at least two propane evaporators heated by sea water. In the event of a device failure or icing, appropriate measures can be taken to return heated propane through these evaporators and thus defrost. Depending on the generation of power plant exhaust gases in the circuit "D", the burner 28 can be switched off completely or can be operated with a slight excess.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
- Die Erfindung richtet sich auf ein Verfahren zur Rückverdampfung von flüssigem Erdgas, unter Einatz eines Wärmeübertragungsmediums, welches in einem geschlossenen, über einen von einem Wärmespender, insbesondere meerwasserbeaufschlagten Wärmetauscher geführten ersten Teilkreislauf und einem zweiten Teilkreislauf mit einer weiteren Energiezufuhr geführt ist sowie auf eine Anlage zur Durchführung dieses Verfahrens.
- Bei einem bekannten Verfahren (DE-AS 27 51 642) wird ein Wärmeübertragungsmedium in zwei Druckstufen kondensiert, wobei ein Hauptstrom in einem meerwasserbeaufschlagten Verdampfer verdampft und unter Wärmeabgabe an einen vom Erdgas durchströmten Wärmetauscher kondensiert und ein von diesem Hauptstrom abzweigender Nebenstrom des Wärmeübertragungsmediums von einer Druckerhöhungseinrichtung auf ein höheres Druckniveau gebracht und seine Energie in einem Erdgasüberhitzer abgibt und anschließend in einer Druckminderungseinrichtung wieder auf den Druck des Hauptstromes gebracht und diesem zugeführt wird. Das bekannte Verfahren hat insbesondere den Nachteil, daß es nicht im gewünschten Maße den jeweiligen Standortbedingungen einer solchen Anlage anpaßbar ist und insbesondere sehr schwerfällig auf unterschiedliche Temperaturen des meerwasserbeaufschlagten Verdampfers reagieren kann. Darüber hinaus verbrauchen Druckerhöhungs- und Druckerniedrigungsanlagen Energie, die dem Gesamtprozeß verlorengeht.
- Demgegenüber ist es Aufgabe der Erfindung, ein Verfahren sowie eine Anlage zur Durchführung eines eingangs bezeichneten Verfahrens anzugeben, bei dem eine Anpassung an Meerwassertemperaturschwankungen in einfacher Weise möglich und die Zufuhr von Fremdenergie auf ein Mindestmaß reduzierbar ist.
- Diese Aufgabe wird bei einem Verfahren der eingangs bezeichneten Art dadurch gelöst, daß das Wärmeübertragungsmedium im ersten Teilkreislauf zwischen Erdgasverdampfer und Wärmetauscher im Naturumlauf und im zweiten Teilkreislauf zwischen Wärmetauscher und Erdgasverdampfer im Natur- oder Zwangsumlauf bei zum ersten Teilkreislauf gleichem Druckniveau derart geführt ist, daß in dem Erdgasverdampfer und in dem Wärmetauscher für die beiden Teilmengen des Wärmeübertragungsmediums gleiche Drücke herrschen.
- Durch das Vorsehen von Teilkreisläufen, bereits im Bereich des Erdgasverdampfers, mit neben der Möglichkeit der bekannten Wärmezufuhr durch Meerwasser gesonderter Wärmezufuhr in einem Teilkreislauf in gleichem Druckniveau, kann je nach Außenbedingungen der Gesamtprozeß ohne externe Wärmezufuhr, d.h. ausschließlich mit Meerwasser betrieben werden, wenn dessen Anlageneinlauftemperatur entsprechend hoch ist. Wenn beispielsweise jedoch im Winter die Meerwassertemperatur absinkt, kann über einen Teilstrom zusätzliche Energie zugeführt werden, wobei die Teilstromkreisläufe in der Regel über sehr weite Bereiche im Naturumlauf aufrechterhalten werden können. Dies bedeutet, daß die Fremdenergie jeweils den individuellen Umgebungsbedingungen angepaßt werden kann.
- In Ausgestaltung sieht die Erfindung vor, daß dem Erdgasverdampfer ein überhitzer nachgeschaltet wird, der von einem weiteren, unabhängigen Wärmeübertragungsmediumkreislauf mit zusätzlicher Energiezufuhr beaufschlagt wird, wobei insbesondere auch vorgesehen sein kann, daß der Wärmeübertragungsmediumkreislauf des Überhitzers bei einem höheren Druckniveau betrieben wird als der oder die Teilmengenkreisläufe des Erdgasverdampfers.
- Aus der eingangs erwähnten DE-OS 27 51 642 ist das Vorsehen eines Überhitzers bekannt, der von einem Wärmeübertragungsmedium mit höherem Druck beaufschlagt ist. Wesentlich für die Erfindung ist im vorliegenden Fall, daß der Uberhitzungskreislauf des Wärmeübertragungsmediums in sich ge. schlossen auf einem höheren Druckniveau betrieben wird, so daß in einem solchen Kreislauf Druckerhöhungs- bzw. Druckminderungsanlagen entbehrlich sind, die das Wärmeübertragungsmedium den Drücken der Teilkreisläufe der vorgeschalteten Prozesse anpassen müßten. Damit ist eine weitere, gegenüber der bekannten Verfahrensweise wirtschaftlichere Lösung des Prozeßablaufes gegeben.
- Nach der Erfindung kann auch vorgesehen sein, daß die Energiezufuhr zu dem zweiten Teilkreislauf und/oder zum zusätzlichen Kreislauf des Wärmeübertragungsmediums über eine Sekundärwärmequelle erfolgt, wobei es vorteilhaft sein kann, wenn das flüssige Erdgas in Rohrbündelwärmetauschern ein- oder zweistufig vom Wärmeübertragungsmedium verdampft wird, wobei in weiterer Ausgestaltung vorgesehen sein kann, daß als Sekundärwärmequelle ein Tauchflammenverdampfer und/oder das Abgas aus einem Kraftwerk eingesetzt wird.
- Die Erfindung sieht auch eine Anlage zur Durchführung des vorbeschriebenen Verfahrens vor, welches sich insbesondere durch zwei von Meerwasser beaufschlagte Wärmetauscher als Verdampfer des Wärmeübertragungsmediums sowie in dessen Kreislauf angeordnete Wärmetauscher als Erdgasverdampfer sowie einen Wärmetauschermedium-Sammler auszeichnet.
- Diese erfindungsgemäße Ausgestaltung der Anlage hat den Vorteil, daß große Mengen Meerwasser einsetzbar sind, ebenso wie das Gesamtvolumen der Teilströme des Wärmeübertragungsmediums sehr groß gehalten werden kann, so daß sich eine insgesamt sehr große Anlagenleistung erreichen läßt. Gleichzeitig kann durch entsprechende Steuerung des Natur- bzw. Zwangsumlaufes bei der gewählten Anordnung ein breiter Bereich von Meerwassertemperaturen gefahren werden, ohne daß es einer externen Energiezufuhr bedarf, wenn das Meerwasser eine entsprechend hohe Eintrittstemperatur in die Anlage aufweist. Es ist auch möglich, z.B. bei Frostgefahr, einen Wärmetauscher wärme- übertragungsmediumseitig abzuschalten, wobei das Meerwasser weiterströmt. Dadurch wird das Wärmeübertragungsmedium in den Sammler verlagert und der Wärmetauscher entsprechend vom Meerwasser erwärmt.
- In Ausgestaltung ist nach der Erfindung vorgesehen, daß in Richtung des Erdgasdurchflusses einem ersten Wärmetauscher ein weiterer Wärmetauscher als Erdgasüberhitzer nachgeschaltet ist, wobei die Wärmetauscher sowie der Sammler des Wärmeübertragungsmediums mit den weiteren Wärmezuführeinrihtungen in den Kreisläufen zusammengeschaltet sind.
- Nach der Erfindung kann auch vorgesehen sein, daß als weitere Wärmezuführeinrichtungen für das Wärmeübertragungsmedium Tauchflammenverdampfer vorgesehen und diese mit Erdgas beheizt sind, oder aber daß die Tauchflammenverdampfer fremdbeheizt bzw. im Kreislauf über einen Abgaskühler eines Wärmekraftwerkes geführt sind, was nach der Erfindung auch vorgesehen sein kann.
- Zur Steuerung der Gesamtanlage ist eine Regelung, die bei Absinken der zulässigen Seewassertemperatur den Wärmeübertragungsmittelkreislauf über die Sekundärwärmequelle zuschaltet, wobei der Teilkreislauf über das von einer Kraftwerksabwärme beheizte Warmwasser des Tauchflammenverdampfers geführt und bei zusätzlichem Energiebedarf einen Brenner des Tauchflammenverdampfers zuschaltet bzw. den weiteren zusätzlichen Wärmeübertragungsmittelkreislauf zum Überhitzer einschaltet.
- Die Erfindung ist nachstehend anhand der Zeichnung-beispielsweise näher erläutert. Diese zeigt in
- Fig. 1 ein Prinzipschaltbild des erfindungsgemäßen Verfahrens sowie in
- Fig. 2 ein Prinzipschaltbild einer Anlage zur Durchführung des Verfahrens nach der Erfindung in einem bevorzugten Ausführungsbeispiel.
- Nach dem in Fig. 1 dargestellten Prinzipschaltbild wird ein Wärmeübertragungsmedium, vorzugsweise Propan (im folgenden wird ausschließlich das Wärmeübertragungsmedium als Propan bezeichnet) in einem ersten Teilkreislauf I zwischen einem meerwasserbeaufschlagten Propan-Verdampfer 1 und einen Erdgasverdampfer 2 geführt. Das Meerwasser tritt bei 3 in den Propan-Verdampfer 1 ein und verläßt diesen bei 4. Das Erdgas tritt in den Erdgasverdampfer bei 5 ein und verläßt ihn über die Leitung 6. Das im Propan-Verdampfer 1 zunächst noch flüssige Erdgas wird durch das Meerwasser verdampft und tritt über eine Leitung 7 aus dem Gasdom 8 des Propan-Verdampfers 1 aus und in den Erdgasverdampfer 2 oben ein. Dort kondensiert das Propan unter Wärmeabgabe an den Verdampferschlangen des Erdgasverdampfers 2 und schlägt sich als flüssiges Propan im Sumpf 9 des Erdgasverdampfers 2 nieder, von wo es über eine Leitung 10 flüssig dem Propan-Verdampfer 1 unter Schließung des Kreises I wieder zugeführt wird.
- Neben dem Propankreislauf I ist ein weiterer Propankreislauf II parallel zum ersteren vorgesehen. Ein Teilstrom des Propans wird über eine Leitung 11 dem Propan-Verdampfer 1 entzogen und ggf. über eine Pumpe 12, insbesondere zur überwindung der Rohrleitungsverluste, weiter zu einer Wär. mequelle, z.B. einem Tauchflammenverdampfer 13, geführt, dort verdampft und über eine Leitung 14 dem Erdgasverdampfer 2 zugeführt, dort kondensiert und als Kondensat über die Leitung 10 unter Schließung des Kreises II erneut dem Propan-Verdampfer 1 aufgegeben.
- Bie Kreisläufe I und II können im Naturumlauf gefahren werden, sollten große Rohrreibungsverluste oder sonstige Systemverluste auftreten, können beide Kreisläufe im Zwangsumlauf jedoch auf gleichem Druckniveau geführt werden.
- In Fig. 1 ist noch ein Erdgasüberhitzer 15 mit einer Erdgasleitung 16 dargestellt, der ebenfalls von Propan beaufschlagt ist. Dieser weitere Propankreislauf ist mit III bezeichnet und führt von dem Erdgasüberhitzer 15 über eine Leitung 17, ggf. über eine Pumpe 18 zu einer weiteren Wärmequelle, z.B. einem Tauchflammenverdampfer 19, und eine Leitung 20 zurück zum Erdgasüberhitzer. Die Wärmequelle 19 und die Wärmequelle 13 können identisch bzw. innerhalb eines gleichen Bauteils vorgesehen sein. So können sowohl die Wärmetauscherschlangen der Wärmequelle 19 als auch die der Wärmequelle 13 innerhalb eines gleichen Beckens angeordnet sein. Das zur überhitzung erforderliche höhere Energieniveau wird dadurch erreicht, daß der Kreislauf III bei einem höheren Gesamtdruck betrieben wird als die Kreisläufe I und II.
- In Fig. 2 ist gegenüber der Anordnung nach Fig. 1 eine modifizierte Prozeßführung als Prinzipskizze dargestellt. Zur besseren Identifizierung der unterschiedlichen Kältemittel-Kreisläufe sind in Fig. 2 zur Bezeichnung der Kreisläufe Großbuchstaben herangezogen. So entspricht dem Kältemittel-Kreislauf I in Fig. 1 zwei Propankreisläufen "A" und'R'", wobei das Propan über meerwasserbeheizte Prpan-Verdampfer 21 und 21' und einen Erdgasverdam fer 22 sowie einen Propansammler 23 geführt ist.
- Die Kreislaufleitungen der Kreisläufe "A" und "A"' sind nicht näher bezeichnet. Der Meerwassereintritt- und -austritt ist entsprechend Fig. 1 mit 3' bzw. 4' bezeichnet, ebenso wie der Eintritt des flüssigen Erdgases mit 5' und der Austritt des gasförmigen überhitzten Erdgases entsprechend Fig. 1 mit 6' bzw. 16' bezeichnet ist. Der der Fig. 1 entsprechende Teilmengenkreislauf II ist in Fig. 2 mit "B" bezeichnet. Das Propan wird bei diesem Kreislauf über eine Leitung 11', eine Pumpe 12'und einen Tauchflammenverdampfer 13' sowie über eine Leitung 14' dem Erdgasverdampfer 22 zugeführt.
- Der zusätzliche Propankreislauf III nach Fig. 1 ist in Fig. 2 mit "C" bezeichnet. Er führt vom Tauchflammenverdampfer 13' über eine Leitung 24 zu einem Erdgasüberhitzer 25 und über den Erdgasverdampfer 22, dem Propansammler 23, die Leitung 11', die Pumpe 12' zurück zum Tauchflammenverdampfer 13.
- Das Wasser des Tauchflammenvenämpfers 13' kann über einen weiteren mit "D" bezeichneten Knislauf geführt und ggf. von Abgas aus einem Kraftwerk, dessen Eintritt mit 26 bezeichnet ist, in einem Abgaskühler 27 vorgewärmt sein. Der Brenner 28 des Tauchflammenverdampfers 13' kann von Erdgas über die Leitung 29 beaufschlagt sein. Die Wasserzufuhr zum Tauchflammenverdampfer 13' ist mit 30 bezeichnet.
- Die Regelung der Anlage erfolgt dabei in Verbindung mit Fig. 1 wie folgt: Je nach Wassertemperatur am Meerwassereinlauf 3 wird über entsprechende Regler die zusätzliche Wärmezufuhr über den Kreislauf II bei der Wärmequelle 13 geregelt. Die Teilmenge des Kreislaufes II kann von 0 - 100 % gefahren werden, d.h. der Kreislauf II kann abgeschaltet sein (0 %) oder die gesamte Propanmenge, auch die des Kreislaufes I, über die Sekundärwärmequelle fördern (100 %). Dabei wird zusätzlich die Abgabetemperatur des vergasten Erdgases bei 6 gemessen und ggf. der zusätzliche Kreislauf III zugeschaltet, um bei 16 die erforderliche Erdgastemperatur zu erhalten.
- Diese Regelung ist grundsätzlich beim Ausführungsbeispiel nach Fig. 2 die gleiche, dort können durch die Parallelschaltung von mindestens zwei meerwasserbeheizten Propan-Verdampfern größere Mengen umgesetzt werden. Auch kann bei Ausfall eines Gerätes oder bei Vereisung durch entsprechende Maßnahmen ein Rückfluß von erwärmtem Propan durch diese Verdampfer und damit die Enteisung erreicht werden. Je nach Anfall von Kraftwerk-Abgasen im Kreislauf "D" kann der Brenner 28 vollständig abgeschaltet sein oder aber mit geringfügigem Überschuß gefahren werden.
- Natürlich ist das beschriebene Ausführungsbeispiel noch in vielfacher Hinsicht abzuändern, ohne den Grundgedanken der Erfindung zu verlassen. So können neben den paarweise gefahrenen meerwasserbeaufschlagten Propan-Verdampfern noch weitere Verdampfer ebenso wie weitere überhitzer für das Erdgas in vergleichsweiser Schaltung vorgesehen sein. Auch ist die Erfindung nicht auf eine bestimmte zusätzliche Sekundärenergiequelle beschränkt. Hier können je nach Standort die ortsüblichen Zusatzenergiequellen herangezogen werden.
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3035349 | 1980-09-19 | ||
DE3035349A DE3035349C2 (de) | 1980-09-19 | 1980-09-19 | Anlage zur Verdampfung von flüssigem Erdgas |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0048316A1 true EP0048316A1 (de) | 1982-03-31 |
EP0048316B1 EP0048316B1 (de) | 1985-02-13 |
Family
ID=6112350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19810104348 Expired EP0048316B1 (de) | 1980-09-19 | 1981-06-05 | Verfahren und Anlage zur Rückverdampfung von flüssigem Erdgas |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0048316B1 (de) |
JP (1) | JPS5783798A (de) |
DE (2) | DE3035349C2 (de) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6598408B1 (en) | 2002-03-29 | 2003-07-29 | El Paso Corporation | Method and apparatus for transporting LNG |
US6688114B2 (en) | 2002-03-29 | 2004-02-10 | El Paso Corporation | LNG carrier |
WO2004031644A1 (en) * | 2002-10-04 | 2004-04-15 | Hamworthy Kse A.S. | Regasification system and method |
EP1561068A1 (de) * | 2002-11-14 | 2005-08-10 | Volker W. Eyermann | System und verfahren zur verdampfung von verflüssigtem erdgas |
US7219502B2 (en) | 2003-08-12 | 2007-05-22 | Excelerate Energy Limited Partnership | Shipboard regasification for LNG carriers with alternate propulsion plants |
US7293600B2 (en) | 2002-02-27 | 2007-11-13 | Excelerate Energy Limited Parnership | Apparatus for the regasification of LNG onboard a carrier |
EP1855047A1 (de) * | 2006-05-12 | 2007-11-14 | Black & Veatch Corporation | Vorrichtung und Verfahren zum Verdampfen kryogener Flüssigkeiten unter Zuhilfennahme eines im Naturumlauf gefahrenen Wärmeübertragungsfluids |
WO2011059344A1 (en) * | 2009-11-13 | 2011-05-19 | Hamworthy Gas Systems As | A plant for regasification of lng |
US9919774B2 (en) | 2010-05-20 | 2018-03-20 | Excelerate Energy Limited Partnership | Systems and methods for treatment of LNG cargo tanks |
DE102017007009A1 (de) | 2017-07-25 | 2019-01-31 | Eco ice Kälte GmbH | Kälteversorgungsanlage, gekoppelt an die Regasifizierungseinrichtung eines Liquified Natural Gas Terminals |
CN110382347A (zh) * | 2017-03-06 | 2019-10-25 | 株式会社神户制钢所 | 海上浮动式设施 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60149599U (ja) * | 1984-03-15 | 1985-10-04 | 東京ガス・エンジニアリング株式会社 | 低温液化ガス気化装置 |
JP4677338B2 (ja) * | 2005-12-15 | 2011-04-27 | 石油コンビナート高度統合運営技術研究組合 | 冷熱供給方法 |
US20070214805A1 (en) | 2006-03-15 | 2007-09-20 | Macmillan Adrian Armstrong | Onboard Regasification of LNG Using Ambient Air |
US8069677B2 (en) | 2006-03-15 | 2011-12-06 | Woodside Energy Ltd. | Regasification of LNG using ambient air and supplemental heat |
EP2309165A1 (de) * | 2009-10-09 | 2011-04-13 | Cryostar SAS | Umwandlung von verflüssigtem Erdgas |
JP5750251B2 (ja) * | 2010-09-17 | 2015-07-15 | 中国電力株式会社 | Lng気化設備 |
AU2012216352B2 (en) | 2012-08-22 | 2015-02-12 | Woodside Energy Technologies Pty Ltd | Modular LNG production facility |
DE102014017802A1 (de) * | 2014-12-02 | 2016-06-02 | Linde Aktiengesellschaft | Effektivere Arbeitsgewinnung bei der Erwärmung kryogener Flüssigkeiten |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2975607A (en) * | 1958-06-11 | 1961-03-21 | Conch Int Methane Ltd | Revaporization of liquefied gases |
DE2751642B2 (de) * | 1977-11-17 | 1981-03-19 | Borsig Gmbh, 1000 Berlin | Verfahren zur Umwandlung einer tiefsiedenden Flüssigkeit, insbesondere unter Atmosphärendruck stehendem Erdgas oder Methan, in den gasförmigen Zustand mit anschließender Erwärmung |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2018967B (en) * | 1978-03-28 | 1982-08-18 | Osaka Gas Co Ltd | Apparatus and process for vaporizing liquefied natural gas |
-
1980
- 1980-09-19 DE DE3035349A patent/DE3035349C2/de not_active Expired
-
1981
- 1981-06-05 DE DE8181104348T patent/DE3168877D1/de not_active Expired
- 1981-06-05 EP EP19810104348 patent/EP0048316B1/de not_active Expired
- 1981-09-19 JP JP14703981A patent/JPS5783798A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2975607A (en) * | 1958-06-11 | 1961-03-21 | Conch Int Methane Ltd | Revaporization of liquefied gases |
DE2751642B2 (de) * | 1977-11-17 | 1981-03-19 | Borsig Gmbh, 1000 Berlin | Verfahren zur Umwandlung einer tiefsiedenden Flüssigkeit, insbesondere unter Atmosphärendruck stehendem Erdgas oder Methan, in den gasförmigen Zustand mit anschließender Erwärmung |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7293600B2 (en) | 2002-02-27 | 2007-11-13 | Excelerate Energy Limited Parnership | Apparatus for the regasification of LNG onboard a carrier |
US6598408B1 (en) | 2002-03-29 | 2003-07-29 | El Paso Corporation | Method and apparatus for transporting LNG |
US6688114B2 (en) | 2002-03-29 | 2004-02-10 | El Paso Corporation | LNG carrier |
WO2004031644A1 (en) * | 2002-10-04 | 2004-04-15 | Hamworthy Kse A.S. | Regasification system and method |
EP1561068A1 (de) * | 2002-11-14 | 2005-08-10 | Volker W. Eyermann | System und verfahren zur verdampfung von verflüssigtem erdgas |
EP1561068A4 (de) * | 2002-11-14 | 2010-08-25 | Siegrun Eyermann | System und verfahren zur verdampfung von verflüssigtem erdgas |
US7219502B2 (en) | 2003-08-12 | 2007-05-22 | Excelerate Energy Limited Partnership | Shipboard regasification for LNG carriers with alternate propulsion plants |
US7484371B2 (en) | 2003-08-12 | 2009-02-03 | Excelerate Energy Limited Partnership | Shipboard regasification for LNG carriers with alternate propulsion plants |
EP1855047A1 (de) * | 2006-05-12 | 2007-11-14 | Black & Veatch Corporation | Vorrichtung und Verfahren zum Verdampfen kryogener Flüssigkeiten unter Zuhilfennahme eines im Naturumlauf gefahrenen Wärmeübertragungsfluids |
CN102686930A (zh) * | 2009-11-13 | 2012-09-19 | 海威气体系统公司 | 用于lng的再气化的设备 |
WO2011059344A1 (en) * | 2009-11-13 | 2011-05-19 | Hamworthy Gas Systems As | A plant for regasification of lng |
KR101473908B1 (ko) | 2009-11-13 | 2014-12-17 | 배르질래 오일 & 가스 시스템즈 아에스 | Lng 재기화 설비 |
CN102686930B (zh) * | 2009-11-13 | 2015-03-25 | 瓦锡兰油气系统公司 | 用于lng的再气化的设备 |
EP2499417A4 (de) * | 2009-11-13 | 2017-05-17 | Hamworthy Gas Systems AS | Anlage zur regasifizierung von flüssigerdgas |
US9695984B2 (en) | 2009-11-13 | 2017-07-04 | Hamworthy Gas Systems As | Plant for regasification of LNG |
US9919774B2 (en) | 2010-05-20 | 2018-03-20 | Excelerate Energy Limited Partnership | Systems and methods for treatment of LNG cargo tanks |
CN110382347A (zh) * | 2017-03-06 | 2019-10-25 | 株式会社神户制钢所 | 海上浮动式设施 |
CN110382347B (zh) * | 2017-03-06 | 2021-10-29 | 株式会社神户制钢所 | 海上浮动式设施 |
DE102017007009A1 (de) | 2017-07-25 | 2019-01-31 | Eco ice Kälte GmbH | Kälteversorgungsanlage, gekoppelt an die Regasifizierungseinrichtung eines Liquified Natural Gas Terminals |
WO2019020135A1 (de) | 2017-07-25 | 2019-01-31 | Eco ice Kälte GmbH | Kälteversorgungsanlage, gekoppelt an die regasifizierungseinrichtung eines liquified natural gas terminals |
Also Published As
Publication number | Publication date |
---|---|
JPS5783798A (en) | 1982-05-25 |
DE3035349A1 (de) | 1982-04-08 |
DE3168877D1 (en) | 1985-03-28 |
EP0048316B1 (de) | 1985-02-13 |
DE3035349C2 (de) | 1985-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0048316B1 (de) | Verfahren und Anlage zur Rückverdampfung von flüssigem Erdgas | |
DE68926220T2 (de) | Verfahren und Vorrichtung zur Dampfkrafterzeugung | |
EP0561220B1 (de) | Verfahren zum Betreiben einer Anlage zur Dampferzeugung und Dampferzeugeranlage | |
DE102009036064B4 (de) | rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger | |
DE3213837C2 (de) | Abgasdampferzeuger mit Entgaser, insbesondere für kombinierte Gasturbinen-Dampfkraftanlagen | |
DE2632777C2 (de) | Dampfkraftanlage mit Einrichtung zur Spitzenlastdeckung | |
EP0582898A1 (de) | Verfahren zum Betreiben einer Gas- und Dampfturbinenanlage sowie danach arbeitende Gud-Anlage | |
DE1751433A1 (de) | Betriebsverfahren mit Gleitdruck fuer einen Dampferzeuger | |
EP0149002A1 (de) | Einrichtung zum Regeln einer Verfahrensgrösse eines strömenden Mediums | |
DE1426698A1 (de) | Einrichtung zum Anfahren eines Umlaufdampferzeugers | |
DE2544799B2 (de) | Gasbeheizter Dampferzeuger | |
DE102005034847A1 (de) | Dampfkraftwerksanlage | |
DE2751642B2 (de) | Verfahren zur Umwandlung einer tiefsiedenden Flüssigkeit, insbesondere unter Atmosphärendruck stehendem Erdgas oder Methan, in den gasförmigen Zustand mit anschließender Erwärmung | |
EP0232746A2 (de) | Verfahren und Einrichtung zur energiesparenden automatischen Einhaltung der Konzentration von verdampfenden Kältemittelgemischen | |
DE1957217C3 (de) | Dampfkraftanlage | |
EP0019297A2 (de) | Verfahren und Vorrichtung zum Erzeugen von Dampf | |
EP0496283A2 (de) | Verfahren zum Verdampfen von flüssigem Erdgas | |
DE102019001642A1 (de) | Heizungs-und/oder Warmwasserbereitungssystem | |
DE341457C (de) | Verfahren zur Nutzbarmachung der durch die adiabatische Kompression erzeugten Waermehoeherer Temperatur bei Kompressionskaeltemaschinen | |
AT397145B (de) | Einrichtung zur nutzung des wärmeinhaltes verflüssigter kältemittel in einem kreisprozess als abtau- und/oder kinetische energie bei wärmepumpenanlagen | |
EP0725406B1 (de) | Verfahren und Vorrichtung zum Absaugen der Kondensatorabgase eines Siedewasserreaktors | |
DE962080C (de) | Dampfkesselanlage mit mehreren Abhitzekesseln | |
DE1753420C (de) | Heizanlage | |
EP3472515A1 (de) | Vertikaler abhitzedampferzeuger | |
AT27958B (de) | Vorrichtung zur Regelung der Temperatur und der Umlaufbewegung des Wassers in Wasserheizungsanlagen. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19811026 |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB LU NL |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: UHDE GMBH |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Designated state(s): BE DE FR GB LU NL |
|
REF | Corresponds to: |
Ref document number: 3168877 Country of ref document: DE Date of ref document: 19850328 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19850630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19850630 Year of fee payment: 5 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: LINDE AKTIENGESELLSCHAFT, WIESBADEN Effective date: 19851113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19860218 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: LINDE AKTIENGESELLSCHAFT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19860630 |
|
BERE | Be: lapsed |
Owner name: UHDE G.M.B.H. Effective date: 19860630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19870101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19870227 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19881118 |
|
RIN2 | Information on inventor provided after grant (corrected) |
Inventor name: BAUER, LOTHAR, ING.-GRAD. |