EP0048316A1 - Procédé et dispositif pour la révaporisation de gaz naturel liquéfié - Google Patents

Procédé et dispositif pour la révaporisation de gaz naturel liquéfié Download PDF

Info

Publication number
EP0048316A1
EP0048316A1 EP81104348A EP81104348A EP0048316A1 EP 0048316 A1 EP0048316 A1 EP 0048316A1 EP 81104348 A EP81104348 A EP 81104348A EP 81104348 A EP81104348 A EP 81104348A EP 0048316 A1 EP0048316 A1 EP 0048316A1
Authority
EP
European Patent Office
Prior art keywords
natural gas
circuit
heat
transfer medium
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81104348A
Other languages
German (de)
English (en)
Other versions
EP0048316B1 (fr
Inventor
Lothar Ing.-Grad. Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
Uhde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6112350&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0048316(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Uhde GmbH filed Critical Uhde GmbH
Publication of EP0048316A1 publication Critical patent/EP0048316A1/fr
Application granted granted Critical
Publication of EP0048316B1 publication Critical patent/EP0048316B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0302Heat exchange with the fluid by heating
    • F17C2227/0309Heat exchange with the fluid by heating using another fluid
    • F17C2227/0316Water heating
    • F17C2227/0318Water heating using seawater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • F17C2227/0393Localisation of heat exchange separate using a vaporiser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0636Flow or movement of content

Definitions

  • the invention is directed to a process for the re-evaporation of liquid natural gas, using a heat transfer medium, which is conducted in a closed, via a first partial circuit guided by a heat donor, in particular seawater-loaded heat exchanger and a second partial circuit with a further energy supply, and to a system for Implementation of this procedure.
  • a heat transfer medium is condensed in two pressure stages, a main stream evaporating in an evaporator exposed to sea water and condensed with heat being given off to a heat exchanger through which natural gas flows, and a secondary stream of the heat transfer medium branching off from this main stream from a pressure booster brought to a higher pressure level and releases its energy in a natural gas superheater and then brought back to the pressure of the main stream in a pressure reducing device and supplied to it.
  • the known method has the particular disadvantage that it cannot be adapted to the respective site conditions of such a system to the desired extent and, in particular, can react very clumsily to different temperatures of the evaporator exposed to sea water.
  • pressure booster and pressure reduction systems consume energy that is lost in the overall process.
  • This object is achieved in a method of the type mentioned above in that the heat transfer medium in the first sub-circuit between the natural gas evaporator and the heat exchanger in natural circulation and in the second sub-circuit between the heat exchanger and natural gas evaporator in natural or forced circulation at the same pressure level as the first sub-circuit is such that in the natural gas evaporator and in the heat exchanger have the same pressures for the two subsets of the heat transfer medium.
  • the overall process can be operated without external heat supply, i.e. exclusively with sea water if its system inlet temperature is correspondingly high.
  • the sea water temperature drops in winter, additional energy can be supplied via a partial flow, the partial flow cycles can usually be maintained over very wide areas in natural circulation. This means that the external energy can be adapted to the individual environmental conditions.
  • the invention provides that the natural gas evaporator is followed by a superheater, which is supplied with additional energy by a further, independent heat transfer medium circuit, and in particular it can also be provided that the heat transfer medium circuit of the superheater is operated at a higher pressure level than that Partial cycles of the natural gas evaporator.
  • the energy supply to the second sub-circuit and / or to the additional circuit of the heat transfer medium takes place via a secondary heat source, it being possible for the liquid natural gas to be evaporated in one or two stages from the heat transfer medium in tube bundle heat exchangers, where In a further embodiment it can be provided that an immersion flame evaporator and / or the exhaust gas from a power plant is used as the secondary heat source.
  • the invention also provides a system for performing the above-described method, which is characterized in particular by two heat exchangers acted upon by sea water as evaporators of the heat transfer medium and heat exchangers arranged in its circuit as natural gas evaporators and a heat exchanger medium collector.
  • This inventive design of the system has the advantage that large amounts of sea water can be used, and the total volume of the partial flows of the heat transfer medium can be kept very large, so that an overall very high system performance can be achieved.
  • a wide range of sea water temperatures can be achieved be operated without the need for an external energy supply if the sea water has a correspondingly high inlet temperature into the system.
  • a first heat exchanger is followed by a further heat exchanger as the natural gas superheater, the heat exchangers and the collector of the heat transfer medium being connected to the further heat supply devices in the circuits.
  • immersion flame evaporators are provided as further heat supply devices for the heat transfer medium and these are heated with natural gas, or that the immersion flame evaporators are heated externally or in a circuit via an exhaust gas cooler of a thermal power plant, which can also be provided according to the invention .
  • a heat transfer medium preferably propane (hereinafter only the heat transfer medium is referred to as propane) is conducted in a first sub-circuit I between a propane evaporator 1 exposed to sea water and a natural gas evaporator 2.
  • propane a heat transfer medium
  • the seawater enters the propane evaporator 1 at 3 and leaves it at 4.
  • the natural gas enters the natural gas evaporator at 5 and leaves it via line 6.
  • liquid natural gas is evaporated by the sea water and exits the gas dome 8 of the propane evaporator 1 via a line 7 and enters the natural gas evaporator 2 at the top.
  • the propane condenses with heat being given off at the evaporator coils of the natural gas evaporator 2 and is precipitated as liquid propane in the sump 9 of the natural gas evaporator 2, from where it is fed back to the propane evaporator 1 in liquid form via line 10, with the circuit I being closed again.
  • a further propane circuit II is provided in parallel with the former.
  • a partial flow of the propane is withdrawn from the propane evaporator 1 via a line 11 and optionally to a heat via a pump 12, in particular to overcome the pipeline losses.
  • source e.g. a submersible flame evaporator 13, passed there, evaporated and fed to the natural gas evaporator 2 via a line 14, condensed there and, as condensate, passed again to the propane evaporator 1 via line 10 while closing the circuit II.
  • Circles I and II can be operated in natural circulation, should large pipe friction losses or other system losses occur, both circuits can be run at the same pressure level in forced circulation.
  • Fig. 1 is a natural gas superheater 15 with an earth shown gas line 16, which is also acted upon by propane.
  • This further propane circuit is designated III and leads from the natural gas superheater 15 via a line 17, possibly via a pump 18 to a further heat source, for example an immersion flame evaporator 19, and a line 20 back to the natural gas superheater.
  • the heat source 19 and the heat source 13 can be identical or can be provided within the same component.
  • both the heat exchanger coils of the heat source 19 and that of the heat source 13 can be arranged within the same basin.
  • the higher energy level required for overheating is achieved by operating circuit III at a higher total pressure than circuits I and II.
  • a modified process control is shown as a schematic diagram.
  • capital letters are used in FIG. 2 to designate the circuits. So corresponds to the refrigerant circuit I in Fig. 1, two propane circuits "A" and 'R' ", the propane via seawater-heated propane evaporators 21 and 21 'and a Erdgasverdam fer 22 and a propane collector 23 is performed.
  • the circuit lines of the circuits "A" and "A"' are not specified.
  • the seawater entry and exit 1 is denoted by 3 'or 4' in accordance with FIG. 1, just as the entry of the liquid natural gas is denoted by 5 'and the outlet of the gaseous superheated natural gas in accordance with FIG. 1 by 6' or 16 '.
  • the subset circuit II corresponding to FIG. 1 is designated "B" in FIG. 2.
  • the propane is supplied to the natural gas evaporator 22 via a line 11 ', a pump 12' and a submerged flame evaporator 13 'and via a line 14'.
  • the additional propane circuit III according to FIG. 1 is designated "C" in FIG. 2. It leads from the immersion flame evaporator 13 'via a line 24 to a natural gas superheater 25 and via the natural gas evaporator 22, the propane collector 23, the line 11', the pump 12 'back to the immersion flame evaporator 13.
  • the system is controlled in conjunction with 1 as follows: Depending on the water temperature at the seawater inlet 3, the additional heat supply via the circuit II at the heat source 13 is regulated by means of appropriate regulators.
  • the part of circuit II can be operated from 0 - 100%, ie circuit II can be switched off (0%) or the entire propane quantity, including that of circuit I, can be pumped via the secondary heat source (100%).
  • the discharge temperature of the gasified natural gas is measured at 6 and, if necessary, the additional circuit III is switched on in order to obtain the required natural gas temperature at 16.
  • This regulation is fundamentally the same in the exemplary embodiment according to FIG. 2, where larger quantities can be converted by connecting at least two propane evaporators heated by sea water. In the event of a device failure or icing, appropriate measures can be taken to return heated propane through these evaporators and thus defrost. Depending on the generation of power plant exhaust gases in the circuit "D", the burner 28 can be switched off completely or can be operated with a slight excess.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
EP19810104348 1980-09-19 1981-06-05 Procédé et dispositif pour la révaporisation de gaz naturel liquéfié Expired EP0048316B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3035349 1980-09-19
DE3035349A DE3035349C2 (de) 1980-09-19 1980-09-19 Anlage zur Verdampfung von flüssigem Erdgas

Publications (2)

Publication Number Publication Date
EP0048316A1 true EP0048316A1 (fr) 1982-03-31
EP0048316B1 EP0048316B1 (fr) 1985-02-13

Family

ID=6112350

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19810104348 Expired EP0048316B1 (fr) 1980-09-19 1981-06-05 Procédé et dispositif pour la révaporisation de gaz naturel liquéfié

Country Status (3)

Country Link
EP (1) EP0048316B1 (fr)
JP (1) JPS5783798A (fr)
DE (2) DE3035349C2 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6598408B1 (en) 2002-03-29 2003-07-29 El Paso Corporation Method and apparatus for transporting LNG
US6688114B2 (en) 2002-03-29 2004-02-10 El Paso Corporation LNG carrier
WO2004031644A1 (fr) * 2002-10-04 2004-04-15 Hamworthy Kse A.S. Systeme et procede de regazification
EP1561068A1 (fr) * 2002-11-14 2005-08-10 Volker W. Eyermann Systeme et procede de vaporisation de gaz naturel liquefie
US7219502B2 (en) 2003-08-12 2007-05-22 Excelerate Energy Limited Partnership Shipboard regasification for LNG carriers with alternate propulsion plants
US7293600B2 (en) 2002-02-27 2007-11-13 Excelerate Energy Limited Parnership Apparatus for the regasification of LNG onboard a carrier
EP1855047A1 (fr) * 2006-05-12 2007-11-14 Black & Veatch Corporation Appareil et méthode de vaporisation de liquides cryogènes à l'aide d'un fluide caloporteur circulant naturellement
WO2011059344A1 (fr) * 2009-11-13 2011-05-19 Hamworthy Gas Systems As Installation pour la regazéification de gnl (gaz naturel liquéfié)
US9919774B2 (en) 2010-05-20 2018-03-20 Excelerate Energy Limited Partnership Systems and methods for treatment of LNG cargo tanks
WO2019020135A1 (fr) 2017-07-25 2019-01-31 Eco ice Kälte GmbH Installation de production de froid accouplée au dispositif de regasification d'un terminal de gaz naturel liquifié
CN110382347A (zh) * 2017-03-06 2019-10-25 株式会社神户制钢所 海上浮动式设施

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149599U (ja) * 1984-03-15 1985-10-04 東京ガス・エンジニアリング株式会社 低温液化ガス気化装置
JP4677338B2 (ja) * 2005-12-15 2011-04-27 石油コンビナート高度統合運営技術研究組合 冷熱供給方法
US8069677B2 (en) 2006-03-15 2011-12-06 Woodside Energy Ltd. Regasification of LNG using ambient air and supplemental heat
US20070214805A1 (en) 2006-03-15 2007-09-20 Macmillan Adrian Armstrong Onboard Regasification of LNG Using Ambient Air
EP2309165A1 (fr) * 2009-10-09 2011-04-13 Cryostar SAS Conversion de gaz naturel liquéfié
JP5750251B2 (ja) * 2010-09-17 2015-07-15 中国電力株式会社 Lng気化設備
AU2012216352B2 (en) 2012-08-22 2015-02-12 Woodside Energy Technologies Pty Ltd Modular LNG production facility
DE102014017802A1 (de) * 2014-12-02 2016-06-02 Linde Aktiengesellschaft Effektivere Arbeitsgewinnung bei der Erwärmung kryogener Flüssigkeiten

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2975607A (en) * 1958-06-11 1961-03-21 Conch Int Methane Ltd Revaporization of liquefied gases
DE2751642B2 (de) * 1977-11-17 1981-03-19 Borsig Gmbh, 1000 Berlin Verfahren zur Umwandlung einer tiefsiedenden Flüssigkeit, insbesondere unter Atmosphärendruck stehendem Erdgas oder Methan, in den gasförmigen Zustand mit anschließender Erwärmung

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2018967B (en) * 1978-03-28 1982-08-18 Osaka Gas Co Ltd Apparatus and process for vaporizing liquefied natural gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2975607A (en) * 1958-06-11 1961-03-21 Conch Int Methane Ltd Revaporization of liquefied gases
DE2751642B2 (de) * 1977-11-17 1981-03-19 Borsig Gmbh, 1000 Berlin Verfahren zur Umwandlung einer tiefsiedenden Flüssigkeit, insbesondere unter Atmosphärendruck stehendem Erdgas oder Methan, in den gasförmigen Zustand mit anschließender Erwärmung

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7293600B2 (en) 2002-02-27 2007-11-13 Excelerate Energy Limited Parnership Apparatus for the regasification of LNG onboard a carrier
US6598408B1 (en) 2002-03-29 2003-07-29 El Paso Corporation Method and apparatus for transporting LNG
US6688114B2 (en) 2002-03-29 2004-02-10 El Paso Corporation LNG carrier
WO2004031644A1 (fr) * 2002-10-04 2004-04-15 Hamworthy Kse A.S. Systeme et procede de regazification
EP1561068A1 (fr) * 2002-11-14 2005-08-10 Volker W. Eyermann Systeme et procede de vaporisation de gaz naturel liquefie
EP1561068A4 (fr) * 2002-11-14 2010-08-25 Siegrun Eyermann Systeme et procede de vaporisation de gaz naturel liquefie
US7219502B2 (en) 2003-08-12 2007-05-22 Excelerate Energy Limited Partnership Shipboard regasification for LNG carriers with alternate propulsion plants
US7484371B2 (en) 2003-08-12 2009-02-03 Excelerate Energy Limited Partnership Shipboard regasification for LNG carriers with alternate propulsion plants
EP1855047A1 (fr) * 2006-05-12 2007-11-14 Black & Veatch Corporation Appareil et méthode de vaporisation de liquides cryogènes à l'aide d'un fluide caloporteur circulant naturellement
CN102686930A (zh) * 2009-11-13 2012-09-19 海威气体系统公司 用于lng的再气化的设备
WO2011059344A1 (fr) * 2009-11-13 2011-05-19 Hamworthy Gas Systems As Installation pour la regazéification de gnl (gaz naturel liquéfié)
KR101473908B1 (ko) 2009-11-13 2014-12-17 배르질래 오일 & 가스 시스템즈 아에스 Lng 재기화 설비
CN102686930B (zh) * 2009-11-13 2015-03-25 瓦锡兰油气系统公司 用于lng的再气化的设备
EP2499417A4 (fr) * 2009-11-13 2017-05-17 Hamworthy Gas Systems AS Installation pour la regazéification de gnl (gaz naturel liquéfié)
US9695984B2 (en) 2009-11-13 2017-07-04 Hamworthy Gas Systems As Plant for regasification of LNG
US9919774B2 (en) 2010-05-20 2018-03-20 Excelerate Energy Limited Partnership Systems and methods for treatment of LNG cargo tanks
CN110382347A (zh) * 2017-03-06 2019-10-25 株式会社神户制钢所 海上浮动式设施
CN110382347B (zh) * 2017-03-06 2021-10-29 株式会社神户制钢所 海上浮动式设施
WO2019020135A1 (fr) 2017-07-25 2019-01-31 Eco ice Kälte GmbH Installation de production de froid accouplée au dispositif de regasification d'un terminal de gaz naturel liquifié
DE102017007009A1 (de) 2017-07-25 2019-01-31 Eco ice Kälte GmbH Kälteversorgungsanlage, gekoppelt an die Regasifizierungseinrichtung eines Liquified Natural Gas Terminals

Also Published As

Publication number Publication date
JPS5783798A (en) 1982-05-25
DE3035349A1 (de) 1982-04-08
DE3168877D1 (en) 1985-03-28
EP0048316B1 (fr) 1985-02-13
DE3035349C2 (de) 1985-06-27

Similar Documents

Publication Publication Date Title
EP0048316B1 (fr) Procédé et dispositif pour la révaporisation de gaz naturel liquéfié
EP0561220B1 (fr) Procédé pour le fonctionnement d'une installation de génération de vapeur et générateur de vapeur
DE102009036064B4 (de) rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
DE2632777C2 (de) Dampfkraftanlage mit Einrichtung zur Spitzenlastdeckung
WO1989007700A1 (fr) Procede et installation de generation de vapeur au moyen de chaleur perdue
DE2854055A1 (de) Verfahren zum erhitzen eines waermetraegers mit einer absorptionswaermepumpe
EP0582898A1 (fr) Méthode de fonctionnement d'un système à turbines à vapeur et à gaz et système pour la mise en oeuvre de la méthode
DE1751433A1 (de) Betriebsverfahren mit Gleitdruck fuer einen Dampferzeuger
EP0149002A1 (fr) Dispositif de régulation d'une variable dans un milieu en écoulement
DE1426698A1 (de) Einrichtung zum Anfahren eines Umlaufdampferzeugers
DE102005034847A1 (de) Dampfkraftwerksanlage
DE69921871T2 (de) Absorptionskälteanlage mit Kupplung von Kondensat und Lösung
DE2751642B2 (de) Verfahren zur Umwandlung einer tiefsiedenden Flüssigkeit, insbesondere unter Atmosphärendruck stehendem Erdgas oder Methan, in den gasförmigen Zustand mit anschließender Erwärmung
EP0232746A2 (fr) Procédé et dispositif pour maintenir économiquement et automatiquement la concentration de mélanges de réfrigérants s'evaporant
DE1957217C3 (de) Dampfkraftanlage
EP0019297A2 (fr) Méthode et dispositif pour produire de la vapeur
EP0496283A2 (fr) Procédé pour évaporer du gaz naturel liquéfié
DE341457C (de) Verfahren zur Nutzbarmachung der durch die adiabatische Kompression erzeugten Waermehoeherer Temperatur bei Kompressionskaeltemaschinen
AT397145B (de) Einrichtung zur nutzung des wärmeinhaltes verflüssigter kältemittel in einem kreisprozess als abtau- und/oder kinetische energie bei wärmepumpenanlagen
EP0725406B1 (fr) Procédé et appareil pour recombiner l'hydrogène et l'oxygène du condenseur principal d'un réacteur nucléaire à eau bouillante
DE1753420C (de) Heizanlage
WO2018014941A1 (fr) Générateur de vapeur vertical à récupération de chaleur
AT27958B (de) Vorrichtung zur Regelung der Temperatur und der Umlaufbewegung des Wassers in Wasserheizungsanlagen.
DE1551269C (de) Wärmekraftanlage mit einem durch einen Reaktor geheizten Wärmetauscher
DD156360A1 (de) Verfahren und anordnung zur thermischen aufbereitung von wasser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811026

AK Designated contracting states

Designated state(s): BE DE FR GB LU NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UHDE GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Designated state(s): BE DE FR GB LU NL

REF Corresponds to:

Ref document number: 3168877

Country of ref document: DE

Date of ref document: 19850328

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19850630

Year of fee payment: 5

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT, WIESBADEN

Effective date: 19851113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19860218

NLR1 Nl: opposition has been filed with the epo

Opponent name: LINDE AKTIENGESELLSCHAFT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19860630

BERE Be: lapsed

Owner name: UHDE G.M.B.H.

Effective date: 19860630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19870101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19870227

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

RIN2 Information on inventor provided after grant (corrected)

Inventor name: BAUER, LOTHAR, ING.-GRAD.