EP0045970B1 - Verfahren zur Bestimmung der Stromausbeute bei galvanischen Bädern - Google Patents

Verfahren zur Bestimmung der Stromausbeute bei galvanischen Bädern Download PDF

Info

Publication number
EP0045970B1
EP0045970B1 EP81106263A EP81106263A EP0045970B1 EP 0045970 B1 EP0045970 B1 EP 0045970B1 EP 81106263 A EP81106263 A EP 81106263A EP 81106263 A EP81106263 A EP 81106263A EP 0045970 B1 EP0045970 B1 EP 0045970B1
Authority
EP
European Patent Office
Prior art keywords
electrode
current
rotating disc
electro
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81106263A
Other languages
English (en)
French (fr)
Other versions
EP0045970A1 (de
Inventor
Frank Dr. Vangaever
Jacky Dr. Vanhumbeeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0045970A1 publication Critical patent/EP0045970A1/de
Application granted granted Critical
Publication of EP0045970B1 publication Critical patent/EP0045970B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation

Definitions

  • the invention relates to a method for determining the current yield and possibly for determining the scatter in galvanic baths, according to the preamble of claim 1.
  • the invention has for its object to provide a method for determining the current efficiency in a galvanic bath.
  • the automatic determination of the current yield in conjunction with a corresponding control enables constant layer thicknesses to be maintained, in particular in the case of continuous galvanic systems.
  • the time for anodic removal of the deposited metal is preferably determined from the potential-time curve.
  • the potential between the rotating disk electrode and a reference electrode is recorded, which has a constant voltage.
  • the time for anodic removal is determined by at least two measurements with different distances between the rotating disk electrode and the counter electrode.
  • control of all components required for the automatic implementation of the method and / or the processing of measured values is preferably carried out by a process control circuit.
  • the method according to the invention is explained in more detail with reference to the drawing.
  • the drawing shows an arrangement for automatically measuring the current yield in principle.
  • I denotes a process part that contains a galvanic bath 1 as the most important part in which the process electrolyte is located. It is assumed that the galvanic bath is a continuous galvanic system.
  • the boxes denoted by 3 and 4 are intended to indicate that a defined current density (or current) and a specific belt speed can be specified in order to achieve a specific layer thickness, as indicated by a dashed arrow 5. Such systems are known per se and do not form the subject of this invention.
  • thermostatted measuring cell 6 which can be supplied with a defined amount of electrolyte solution from the galvanic bath 1 by means of a metering syringe 7 via a valve 8 and a line 9.
  • the measuring cell 7 has a rotating disk electrode 10, a counter electrode 11 opposite it and a reference electrode 12 as the working electrode.
  • the disk electrode 10 carries a metal disk 13 at the lower end, which faces the counter electrode 11.
  • the reference electrode 12 is conventional and can be, for example, a calomel, Ag or AgCL electrode.
  • the counterelectrode 11 can be, for example, a platinized titanium sheet, or it is adapted to the respective measurement problem, as is the metal disk 13 of the disk electrode 10.
  • the electromotive drive of the rotating disk electrode 10 is designated by 14, which is connected via lines 15 and 16 to an electronic part III is related, as will be described in more detail below.
  • a pipe 18 is connected, which leads, for example, to a waste container.
  • Another outlet of the three-way valve 18 is connected to the galvanic bath 1 via a pipeline 19, so that the bath sample located in the measuring cell 6 can be returned to the galvanic bath 1, which is particularly important when using a noble metal electrolyte.
  • a suitable electrolyte solution which can also be supplied to the measuring cell 6 by means of a metering syringe 21 via a pipeline 22. Furthermore, water or another liquid for rinsing and cleaning can be supplied to the measuring cell 6 via a pipe 23 and valve 24.
  • the electronic part III contains a control part 25 for the rotating disk electrode 10, the output Ant of which is connected to the connection of the line 15 which is identified by the same name.
  • the rotational speed of the disk electrode 10 can be specified via the control part 25.
  • a potentiograph is designated, which for recording the potential-time Curve serves.
  • the outputs of the potentiograph 26 labeled AE and BE are connected to the correspondingly labeled connections AE and BE of the working electrode 10 and the reference electrode 12, respectively.
  • the disk electrode 10 and the counter electrode 11 lie in a circuit which can be supplied with constant current by a current source 27.
  • the outputs AE and GE of the current source 27 are connected to the correspondingly designated connections of the disk electrode 10 and the counter electrode 11.
  • the electronics part 111 also contains a process control circuit 28 with a microprocessor 29 and an operating panel 30. Furthermore, the entire system is equipped with a controller 31. For example, the speed of rotation of the disc electrode 10 of the desired current density, i.e. be set and controlled by the microprocessor 29 to be examined electrolyte. Furthermore, the entire sequence of the measuring process and the regulation of the current density and the belt speed of the galvanic bath can be controlled by the same microprocessor 29.
  • the measuring cycle consists of the following steps: With the aid of the metering syringe 7, a defined amount of electrolyte solution is removed from the galvanic bath 1 and this bath sample is introduced into the thermostated measuring cell 6. Here, the temperature in the measuring cell during deposition is kept equal to the temperature in the galvanic bath 1.
  • the rotating working electrode 10 is used to increase and keep the mass transport constant.
  • the setting of the corresponding rotational speed of the disk electrode and the current density i k are controlled by the microprocessor 29.
  • the current is switched off and the bath sample from the measuring cell 6 is returned to the galvanic bath 1 via the three-way valve 17 and line 19.
  • the process control 28 then rinses the measuring cell 6 with water via valve 24 and drains it off via line 18.
  • a defined amount of electrolyte solution is then introduced from the electrolyte container 22 into the measuring cell 6 with the aid of the metering syringe 21.
  • This electrolyte solution is adapted to the metal precipitation; however, it should enable a constant, if possible 100% current yield when removing the metal deposited on the metal disk 13 of the disk electrode 10.
  • the potentials on the disk electrode 10 and on the counter electrode 11 are reversed, with the aid of the microprocessor 29 the anodic current i a and the optimum rotational speed of the disk electrode 10 being adjusted for removal.
  • the temperature is also kept constant during anodic removal. For procedural reasons, it can be kept lower, for example to avoid steam formation.
  • the potential-time data are continuously stored in the microprocessor 29 and the end point is determined therefrom.
  • the potential profile between the disk electrode 10 and the reference electrode 12 can be recorded during the removal.
  • the end point of the metal removal results in the time t a and is indicated in the potential-time curve by a strong change in potential.
  • the power supply to the electrodes is switched off; the measuring cell is then emptied and rinsed and prepared for a new measurement.
  • the disc electrode may need to be cleaned of any remaining deposits. A corresponding other liquid is used for this.
  • the amount of electricity required for removal is equal to i a ⁇ t a ⁇ ⁇ a , where ⁇ a is the anodic current yield.
  • the anodic current efficiency ⁇ a 1 can be kept by a suitable choice of the electrolyte solution.
  • the current yield can now be calculated using the microprocessor 29 in the following way:
  • the current density in the galvanic bath and / or the exposure time is preferably regulated as a function of the current yield (r lk ).
  • the evaluation of the potential-time curve for determining t a can be carried out in a manner known per se, for example by the intersection of straight lines through linear sections of the curve or a turning point in the case of an S-shaped curve.
  • the scattering of an electrolyte can also be determined with the method according to the invention.
  • Scattering means the fluctuating layer thickness that occurs on a part to be electroplated, if the distance between the surface of the part and the part ode is not the same.
  • at least two measurements with different distances between the rotating disk electrode 10 and the counter electrode 11 must be carried out to determine the scatter.
  • two mutually independent measuring cells with different distances between the rotating disk electrode (10) and the counter electrode (11) are used to determine the scatter. Two rik values are calculated from this; the ratio of these two values is a measure of the spread.
  • a rotating disk electrode which carries several suitable metal disks at the lower end, e.g. 2 for the ring-disc electrode and 3 for a split ring-disc electrode (i.e. the so-called split-ring-disc electrode).
  • Two or more llk values are calculated from this; the ratio of these values is a measure of the spread.
  • the measuring principle according to the invention is not limited to the direct voltage method, but can e.g. can also be used for pulse separation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Bestimmung der Stromausbeute und ggf. zur Ermittlung der Streuung bei galvanischen Bädern, gemäss dem Oberbegriff des Anspruchs 1.
  • Bei der Metallabscheidung führen Schwankungen in der Stromausbeute zu Schwankungen in der Schichtdicke, vor allem, wenn beim Abscheidungsprozess lediglich nach Stromdichte und Expositionszeit (Amperestundenzahl) gearbeitet wird. Die Stromausbeute ist nicht nur vom Gehalt der Badkomponenten sondern auch von einer ganzen Reihe von Einflussgrössen abhängig, die nicht mit den üblichen analytischen Verfahren erfassbar sind. Daher sind reine Amperestundenzahlen und die übliche analytische Überwachung des Bades keine ausreichenden Kriterien für die Konstanthaltung der Schichtdicke. Für die Konstanthaltung einer bestimmten Schichtdicke ist vielmehr das Produktη massgebend, wobei i den Strom (bzw. die Stromdichte), t die Expositionszeit und 1] die Stromausbeute bedeuten.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Bestimmung der Stromausbeute bei einem galvanischen Bad zu schaffen. Insbesondere die automatische Bestimmung der Stromausbeute in Verbindung mit einer entsprechenden Regelung ermöglicht das Einhalten von konstanten Schichtdicken, insbesondere bei galvanischen Durchlaufanlagen.
  • Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art dadurch gelöst, dass die auf der rotierenden Scheibenelektrode abgeschiedene Schicht mit Hilfe einer geeigneten Elektrolytlösung unter Umpolung der Gleichspannung bei konstantem Strom ia und in einer zu ermittelnden Zeit ta anodisch abgetragen wird und dass die Stromausbeute rlk nach der Formel
    Figure imgb0001
    berechnet wird, worin ηa die Stromausbeute des anodischen Abtragens bedeutet.
  • Vorzugsweise wird die Zeit zum anodischen Abtragen des abgeschiedenen Metalls aus der Potential-Zeit-Kurve ermittelt. Hierbei wird zur Aufnahme der Potential-Zeit-Kurve das Potential zwischen rotierender Scheibenelektrode und einer Bezugselektrode erfasst, welche eine konstante Spannung aufweist.
  • Zur Ermittlung der Streuung wird die Zeit zum anodischen Abtragen durch mindestens zwei Messungen mit verschiedenen Abständen zwischen der rotierenden Scheibenelektrode und der Gegenelektrode ermittelt.
  • Vorzugsweise erfolgt die Steuerung sämtlicher für die automatische Durchführung des Verfahrens erforderlichen Bauteile und/oder die Messwertverarbeitung von einer Prozesssteuerschaltung.
  • Anhand der Zeichnung wird das erfindungsgemässe Verfahren näher erläutert. Die Zeichnung zeigt eine Anordnung zum automatischen Messen der Stromausbeute im Prinzip.
  • Mit I ist ein Prozessteil bezeichnet, der ein galvanisches Bad 1 als wesentlichsten Teil enthält, in welchem sich der Prozesselektrolyt befindet. Es ist angenommen, dass es sich bei dem galvanischen Bad um eine galvanische Durchlaufanlage handelt. Durch die mit 3 und 4 bezeichneten Kästchen soll angedeutet werden, dass zur Erzielung einer bestimmten Schichtdicke eine definierte Stromdichte (bzw. Strom) und eine bestimmte Bandgeschwindigkeit vorgebbar sind, wie durch einen gestrichelten Pfeil 5 angedeutet ist. Derartige Anlagen sind an sich bekannt und bilden nicht Gegenstand dieser Erfindung.
  • Mit II ist ein Messteil zur Erfassung der für die Bestimmung der Stromausbeute massgebenden Grössen bezeichnet. Er enthält eine thermostatisierte Messzelle 6, der mit Hilfe einer Dosierspritze 7 über ein Ventil 8 und eine Leitung 9 eine definierte Menge Elektrolytlösung aus dem galvanischen Bad 1 zuführbar ist.
  • Die Messzelle 7 weist als Arbeitselektrode eine rotierende Scheibenelektrode 10, eine dieser gegenüberstehende Gegenelektrode 11 und eine Bezugselektrode 12 auf. Die Scheibenelektrode 10 trägt am unteren Ende eine Metallscheibe 13, die der Gegenelektrode 11 gegenübersteht. Die Bezugselektrode 12 ist herkömmlicher Art und kann beispielsweise eine Kalomel-, Ag- oder AgCL-Elektrode sein. Die Gegenelektrode 11 kann beispielsweise ein platiniertes Titanblech sein, bzw. sie ist dem jeweiligen Messproblem angepasst, wie auch die Metallscheibe 13 der Scheibenelektrode 10. Mit 14 ist der elektromotorische Antrieb der rotierenden Scheibenelektrode 10 bezeichnet, der über Leitungen 15 und 16 mit einem Elektronikteil III in Verbindung steht, wie weiter unten noch näher beschrieben wird.
  • Am unteren Ende der Messzelle 6 befindet sich ein vorzugsweise automatisch betätigbarer Dreiwegehahn 17, an dem eine Rohrleitung 18 angeschlossen ist, die beispielsweise zu einem Abfallbehälter führt. Ein weiterer Ausgang des Dreiwegehahns 18 ist über eine Rohrleitung 19 mit dem galvanischen Bad 1 verbunden, damit die in der Messzelle 6 befindliche Badprobe in das galvanische Bad 1 zurückgeführt werden kann, was insbesondere bei Verwendung eines Edelmetall-Elektrolyten von Bedeutung ist.
  • Mit 20 ist ein Elektrolytbehälter bezeichnet, in dem sich eine geeignete Elektrolytlösung befindet, die mit Hilfe einer Dosierspritze 21 über eine Rohrleitung 22 ebenfalls der Messzelle 6 zugeführt werden kann. Ferner kann über eine Rohrleitung 23 und Ventil 24 der Messzelle 6 Wasser oder eine andere Flüssigkeit zum Spülen und Reinigen zugeführt werden.
  • Der Elektronikteil III enthält einen Steuerungsteil 25, für die rotierende Scheibenelektrode 10, dessen Ausgang Ant mit dem gleich bezeichneten Anschluss der Leitung 15 in Verbindung steht. Über den Steuerungsteil 25 kann die Drehgeschwindigkeit der Scheibenelektrode 10 vorgegeben werden. Mit 26 ist ein Potentiograph bezeichnet, der zur Aufnahme der Potential-Zeit-Kurve dient. Die mit AE und BE bezeichneten Ausgänge des Potentiographen 26 sind mit den entsprechend bezeichneten Anschlüssen AE und BE der Arbeitselektrode 10 bzw. der Bezugselektrode 12 verbunden.
  • Die Scheibenelektrode 10 und die Gegenelektrode 11 liegen in einem Stromkreis, der von einer Stromquelle 27 mit konstantem Strom versorgt werden kann. Die Ausgänge AE und GE der Stromquelle 27 sind mit den entsprechend bezeichneten Anschlüssen der Scheibenelektrode 10 bzw. dfer Gegenelektrode 11 verbunden.
  • Schliesslich enthält der Elektronikteil 111 noch eine Prozesssteuerschaltung 28 mit einem Mikroprozessor 29 sowie einem Bedienfeld 30. Ferner ist die ganze Anlage mit einer Regelung 31 ausgestattet. So kann beispielsweise die Rotationsgeschwindigkeit der Scheibenelektrode 10 der gewünschten Stromdichte, d.h. dem zur untersuchenden Elektrolyten von dem Mikroprozessor 29 eingestellt und gesteuert werden. Ferner kann der ganze Ablauf des Messvorgangs und die Regelung der Stromdichte und der Bandgeschwindigkeit des galvanischen Bades von dem selben Mikroprozessor 29 gesteuert sein.
  • Der Messzyklus besteht aus folgenden Schritten: Mit Hilfe der Dosierspritze 7 wird eine definierte Menge Elektrolytlösung dem galvanischen Bad 1 entnommen und diese Badprobe in die thermostatisierte Messzelle 6 eingebracht. Hierbei wird die Temperatur in der Messzelle beim Abscheiden gleich der Temperatur in dem galvanischen Bad 1 gehalten.
  • Mit einem konstanten Strom ik (bzw. Stromdichte jk), der möglichst genau der Stromdichte in dem galvanischen Bad 1 entspricht, wird während einer vorgegebenen Zeit tk Metall abgeschieden. Das Produkt ik x tk entspricht der zugeführten Elektrizitätsmenge (Amperestundenzahl). In der Praxis wird jedoch nur ein Teil ηk von dieser gesamten Elektrizitätsmenge für die eigentliche Metallabscheidung verbraucht; daher ist die Grösse ηk die für den vorliegenden Prozess gesuchte Stromausbeute.
  • Die Aussagekraft der automatischen Bestimmung der Stromausbeute in der Messzelle 6 wird desto grösser sein je genauer der Prozessablauf im galvanischen Bad 1 in der Messzelle 6 simuliert wird.
  • Um grosse Stromdichten in der Messzelle verwenden zu können, wie sie z.B. in Durchlaufanlagen üblich sind, wird zur Steigerung und Konstanthaltung des Stofftransportes die rotierende Arbeitselektrode 10 eingesetzt. Die Einstellung der entsprechenden Drehgeschwindigkeit der Scheibenelektrode und der Stromdichte ik werden von dem Mikroprozessor 29 gesteuert. Sobald die eingestellte Elektrolyse-Zeit tk erreicht ist, wird der Strom abgeschaltet und die Badprobe aus der Messzelle 6 über den Dreiwegehahn 17 und Leitung 19 wieder dem galvansichen Bad 1 zugeführt. Anschliessend wird von der Prozesssteuerung 28 über Ventil 24 die Messzelle 6 mit Wasser gespült und dieses über Leitung 18 abgeleitet.
  • Danach wird mit Hilfe der Dosierspritze 21 eine definierte Menge Elektrolytlösung aus dem Elektrolytbehälter 22 in die Messzelle 6 eingebracht. Diese Elektrolytlösung wird dem Metallniederschlag angepasst; sie soll jedoch eine konstante, möglichst 100%ige Stromausbeute beim Abtragen des auf der Metallscheibe 13 der Scheibenelektrode 10 abgeschiedenen Metalls ermöglichen. Die Potentiale an der Scheibenelektrode 10 und an der Gegenelektrode 11 werden umgepolt, wobei mit Hilfe des Mikroprozessors 29 der anodische Strom ia und die zum Abtragen optimale Rotationsgeschwindigkeit der Scheibenelektrode 10 eingestellt werden. Während des anodischen Abtragens wird die Temperatur ebenfalls konstant gehalten. Sie kann aus verfahrenstechnischen Gründen niedriger gehalten werden, um z.B. Dampfbildung zu vermeiden.
  • Zur Aufnahme der Potential-Zeit-Kurve werden die Potential-Zeitdaten laufend im Mikroprozessor 29 eingespeichert und daraus der Endpunkt ermittelt. Mit Hilfe des Potentiographen 26 kann der Potentialverlauf zwischen Scheibenelektrode 10 und Bezugselektrode 12 während der Abtragung aufgenommen werden. Der Endpunkt der Metallabtragung ergibt die Zeit ta und wird in der Potential-Zeit-Kurve durch eine starke Potentialänderung angezeigt. Nach Bestimmung des Endpunktes wird veranlasst, dass die Stromzufuhr zu den Elektroden abgeschaltet wird; danach wird die Messzelle entleert und gespült und für eine neue Messung vorbereitet.
  • Unter Umständen muss die Scheibenelektrode von restlichen Abscheidungen gereinigt werden. Hierzu wird eine entsprechende andere Flüssigkeit verwendet.
  • Die zum Abtragen benötigte Elektrizitätsmenge ist gleich ia × ta × ηa, wobei ηa die anodische Stromausbeute ist. Durch geeignete Wahl der Elektrolytlösung kann die anodische Stromausbeute ηa = 1 gehalten werden. Die Stromausbeute kann nun mit Hilfe des Mikroprozessors 29 auf folgende Weise berechnet werden:
    Figure imgb0002
  • Dieser Wert kann zusammen mit der eingestellten Stromdichte und Rotationsgeschwindigkeit protokolliert werden. Vorzugsweise wird die Stromdichte im galvanischen Bad und/oder die Expositionszeit in Abhängigkeit von der Stromausbeute (rlk) geregelt.
  • Die Auswertung der Potential-Zeit-Kurve zur Bestimmung von ta kann in an sich bekannter Weise vorgenommen werden, beispielsweise durch den Schnittpunkt von Geraden durch lineare Abschnitte der Kurve oder einen Wendepunkt bei S-förmigem Kurvenverlauf.
  • Mit dem erfindungsgemässen Verfahren kann auch die Streuung eines Elektrolyten bestimmt werden. Unter der Streuung versteht man die an einem zu galvanisierenden Teil auftretende schwankende Schichtdicke, wenn die Entfernung zwischen der Oberfläche des Teiles und der Anode nicht gleich ist. Zur Ermittlung der Streuung sind gemäss einem weiteren Merkmal mindestens zwei Messungen mit verschiedenen Abständen zwischen der rotierenden Scheibenelektrode 10 und der Gegenelektrode 11 vorzunehmen. Vorzugsweise werden zur Ermittlung der Streuung zwei voneinander unabhängige Messzellen mit unterschiedlichen Abständen zwischen der rotierenden Scheibenelektrode (10) und der Gegenelektrode (11) verwendet. Daraus werden zwei rik-Werte errechnet; das Verhältnis dieser beiden Werte ist ein Mass für die Streuung.
  • Vorzugsweise wird zur Ermittlung der Streuung im obengenannten Zweizellensystem oder in einer einzigen Zelle, eine rotierende Scheibenelektrode verwendet, welche am unteren Ende mehrere geeignete Metallscheiben trägt, z.B. 2 für die Ring-Scheibe Elektrode und 3 für eine gespaltete Ring-Scheibe Elektrode (d.h. die sog. Split-ring-disc electrode).
  • Daraus werden zwei oder mehrere llk-Werte errechnet; das Verhältnis dieser Werte ist ein Mass für die Streuung.
  • Das erfindungsgemässe Messprinzip ist nicht beschränkt auf das Gleichspannungsverfahren, sondern kann z.B. auch für die Pulsabscheidung eingesetzt werden.

Claims (18)

1. Verfahren zur Bestimmung der Stromausbeute und ggf. zur Ermittlung der Streuung bei galvanischen Bädern, wobei dem galvanischen Bad (1) eine Badprobe entnommen wird und aus dieser in einer Messzelle (6) unter dem Einfluss einer negativen Gleichspannung bei konstantem Strom (ik) während einer vorgegebenen Zeit (tk) auf einer rotierenden Scheibenelektrode (10) Metall abgeschieden wird, dadurch gekennzeichnet, dass die auf der rotierenden Scheibenelektrode (10) abgeschiedene Schicht mit Hilfe einer geeigneten Elektrolytlösung unter Umpolung der Gleichspannung bei konstantem Strom (ia) und in einer zu ermittelnden Zeit (ta) anodisch abgetragen wird, und dass die Stromausbeute (ηk) nach der Formel
Figure imgb0003
berechnet wird, worin ηa die Stromausbeute des anodischen Abtragens bedeutet.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Zeit (ta) zum anodischen Abtragen des abgeschiedenen Metalls aus der Potential-Zeit-Kurve ermittelt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Zeit (ta) des anodischen Abtragens des abgeschiedenen Metalls aus der Potentialänderung der Potential-Zeit-Kurve ermittelt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zum anodischen Abtragen eine Elektrolytlösung verwendet wird, die eine konstante Stromausbeute ergibt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass zum anodischen Abtragen eine Elektrolytlösung verwendet wird, die eine konstante Stromausbeute von 100% ergibt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Strom (ik) so gewählt wird, dass die Stromdichte in der Messzelle (6) etwa der Stromdichte in dem galvanischen Bad (1) entspricht.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Temperatur in der Messzelle (6) beim Abscheiden gleich der Temperatur im galvanischen Bad (1) gehalten wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Temperatur in der Messzelle (6) während des anodischen Abtragens konstant gehalten wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Strom (ik) und die Drehgeschwindigkeit der rotierenden Scheibenelektrode (10) in Abhängigkeit von den Bedingungen der galvanischen Abscheidung im galvanischen Bad (1) eingestellt und/oder gesteuert werden.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Stromdichte im galvanischen Bad (1) und/oder die Expositionszeit in Abhängigkeit von der Stromausbeute (llk) geregelt werden.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass nach Abschluss der Metallabscheidung und/oder am Ende der Messung die Messzelle (6) mit einer Spülflüssigkeit gereinigt wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass zur chemischen Reinigung der rotierenden Scheibenelektrode (10) eine entsprechende Spülflüssigkeit verwendet wird.
13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die konstanten Ströme (ik) und (ia) über die rotierende Scheibenelektrode (10) und einer dieser gegenüberstehenden Gegenelektrode (11) geführt sind und dass zur Aufnahme der Potential-Zeit-Kurve das Potential zwischen rotierender Elektrode (10) und einer Bezugselektrode (12) erfasst wird, welche eine konstante Spannung aufweist.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass eine Metallscheibe (13) der rotierenden Scheibenelektrode (10) und/oder die Metallart der Gegenelektrode (11) dem galvanischen Bad (1) angepasst sind.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass zur Ermittlung der Streuung die Zeit (ta) zum anodischen Abtragen durch mindestens zwei Messungen mit verschiedenen Abständen zwischen der rotierenden Scheibenelektrode (10) und der Gegenelektrode (11) ermittelt wird.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass zur Ermittlung der Streuung mindestens zwei Messzellen mit unterschiedlichen Abständen zwischen der rotierenden Scheibenelektrode (10) und der Gegenelektrode verwendet werden.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Steuerung sämtlicher für die automatische Durchführung des Verfahrens erforderlichen Bauteile und/oder die Messwertverarbeitung von einer Prozesssteuerschaltung (28) erfolgt.
EP81106263A 1980-08-13 1981-08-11 Verfahren zur Bestimmung der Stromausbeute bei galvanischen Bädern Expired EP0045970B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3030664A DE3030664C2 (de) 1980-08-13 1980-08-13 Verfahren zur Bestimmung der Stromausbeute bei galvanischen Bädern
DE3030664 1980-08-13

Publications (2)

Publication Number Publication Date
EP0045970A1 EP0045970A1 (de) 1982-02-17
EP0045970B1 true EP0045970B1 (de) 1985-01-16

Family

ID=6109561

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81106263A Expired EP0045970B1 (de) 1980-08-13 1981-08-11 Verfahren zur Bestimmung der Stromausbeute bei galvanischen Bädern

Country Status (5)

Country Link
US (1) US4595462A (de)
EP (1) EP0045970B1 (de)
JP (1) JPS5754849A (de)
CA (1) CA1166187A (de)
DE (1) DE3030664C2 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8408113D0 (en) * 1984-03-29 1984-05-10 Quantel Ltd Video editing/viewing systems
US4917774A (en) * 1986-04-24 1990-04-17 Shipley Company Inc. Method for analyzing additive concentration
US4956610A (en) * 1988-02-12 1990-09-11 Pgm Diversified Industries, Inc. Current density measurement system by self-sustaining magnetic oscillation
US5059908A (en) * 1990-05-31 1991-10-22 Capital Controls Company, Inc. Amperimetric measurement with cell electrode deplating
CA2087801C (en) * 1993-01-21 1996-08-13 Noranda Ipco Inc. Method and apparatus for on-line monitoring the quality of a purified metal sulphate solution
US6269533B2 (en) * 1999-02-23 2001-08-07 Advanced Research Corporation Method of making a patterned magnetic recording head
US6496328B1 (en) 1999-12-30 2002-12-17 Advanced Research Corporation Low inductance, ferrite sub-gap substrate structure for surface film magnetic recording heads
US20040040842A1 (en) * 2002-09-03 2004-03-04 King Mackenzie E. Electrochemical analytical apparatus and method of using the same
US6986835B2 (en) * 2002-11-04 2006-01-17 Applied Materials Inc. Apparatus for plating solution analysis
US20050067304A1 (en) * 2003-09-26 2005-03-31 King Mackenzie E. Electrode assembly for analysis of metal electroplating solution, comprising self-cleaning mechanism, plating optimization mechanism, and/or voltage limiting mechanism
US20050109624A1 (en) * 2003-11-25 2005-05-26 Mackenzie King On-wafer electrochemical deposition plating metrology process and apparatus
US20050224370A1 (en) * 2004-04-07 2005-10-13 Jun Liu Electrochemical deposition analysis system including high-stability electrode
US6984299B2 (en) * 2004-04-27 2006-01-10 Advanced Technology Material, Inc. Methods for determining organic component concentrations in an electrolytic solution
US7435320B2 (en) 2004-04-30 2008-10-14 Advanced Technology Materials, Inc. Methods and apparatuses for monitoring organic additives in electrochemical deposition solutions
US7427346B2 (en) * 2004-05-04 2008-09-23 Advanced Technology Materials, Inc. Electrochemical drive circuitry and method
US7780842B2 (en) * 2004-06-11 2010-08-24 Carnegie Mellon University Apparatus and method for determining the zeta potential of surfaces for the measurement of streaming metrics related thereto
US7851222B2 (en) * 2005-07-26 2010-12-14 Applied Materials, Inc. System and methods for measuring chemical concentrations of a plating solution
US20070261963A1 (en) * 2006-02-02 2007-11-15 Advanced Technology Materials, Inc. Simultaneous inorganic, organic and byproduct analysis in electrochemical deposition solutions
DE102008061877B3 (de) * 2008-12-11 2010-09-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur Bestimmung von Prozessbedingungen bei der elektrochemischen Beschichtung eines Profilkörpers und Verfahren
EP2495357B1 (de) 2010-11-25 2014-10-08 Somonic Solutions GmbH Einrichtung und Verfahren zur Messung der Geschwindigkeit oder der Stromausbeute bei der Abscheidung oder beim Abtrag von Oberflächen und zur darauf basierenden Prozesssteuerung
DE102015106432A1 (de) 2015-04-27 2016-10-27 Gramm Technik Gmbh Verfahren und Vorrichtung zur Herstellung eines Werkstücks
CN106199199B (zh) * 2016-09-30 2017-06-16 山东齐星新能源科技有限责任公司 一种软包装锂离子电池铝塑膜腐蚀的检测方法
US10329683B2 (en) * 2016-11-03 2019-06-25 Lam Research Corporation Process for optimizing cobalt electrofill using sacrificial oxidants

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215609A (en) * 1962-12-04 1965-11-02 Conversion Chem Corp Electroplating test cell and method
DE1935231C3 (de) * 1969-07-11 1979-04-05 Fernsteuergeraete Kurt Oelsch Kg, 1000 Berlin Verfahren zur Bestimmung der Stromansbeute elektrolytischer Bäder
US4132605A (en) * 1976-12-27 1979-01-02 Rockwell International Corporation Method for evaluating the quality of electroplating baths
US4102770A (en) * 1977-07-18 1978-07-25 American Chemical And Refining Company Incorporated Electroplating test cell
US4153521A (en) * 1977-08-05 1979-05-08 Litvak Rafael S Method of automatic control and optimization of electrodeposition conditions
US4229264A (en) * 1978-11-06 1980-10-21 The Boeing Company Method for measuring the relative etching or stripping rate of a solution
US4310389A (en) * 1980-06-16 1982-01-12 Chrysler Corporation Method for simultaneous determination of thickness and electrochemical potential in multilayer plated deposits

Also Published As

Publication number Publication date
JPS5754849A (en) 1982-04-01
DE3030664A1 (de) 1982-03-18
DE3030664C2 (de) 1982-10-21
EP0045970A1 (de) 1982-02-17
US4595462A (en) 1986-06-17
CA1166187A (en) 1984-04-24
JPH021262B2 (de) 1990-01-10

Similar Documents

Publication Publication Date Title
EP0045970B1 (de) Verfahren zur Bestimmung der Stromausbeute bei galvanischen Bädern
DE69534714T2 (de) Verfahren und vorrichtung zum steuern der zufuhr von wasserbehandlungschemikalien unter verwendung eines voltametrischen sensors
DE69121473T2 (de) Strommessung mit Entfernen der galvanischen Schicht an den Elektroden einer Zelle
DE3010750C2 (de)
DE2837219C2 (de)
DE2521282B1 (de) Prozessteueranlage zum selbsttaetigen analysieren und auffrischen von galvanischen baedern
DE3783831T2 (de) Verfahren und vorrichtung zur kontrolle des organischen kontaminationspegels in einem platierungsbad ohne elektrode.
DE2711989B1 (de) Elektrochemische Bestimmung von Schwermetallen in Wasser
EP0581081A1 (de) Verfahren zur Bestimmung von Persäuren
DE2352040A1 (de) Verfahren und vorrichtung zur selektiven loesung eines metalls
DE2610992A1 (de) Verfahren und vorrichtung zum bestimmen des prozentualen gesamtvolumens von partikeln in einer fluessigen probe
DE69734221T2 (de) Verfahren und Vorrichtung zur elektrochemischen Feinbearbeitung von Materialien
DE3941157A1 (de) Ionenmesselektrode zur prozesssteuerung
DE3884447T2 (de) In-situ-Überwachung der Korrosionsrate von polarisierten oder unpolarisierten Metallen.
DE69401984T2 (de) Verfahren und Vorrichtung zur elektrolytischen Silberrückgewinnung in zwei Filmentwicklungsmaschinen
DE2542863A1 (de) Verfahren und vorrichtung zur elektrochemischen bestimmung der konzentration von schwermetallen in wasser
EP0022503B1 (de) Vorrichtung zur Anzeige der metallspezifischen Beladung von Ionenaustauschern
DE3712377C2 (de)
DE3050290A1 (de) Verfahren zur bestimmung der stromausbeute bei galvanischen baedern
EP0834739A2 (de) Verfahren und Vorrichtung zur Bestimmung der Oxidierbarkeit von Abwasserinhaltsstoffen
DE69121691T2 (de) Messvorrichtung und Verfahren zum Reinigen einer Messelektrode der genannten Vorrichtung
EP0062250B1 (de) Fehlerkompensierendes elektroanalytisches Messverfahren, sowie Messgerät zur Durchführung des Messverfahrens
US5411648A (en) Method and apparatus for on-line monitoring the quality of a purified metal sulphate solution
DE2523768A1 (de) Verfahren zur bestimmung der konzentration geloester stoffe und vorrichtung zu seiner durchfuehrung
DE3144187A1 (de) "verfahren zur bestimmung der stromausbeute bei elektrochemischen prozessen"

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19811028

AK Designated contracting states

Designated state(s): BE FR GB IT LU NL SE

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE FR GB IT LU NL SE

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19850831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900719

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900822

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19900827

Year of fee payment: 10

Ref country code: FR

Payment date: 19900827

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900831

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19900913

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19910831

BERE Be: lapsed

Owner name: SIEMENS A.G. BERLIN UND MUNCHEN

Effective date: 19910831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920301

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19920430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 81106263.7

Effective date: 19920306