EP0561220B1 - Procédé pour le fonctionnement d'une installation de génération de vapeur et générateur de vapeur - Google Patents

Procédé pour le fonctionnement d'une installation de génération de vapeur et générateur de vapeur Download PDF

Info

Publication number
EP0561220B1
EP0561220B1 EP93103393A EP93103393A EP0561220B1 EP 0561220 B1 EP0561220 B1 EP 0561220B1 EP 93103393 A EP93103393 A EP 93103393A EP 93103393 A EP93103393 A EP 93103393A EP 0561220 B1 EP0561220 B1 EP 0561220B1
Authority
EP
European Patent Office
Prior art keywords
steam
water
pressure
evaporator
preheated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93103393A
Other languages
German (de)
English (en)
Other versions
EP0561220A1 (fr
Inventor
Georg Dipl.-Ing. Lösel (FH)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0561220A1 publication Critical patent/EP0561220A1/fr
Application granted granted Critical
Publication of EP0561220B1 publication Critical patent/EP0561220B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • F01K23/108Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D1/00Feed-water heaters, i.e. economisers or like preheaters
    • F22D1/003Feed-water heater systems

Definitions

  • the invention relates to a method for operating a plant for generating steam, in particular in a fossil-fired power plant, e.g. in a gas and steam turbine plant in which steam is generated from water by indirect heat exchange with hot flue gas, condensed water first being preheated and then the preheated water being evaporated under high pressure. It is also aimed at a plant operated according to this method.
  • the amount of heat contained in a hot flue gas in the steam generator is used to generate steam.
  • the flue gas is e.g. the hot exhaust gas flowing out of a gas turbine and the steam generator is e.g. a waste heat boiler downstream of the gas turbine.
  • the heating surfaces arranged in the steam generator and designed in the form of tubes or tube bundles are usually connected to the water-steam circuit of a steam turbine.
  • the water-steam cycle often comprises several pressure stages, each of which is made up of a preheater and an evaporator and a superheater.
  • a condensate preheater is additionally provided in the steam generator for heating up the condensed water from the steam turbine.
  • the amount of heat introduced into the steam generator differs in different operating states, the heating surfaces in the steam generator being designed for full-load operation.
  • a reduction in the flue gas temperature means that the steam generator has been brought in Reduced heat quantity, even if the mass flow of the flue gas remains almost constant.
  • the resulting reduction in the amount of steam produced results in a reduction in the total amount of water available in the water-steam cycle. This can undesirably lead to premature evaporation of the preheated and high-pressure water.
  • Such vapor formation in a high-pressure preheater (economizer) or at its outlet has a particularly disadvantageous effect on the mass distribution at the inlet of the tubes which are usually arranged parallel to one another in the high-pressure evaporator of the steam generator.
  • An unstable flow in the tubes, especially in the tubes of the high-pressure evaporator reduces above all the effectiveness of the heating surfaces, with the result that the efficiency of the system decreases. Unstable flow conditions can also damage the heating surfaces.
  • the invention is therefore based on the object of designing a method for operating a system for generating steam and such a system in such a way that the highest possible efficiency and stable flow conditions in the area of the heating surfaces are achieved in all operating states, in particular also in the part-load range.
  • this object is achieved according to the invention in that, at least in the part-load range, the preheated water, which is already under high pressure, is cooled by heat exchange with at least a partial stream of the condensed water.
  • the temperature of the water before evaporation and the temperature of the steam are determined, the difference between these temperatures serving as a variable for setting the partial flow. This in turn affects the temperature of the preheated and high pressure water.
  • a partial stream of the preheated and high-pressure water is expediently mixed into the condensed water.
  • the stated object is achieved according to the invention by a heat exchanger which is connected downstream of the condensate preheater and is connected upstream of the condensate preheater on the secondary side.
  • a temperature sensor is provided in an advantageous embodiment of the system for generating steam on the inflow side and on the outflow side of a high-pressure evaporator.
  • the temperature sensors are expediently connected via a control element to a valve connected in a condensate line.
  • the heat exchanger is expediently in a partial flow line which is a bypass to the condensate line.
  • the actual high-pressure evaporator has a further evaporator, i.e. a so-called residual evaporator or preheater. Inside the residual evaporator is the place or point of complete evaporation from which the steam overheats.
  • a good distribution of the water / steam mixture is achieved at the inlet of the tubes of the residual evaporator.
  • the residual evaporator was previously arranged in the flow direction of the hot flue gas behind the first high-pressure evaporator and was therefore in a region of comparatively cool flue gas temperature.
  • the residual evaporator is arranged upstream of the actual high-pressure evaporator in the flow direction of the flue gas.
  • the high-pressure evaporator is connected upstream of the residual evaporator and downstream of the condensate preheater within the water-steam cycle.
  • This circuit ensures that the specified distance between the temperature of the flue gas in the steam generator in the region of the outlet of the high-pressure evaporator and the temperature of the saturated steam in the high-pressure evaporator is reliably maintained.
  • This temperature gap also known as "pinch point" determines to a large extent the size of the heating surface of the high pressure evaporator. With this heating surface arrangement, a particularly small heating surface of the high-pressure evaporator and of the residual evaporator can be achieved, especially in stable flow conditions.
  • the illustrated system for steam generation comprises a steam generator 1, through which hot flue gas RG flows on the primary side.
  • the steam generator 1 is e.g. Part of a gas and steam turbine plant.
  • the cooled flue gas RG leaves the steam generator 1 - as indicated by the arrow 2 - in the direction of a chimney, not shown.
  • the flue gas RG is e.g. fossil-fired steam generator self-generated; but it can also be the hot exhaust gas from a gas turbine upstream of the steam generator 1.
  • the steam generator 1 is also referred to as a waste heat boiler or waste heat steam generator.
  • the steam generator 1 comprises a condensate preheater 3, a low-pressure heating device 10, a high-pressure heating device 20 and an intermediate superheater 25.
  • the low-pressure heating device 10 comprises a preheater 12 and an evaporator 14, which together with a water-steam drum 16 and a low-pressure part of a steam turbine, not shown, belong to the low-pressure stage of a water-steam circuit 18.
  • the high-pressure heating device 20 comprises two evaporators 22, 24 connected in series and a high-pressure superheater 26, which together with a high-pressure preheater or economizer 28 and a water-steam container 30 and a high-pressure part of the steam turbine, not shown, the high-pressure stage of the water - Form steam circuit 18.
  • the reheater 25 is connected in a manner not shown to a medium pressure part of the steam turbine.
  • condensed water K flows from a condenser (not shown) connected downstream of the steam turbine (not shown) via a condensate line 4 and through the condensate preheater 3 into a feed water tank 6.
  • a three-way valve 7 is connected to the condensate line 4.
  • part of the condensed water K preheated in the condensate preheater 3 is again conveyed through the condensate preheater 3 via a circulation pump 8.
  • water flows via a feed water pump 9 into the low-pressure preheater 12 and from there into the water-steam drum 16.
  • water and steam are separated from one another.
  • the water is fed through a pump 11 through the low-pressure evaporator 14 and from there it is returned to the separating drum 16 as steam.
  • the steam is fed to the low-pressure part of the steam turbine via a line 13.
  • Pre-warmed water W is also taken from the feed water tank 6 via a high-pressure pump 21 and is conveyed under high pressure via a line 23 into the economizer 28. From there, the preheated and high-pressure water W flows into the evaporators 22 and 24.
  • the economizer 28 and the evaporators 22 and 24 are first fed through with a predetermined water flow, the water being collected in the water-steam separating container 30 and being discharged from there via a line 29 into an expansion tank 31.
  • a valve 32 is connected in line 29. The water is discharged from the expansion tank 31 under atmospheric pressure via a line 33.
  • the economizer 28 and the evaporators 22 and 24 flowing in preheated and under high pressure water W are cooled by heat exchange with the condensed water K, at least a partial stream t 1 of the condensed water K.
  • a heat exchanger 40 is provided, which is located on the one hand in line 23 and on the other hand in a partial flow line 41 of the condensate line 4.
  • the partial flow line 41 is connected to the condensate line 4 both on the input side via the three-way valve 7 and on the output side.
  • the heat exchanger 40 is thus connected on the primary side to the condensate preheater 3 and on the secondary side to the condensate preheater 3.
  • the partial stream t1 of the condensed water K is regulated.
  • the three-way valve 7 is connected to a control device 43.
  • the control device 43 is connected via connections 44 and 45 to temperature sensors 46 and 47, respectively.
  • the temperature sensor 46 With the temperature sensor 46, the temperature T 1 of the water entering the evaporator 22 is determined.
  • the temperature sensor 47 With the temperature sensor 47, the temperature T2 of the steam or water-steam mixture flowing out of the evaporator 22 is determined.
  • the difference between these two temperatures T 1 and T 2 determined in the control device 43 serves as a controlled variable for setting the three-way valve 7 and thus the partial flow t 1.
  • the temperature T3 of the preheated and high-pressure water W is set such that when the water enters the evaporator 22 it is only slightly but surely below the boiling temperature.
  • an adjustable partial stream t2 of the preheated and high-pressure water W is mixed with it.
  • a line 50 is connected on the output side to the high-pressure pump 21 and is connected to the condensate line 4.
  • a valve 51 is connected in line 50.
  • the heating surfaces of the steam generator 1 are usually each formed from tube bundles with a large number of individual tubes.
  • the tubes of the individual heating surfaces open both on the input side and on the output side into collecting containers, which are represented by circles in the drawing at the inputs and outputs of the heating surfaces.
  • the collecting containers are connected to one another in accordance with the respectively predetermined circuit via connecting pipes and connected into the water-steam circuit 18. This makes it possible to assemble different modules with different heating surfaces as required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Claims (8)

  1. Procédé pour faire fonctionner une installation de production de vapeur, notamment une centrale nucléaire à combustible fossile, par exemple dans une installation à turbines à gaz et à vapeur, dans laquelle de la vapeur est produite à partir de l'eau, par échange de chaleur indirect avec un gaz de fumée chaud (RG), de l'eau condensée (K) étant tout d'abord préchauffée, puis l'eau préchauffée (W) vaporisée sous pression,
    caractérisé par le fait qu'au moins dans la gamme de charges partielles, l'eau préchauffée est déjà placée sous haute pression (W) et est refroidie par échange thermique avec au moins un courant partiel (t₁) de l'eau condensée (K).
  2. Procédé suivant la revendication 1, caractérisé par le fait que la température (T₁) de l'eau avant l'évaporation et la température (T₂) de la vapeur sont déterminées et que la différence de ces températures (T₁, T₂) est utilisée comme grandeur pour le réglage du courant partiel (t₁).
  3. Procédé suivant la revendication 1 ou 2, caractérisé par le fait qu'un courant partiel (t₂) de l'eau préchauffée et placée sous haute pression (W) est mélangé à l'eau condensée (K).
  4. Installation de production de vapeur comportant un générateur de vapeur (1) traversé par un gaz de fumée chaud (RG) et dont une surface de chauffe est un réchauffeur à condensat (3), caractérisée par un échangeur de chaleur (40) dont le côté primaire est monté en aval du réchauffeur formant condensat (3) ou dont le côté secondaire est monté en amont du réchauffeur à condensat (3).
  5. Installation suivant la revendication 4, dont l'autre surface de chauffe est un évaporateur à haute pression (22), caractérisée par le fait que sur le côté alimentation et sur le côté évacuation de l'évaporateur à haute pression (22) sont prévus des capteurs respectifs de température (46 et 47), qui sont reliés, par l'intermédiaire d'un dispositif de régulation (43), à une soupape (7) montée dans une canalisation à condensat (4).
  6. Installation suivant la revendication 5, caractérisée par le fait qu'un autre évaporateur (24) est monté en aval de l'évaporateur à haute pression (22), l'autre évaporateur (24) étant disposé, dans le générateur de vapeur (1), en amont de l'évaporateur à haute pression (22) dans la direction de circulation du gaz de fumée (RG).
  7. Installation suivant l'une des revendications 4 à 6, caractérisée par le fait que l'échangeur de chaleur (40) est situé, côté secondaire, dans une canalisation de courant partiel (41), qui est une voie de contournement de la canalisation à condensat (4).
  8. Installation à turbines à gaz et à vapeur comportant une installation de production de vapeur suivant l'une des revendications 4 à 7.
EP93103393A 1992-03-16 1993-03-03 Procédé pour le fonctionnement d'une installation de génération de vapeur et générateur de vapeur Expired - Lifetime EP0561220B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4208397 1992-03-16
DE4208397 1992-03-16

Publications (2)

Publication Number Publication Date
EP0561220A1 EP0561220A1 (fr) 1993-09-22
EP0561220B1 true EP0561220B1 (fr) 1995-09-13

Family

ID=6454201

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93103393A Expired - Lifetime EP0561220B1 (fr) 1992-03-16 1993-03-03 Procédé pour le fonctionnement d'une installation de génération de vapeur et générateur de vapeur

Country Status (4)

Country Link
US (1) US5293842A (fr)
EP (1) EP0561220B1 (fr)
JP (1) JPH0626606A (fr)
DE (1) DE59300573D1 (fr)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0703514T3 (da) 1994-09-24 1999-04-26 Ebauchesfabrik Eta Ag Tidsmåling i et kommunikationssystem samt et kommunikationssystem og en modtager til brug i et sådant system
DE19544225A1 (de) * 1995-11-28 1997-06-05 Asea Brown Boveri Reinigung des Wasser-Dampfkreislaufs in einem Zwangsdurchlauferzeuger
DE19544226B4 (de) * 1995-11-28 2007-03-29 Alstom Kombianlage mit Mehrdruckkessel
US5762031A (en) * 1997-04-28 1998-06-09 Gurevich; Arkadiy M. Vertical drum-type boiler with enhanced circulation
DE19721854A1 (de) * 1997-05-26 1998-12-03 Asea Brown Boveri Verbesserung des Abscheidegrades von Dampfverunreinigungen in einem Dampf-Wasser-Separator
EP0894948B1 (fr) * 1997-07-28 2003-01-15 ALSTOM (Switzerland) Ltd Centrale combinée à gaz et à vapeur avec générateur de vapeur à passage unique
JP3373771B2 (ja) * 1997-10-08 2003-02-04 株式会社東芝 排熱回収ボイラ
DE19736885A1 (de) * 1997-08-25 1999-03-04 Siemens Ag Dampferzeuger, insbesondere Abhitzedampferzeuger und Verfahren zum Betrieb dieses Dampferzeugers
EP0919767B1 (fr) * 1997-12-01 2002-06-05 Alstom Centrale combinée gaz-vapeur avec un générateur de vapeur à passage unique
US5924389A (en) * 1998-04-03 1999-07-20 Combustion Engineering, Inc. Heat recovery steam generator
US6092490A (en) * 1998-04-03 2000-07-25 Combustion Engineering, Inc. Heat recovery steam generator
EP0981014B1 (fr) * 1998-08-18 2003-04-16 ALSTOM (Switzerland) Ltd Centrale d'énergie et procédé pour sa mise en marche et pour la purification de son cycle eau-vapeur
DE19926326A1 (de) * 1999-06-09 2000-12-14 Abb Alstom Power Ch Ag Verfahren und Anlage zum Erwärmen eines flüssigen Mediums
JP2002081612A (ja) * 2000-09-01 2002-03-22 Toshiba Corp 給水加熱器
US6508206B1 (en) * 2002-01-17 2003-01-21 Nooter/Eriksen, Inc. Feed water heater
US6857467B2 (en) * 2003-02-07 2005-02-22 Gestion Lach Inc. Heat exchange system and method
US6662758B1 (en) * 2003-03-10 2003-12-16 Kyungdong Boiler Co, Ltd. Condensing gas boiler for recollecting condensed latent heat using uptrend combustion
CA2430088A1 (fr) 2003-05-23 2004-11-23 Acs Engineering Technologies Inc. Methode et appareil de production de vapeur
JP4469222B2 (ja) 2004-05-19 2010-05-26 東京電力株式会社 複合発電プラント
EP1710498A1 (fr) * 2005-04-05 2006-10-11 Siemens Aktiengesellschaft Générateur de vapeur
JP4842007B2 (ja) * 2006-05-02 2011-12-21 バブコック日立株式会社 排熱回収ボイラ
JP4842071B2 (ja) * 2006-09-26 2011-12-21 バブコック日立株式会社 貫流式排熱回収ボイラの運転方法、ならびに発電設備の運転方法
WO2009106563A2 (fr) * 2008-02-26 2009-09-03 Alstom Technology Ltd Procédé de régulation d'un générateur de vapeur et circuit de régulation pour générateur de vapeur
EP2182278A1 (fr) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Générateur de vapeur en continu
EP2199547A1 (fr) * 2008-12-19 2010-06-23 Siemens Aktiengesellschaft Générateur de vapeur pour récupérer la chaleur et procédé de fonctionnement amélioré d'un générateur de vapeur pour récupérer la chaleur
NL2003596C2 (en) * 2009-10-06 2011-04-07 Nem Bv Cascading once through evaporator.
DE102010028426A1 (de) 2010-04-30 2011-11-03 Siemens Aktiengesellschaft Dampferzeuger
DE102010028720A1 (de) * 2010-05-07 2011-11-10 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Dampferzeugers
EP2834561B1 (fr) 2012-01-17 2021-11-24 General Electric Technology GmbH Agencement de tubes dans un évaporateur horizontal à passage unique
KR101697816B1 (ko) 2012-01-17 2017-01-18 제네럴 일렉트릭 테크놀러지 게엠베하 관류형 수평 증발기의 섹션들을 연결하기 위한 방법 및 장치
US10100680B2 (en) 2013-09-19 2018-10-16 Siemens Aktiengesellschaft Combined cycle gas turbine plant comprising a waste heat steam generator and fuel preheating step
EP2940381B1 (fr) * 2014-04-28 2016-12-28 General Electric Technology GmbH Système de préchauffage de milieu fluide
CN106461206B (zh) * 2014-04-28 2020-04-10 通用电器技术有限公司 用于流体介质预热的系统和方法
EP3048366A1 (fr) * 2015-01-23 2016-07-27 Siemens Aktiengesellschaft Générateur de vapeur à récupération de chaleur
US11118781B2 (en) * 2016-07-19 2021-09-14 Siemens Energy Global GmbH & Co. KG Vertical heat recovery steam generator
DE102018002086A1 (de) * 2018-03-09 2019-09-12 Borsig Gmbh Quenchsystem
CN116899245A (zh) * 2023-09-13 2023-10-20 山东天力能源股份有限公司 一种高浓度氯化镁卤水蒸发脱水装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3756023A (en) * 1971-12-01 1973-09-04 Westinghouse Electric Corp Heat recovery steam generator employing means for preventing economizer steaming
DE3326234A1 (de) * 1983-07-21 1985-02-07 La Mont Kessel Herpen & Co KG, 1000 Berlin Einrohrdampferzeuger
US4489679A (en) * 1983-12-12 1984-12-25 Combustion Engineering, Inc. Control system for economic operation of a steam generator
JPS6155501A (ja) * 1984-08-24 1986-03-20 株式会社日立製作所 排熱回収ボイラ
ATE41202T1 (de) * 1985-01-16 1989-03-15 Hamon Sobelco Sa Verfahren und vorrichtung fuer die energierueckgewinnung aus dem abgas eines thermischen kraftwerks.
JPH0718525B2 (ja) * 1987-05-06 1995-03-06 株式会社日立製作所 排ガスボイラ
NL8701573A (nl) * 1987-07-03 1989-02-01 Prometheus Energy Systems Werkwijze en inrichting voor het opwekken van elektrische en/of mechanische energie uit tenminste een laagwaardige brandstof.
US4961311A (en) * 1989-09-29 1990-10-09 Westinghouse Electric Corp. Deaerator heat exchanger for combined cycle power plant

Also Published As

Publication number Publication date
EP0561220A1 (fr) 1993-09-22
US5293842A (en) 1994-03-15
DE59300573D1 (de) 1995-10-19
JPH0626606A (ja) 1994-02-04

Similar Documents

Publication Publication Date Title
EP0561220B1 (fr) Procédé pour le fonctionnement d'une installation de génération de vapeur et générateur de vapeur
EP0591163B1 (fr) Installation combinee a turbines a gaz et a vapeur
EP0993581B1 (fr) Generateur de vapeur par recuperation de chaleur perdue
DE3882794T2 (de) Wärmewiedergewinnungskessel vom Zwischenüberhitzertyp und diesen verwendende Krafterzeugungsanlage.
EP0523467B1 (fr) Procédé pour opérer une installation à turbines à gaz et à vapeur et installation pour la mise en oeuvre du procédé
EP0778397B1 (fr) Procédé d'opération d'une centrale combinée avec une chaudière de récuperation et un consommateur de vapeur
EP0526816A1 (fr) Centrale à turbines à gaz et à vapeur avec un générateur de vapeur solaire
EP0515911B1 (fr) Méthode pour opérer une installation à turbines à gaz et à vapeur et une installation correspondante
DE3213837C2 (de) Abgasdampferzeuger mit Entgaser, insbesondere für kombinierte Gasturbinen-Dampfkraftanlagen
EP1390606B1 (fr) Dispositif de refroidissement du fluide de refroidissement d'une turbine a gaz et ensemble turbine a gaz et turbine a vapeur comportant un tel dispositif
DE102010041903A1 (de) Durchlaufdampferzeuger mit integriertem Zwischenüberhitzer
EP0918151B1 (fr) Dispositif et méthode pour préchauffer du carburant pour un dispositif de combustion
EP0898641A1 (fr) Installation a turbine a gaz et a turbine a vapeur et procede permettant de la faire fonctionner
EP1119688A1 (fr) Installation a turbine a gaz et a vapeur
DE10144841B9 (de) Solarthermisches Gas- und Dampfkraftwerk und Verfahren zur Umwandlung von thermischer Energie in elektrische Energie
EP0595009B1 (fr) Procédé de fonctionnement d'une centrale et centrale fonctionnant suivant ce procédé
EP0523466B1 (fr) Procédé de fonctionnement d'une installation à turbines à gaz et à vapeur et installation pour la mise en oeuvre du procédé
EP1076761B1 (fr) Installations a turbine a gaz et a turbine a vapeur
EP0582898A1 (fr) Méthode de fonctionnement d'un système à turbines à vapeur et à gaz et système pour la mise en oeuvre de la méthode
EP3017152B1 (fr) Centrale à cycle combiné gaz-vapeur munie d'un générateur de vapeur à récupération de chaleur et un pre-chauffage du carburant
EP0410111B1 (fr) Chaudière de récupération de chaleur pour une centrale à turbine à gaz et à vapeur
DE19720789B4 (de) Verfahren und Vorrichtung zur Erzeugung von Dampf
EP0840837B1 (fr) Procede d'exploitation d'une installation de turbines a gaz et a vapeur et installation exploitee selon ce procede
EP1425079B1 (fr) Procede et dispositif de degazage thermique de la substance active d'un processus a deux phases
DE19612921A1 (de) Kraftwerksanlage und Verfahren zum Betrieb einer Kraftwerksanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19931005

17Q First examination report despatched

Effective date: 19950220

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59300573

Country of ref document: DE

Date of ref document: 19951019

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951020

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120327

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120312

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120518

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59300573

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59300573

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20130302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130305

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20130302