EP0040690B1 - Einrichtung zur Verbrennung oxidierbarer Substanzen in Abgasen - Google Patents

Einrichtung zur Verbrennung oxidierbarer Substanzen in Abgasen Download PDF

Info

Publication number
EP0040690B1
EP0040690B1 EP81102739A EP81102739A EP0040690B1 EP 0040690 B1 EP0040690 B1 EP 0040690B1 EP 81102739 A EP81102739 A EP 81102739A EP 81102739 A EP81102739 A EP 81102739A EP 0040690 B1 EP0040690 B1 EP 0040690B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
combustion apparatus
burner
combustion
longitudinal axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81102739A
Other languages
English (en)
French (fr)
Other versions
EP0040690A1 (de
Inventor
Wilhelm Betz
Herbert J. Obermüller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sequa & Co Megtec Systems KG GmbH
Original Assignee
KATEC KATALYTISCHE LUFTTECHNIK BETZ & Co GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATEC KATALYTISCHE LUFTTECHNIK BETZ & Co GmbH filed Critical KATEC KATALYTISCHE LUFTTECHNIK BETZ & Co GmbH
Priority to AT81102739T priority Critical patent/ATE5022T1/de
Publication of EP0040690A1 publication Critical patent/EP0040690A1/de
Application granted granted Critical
Publication of EP0040690B1 publication Critical patent/EP0040690B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator

Definitions

  • the present invention relates to a combustion device for the combustion of oxidizable substances in exhaust gases, but in particular the design of the heat exchanger and the design of an inflow space into which a burner axially fires.
  • Combustion devices of this type are becoming increasingly important in the context of environmental protection, in particular in those cases in which small quantities of oxidizable substances have to be removed from large amounts of exhaust air because the legal provisions so require.
  • Such a combustion device is known from US-A-3607118 and from DE-B2-2352204.
  • the gases are fed through a recuperative heat exchanger to a burner firing in the direction of the longitudinal axis of the combustion device into a flame tube and, after leaving an actual combustion chamber, serve as heating gases for the heat exchanger.
  • the heat exchanger is designed as a tube bundle of straight tubes that extends concentrically to the longitudinal axis within the combustion device, the ends of which are welded into perforated plates.
  • the object of the present invention was to provide a combustion device in which the heat exchanger is designed such that temperature-related different expansions of individual pipes do not generate any thermal stresses on the end plates of the heat exchanger and that one end of the heat exchanger is formed at the same time in such a way that the inflow conditions of the burner can be improved.
  • a combustion device for burning oxidizable substances in exhaust gases with a burner and a mixing device, an adjoining high-speed pipe, a swirl chamber located at its free end and designed as a combustion chamber, the high-speed pipe projecting concentrically into the swirl chamber, and one with the Whirl chamber via a post-combustion chamber connected to this concentrically surrounding heat exchanger, in which the individual tubes of the tube bundle extending parallel to the longitudinal axis are inserted at one end into the end wall of the exhaust gas inlet annular space, and a burner stem arranged around the longitudinal axis of the combustion device has such a diameter, that an annular gap is created between the edge of the burner stem and the inflow cone.
  • the characteristic of the invention is that the individual tubes of the heat exchanger are bent at their other ends inwards onto the longitudinal axis of the combustion device, the bent ends being inserted in a drum concentrically surrounding the burner stem and the individual tubes of the heat exchanger concentrating on the longitudinal axis Circular rings are arranged so that the air flows around them at approximately the same speed.
  • this end of the heat exchanger Due to the bending of the individual tubes of the heat exchanger in the direction of the axis of the combustion device and the penetration of the tube ends into a preferably cylindrical or conical perforated drum arranged concentrically around the longitudinal axis, this end of the heat exchanger is no longer directly flown by the hot flue gases, but rather these are deflected and deflected by a connecting wall so that they strike a section of the pipe that has not yet been bent. As a result, the thermal load on the connection points between the pipe ends and the drum becomes more uniform.
  • the burner stem designed so that an annular gap is formed between the end of the burner stem with the inflow cone.
  • the burner stem is provided with gas passage openings of such a size that their overall cross-section brings about a division of the gas flow emerging from the heat exchanger into the inflow space.
  • One partial gas flow enters the high-speed tube through the annular gap, and the other partial flow passes through the openings directly into the interior of the burner stem, in which the actual fuel flame is generated. In this way, a particularly intensive mixture of the exhaust air with the fuel is achieved and the oxygen required for burning is extracted from the exhaust air.
  • the burner stem is designed to be displaceable in the direction of the longitudinal axis, and / or the end of the burner stem facing the mixing chamber has an adjustable, attached aperture ring.
  • This aperture ring has devices that allow adjustment from the outside without interruptions in operation.
  • the diameter of the burner stem and drum are dimensioned such that the inflow space that arises between them is sufficiently large to be able to accommodate an annular injection device for further substances. If, in this embodiment of the invention, an injection device is present in the inflow space, there is the possibility of further optimizing the mode of operation of the combustion device according to the invention by introducing liquid or gaseous substances such as water, waste liquids and the like. The evaporation of the injected liquid products takes place on the basis of the existing radiation energy of the burner.
  • the cross section of the flame tube or high-speed tube is very narrow, so that flow velocities of 40 to 60 m / sec can be achieved.
  • the end of the flame tube facing the burner stem is conical as a Venturi tube, the interior of which serves as an additional mixing zone for the exhaust air with the burner gases.
  • the other end of the high-speed tube extends into the main combustion chamber.
  • the inventive design of the heat exchanger end and the inflow chamber achieves such an intensive premixing of the exhaust gas with the fuel that, at the high flow velocities in the flame tube, the contaminants contained in the exhaust gases are largely or completely burned off at temperatures of 720 ° in the combustion chamber.
  • the separation of the heat exchanger part and the combustion chamber part in the combustion device has the particular advantage that the length and size of the actual combustion chamber on the tube can be varied depending on the requirements of the actual combustion process, but the heat exchanger part and the head part of the combustion device do not have to be changed. This, however, enables inexpensive series production of these parts in several basic sizes, while the high-speed pipe and combustion chamber can be adapted to the specific conditions.
  • the inventive design of the combustion device allows systems for an exhaust air throughput of 5000 m 3 , but also of 20 000 m 3 to be carried out in a particularly compact design and with these systems, impurity levels in the exhaust air from 100 mg to several grams per m 3 safely and can be reliably eliminated and in this way comply with the statutory provisions on the permissible limit values in exhaust air.
  • the particular advantage of the combustion device according to the invention is that it permits production-related interruptions in operation, without thermal voltages being able to build up during heating and cooling, in particular in the area of the heat exchanger, which can lead to damage in the device.
  • the combustion device shown in FIG. 1 consists of a high-speed tube 1 which is variable in length and narrow in cross section, the rear end of which projects into the actual combustion chamber 4.
  • the high-speed pipe 1 preferably extends far into the combustion chamber, so that an annular space is created between the end thereof and the end wall of the combustion device, which results in a transition into the actual combustion chamber 4.
  • This configuration creates an intense turbulence of the gas flow in the actual combustion chamber 4 in order to prevent the deposition of solid particles contained in the exhaust gases Avoid walls of the vortex chamber 4 and to allow such particles to burn almost completely.
  • internals can also be present in order to give the gas flow an additional swirl and to increase the turbulence. This also increases the residence time of solid particles in the swirl chamber 4, so that the combustion of the particles improves.
  • the opposite end 1 of the high-speed or flame tube (HGR) 1 is designed as a Venturi tube and serves as a mixing device or additional mixing space.
  • the annular space 9, which partially surrounds the HGR 1, serves as an afterburning space and connects to the combustion space 4.
  • a burner stem 14 adjoins the venturi part 1a of the HGR 1 axially in such a way that an annular gap 2 is formed between the inflow cone 7 and the burner stem 14, through which part of the exhaust gas can enter the HGR 1.
  • the burner designated by number 13 is understood to mean any type of conventional industrial burner, including so-called surface burners, which are designed either as primary or as secondary air burners.
  • the essential parts of the burner 13 can be attached outside the overall system and concentrically to the system axis on the front side of the combustion device.
  • the burner stem 14 has holes through which a partial flow of the exhaust gas from the inflow space 15 can reach the flame 3.
  • the burner stem 14 is surrounded concentrically at a distance by a cylindrical or conical perforated drum 6.
  • One end of the drum 6 is connected by the flow cone 7 to the end of the mixing device 1a a of the high-speed tube 1.
  • the other end face of the drum 6 is connected to the outer wall of the combustion device via the partition 8 and thus closes off the inflow space 15 from the outer space 17.
  • This partition is preferably designed as a movable membrane or has corrugated expansion joints.
  • the drum 6 has a cylindrical or conical shape and the wall is perforated to receive the ends of the individual tubes of the tube bundle of the heat exchanger 5. These tubes are welded or rolled into the holes in the drum to produce a gas-tight connection.
  • the individual tubes of the heat exchanger tube bundle 5 are not shown as such, but only as a block.
  • the individual tubes are arranged on circular rings concentric to the longitudinal axis. The distance and the arrangement are chosen so that the flow velocity of the gases on the surface of the tubes is the same.
  • the flow rate is preferably 8-18 m / sec.
  • This tube bundle extends from the drum 6 initially in the direction of the outer wall of the combustion device and then bends in a direction parallel to the longitudinal axis of the combustion device and runs through the outer space of the heat exchanger 17 and ends at the end wall to the exhaust gas inlet annular chamber 17. Also at this end are the individual pipes of the Tube bundle welded or rolled into the wall.
  • This configuration of the tube bundle 5 in the outer space 17 creates a recuperative heat exchanger in which the cold gases flow in the tubes and these tubes are surrounded by the hot combustion gases outside in the so-called outer space 17, so that the exhaust gas supplied to the combustion device is heated by the hot combustion gases is preheated.
  • the outer space of the heat exchanger 17 has a combustion outlet connection 11 at the end adjoining the inlet annular chamber 12.
  • the tube bundle 5 is held within the outer space 17 by spacers 5a, which are arranged and designed such that the gases get a swirl and move spirally through the space 17 with the tube bundle 5 arranged therein, so that a good heat transfer from the hot combustion gases to the initially cooler exhaust gases.
  • FIG. 1 a a section along the line A-B of FIG. 1, shows the ends of the tubes of the heat exchanger tube bundle 5, which are inserted in the drum 6 and are bent inwards towards the longitudinal axis of the combustion device.
  • the space created between the burner stem 14 and the drum 6 is the inflow space 15.
  • FIG. 2 shows the embodiment in which an injection device 18 is additionally arranged in the inflow space 15 in order to be able to introduce further substances into the combustion device.
  • an annular injection device is preferred, but this is not mandatory.
  • Other shapes are possible and suitable.
  • an adjustable aperture ring 19 is available.
  • 20,000 Nm 3 of exhaust gas from a process in which different types of solvents are used flow through the exhaust gas inlet stub 10 into the exhaust gas inlet ring chamber 12 in front of the heat exchanger 5 of the combustion device in the middle from above or tangentially from above, for example at 100 ° C.
  • the exhaust gas is distributed evenly over the entire number of individual tubes of the heat exchanger 5, flows through them and is heated to 550 ° C. in the process.
  • the preheated exhaust gas leaves the heat exchanger 5 through the openings in the drum 6 and arrives in the inflow space 15. From there it partly reaches the actual flame 3 through the openings in the burner stem 14, while another partial flow through the ring gap 2 enters the Venturi part 1 (mixing device) of the flame tube 1 directly.
  • the partial flow which reaches the flame 3 through the burner stem 14, supplies the flame with the oxygen required and mixes intensively with the fuel due to the inflow.
  • the exhaust gas flow entering through the annular gap 2 is mixed in the mixing device 1 a with the fuel already mixed with the exhaust gas.
  • an embodiment which enables the cross-section of the annular gap 2 to be adjusted. This can be done either by an adjustable aperture ring 19 placed on the end of the burner stem 14 or by the burner stem which is designed to be displaceable in the direction of the longitudinal axis of the combustion device.
  • By changing the cross-section of the annular gap 2 its area can vary in relation to the open area of the burner stem 14, and thus the division of the gas flow can be controlled.
  • the burner 13 fires in the direction of the high-speed tube 1 along the axis of the combustion device.
  • the high-speed tube 1 surrounded by the afterburning chamber 9, which represents the smaller part of the total combustion volume.
  • this flame tube 1 which is small in diameter and at least protrudes in length beyond the length of the heat exchanger, there is further mixing of the exhaust gases and the flame smoke gases as well as heating thereof by approximately 80 ° C. to approximately 630 ° C.
  • the mixed exhaust gases are swirled and diverted, if necessary, by additional swirl devices, thereby reaching the actual combustion or swirl chamber 4, where they heat up by a further 120 ° C. to approximately 750 ° C. (natural heat due to exothermic reaction).
  • the exhaust gases are in turn deflected by 180 ° and thereby moved through the combustion chamber 4 in the direction of the afterburning chamber 9, with an additional swirling of the exhaust gases being brought about.
  • the gases on the connecting wall between the flame tube and the cylindrical drum are deflected and deflected into the outer chamber 17 of the heat exchanger.
  • the oxidized hot flue gas flows through the ring bundle (tube or pocket bundle) of the heat exchanger 5, the flue gas flowing around the tube bundle from the inside to the outside or from the outside to the inside.
  • the hot flue gases are cooled to approximately 315 ° C. and leave the combustion device through the outlet connection 11.
  • the burner 13 is automatically regulated to a higher output, so that an almost constant temperature of 720 to 750 ° C. in the combustion chamber is made possible.
  • unburned exhaust gas can be injected directly into the flame tube via a passage connecting the inlet annular space 12 and the flame tube, which is then not shown in the illustration, and which is then opened without this part of the Exhaust gas has previously been heated in the heat exchanger.
  • the combustion device which is made of all-steel or masonry or in combinations, also has a manhole on the end face, which is arranged concentrically with the axis of the overall system and is not shown in the figure, which allows the flame tube 1 to be walked on.
  • Observation flaps for direct observation of the flame and temperature measuring devices can also be arranged on this end face adjoining the actual combustion chamber 4.

Description

  • Die vorliegende Erfindung betrifft eine Verbrennungseinrichtung zur Verbrennung oxidierbarer Substanzen in Abgasen, insbesondere jedoch die Ausbildung des Wärmetauschers und die konstruktive Ausbildung eines Anströmraumes, in den axial ein Brenner hineinfeuert.
  • Derartige Verbrennungseinrichtungen gewinnen im Rahmen des Umweltschutzes zunehmend an Bedeutung, insbesondere in den Fällen, in denen oxidierbare Substanzen in geringen Mengen aus grossen Abluftmengen entfernt werden müssen, weil die gesetzlichen Bestimmungen dies verlangen.
  • Eine derartige Verbrennungseinrichtung ist aus US-A-3607118 und aus DE-B2-2352204 bekannt. Bei den bekannten Vorrichtungen werden die Gase durch einen rekuperativen Wärmeaustauscher einem in Richtung der Längsachse der Verbrennungseinrichtung in ein Flammrohr feuernden Brenner zugeführt und dienen nach Verlassen eines eigentlichen Brennraumes als Heizgase für den Wärmetauscher.
  • Bei der aus der DE-B2-2352204 bekannten Verbrennungseinrichtung ist der Wärmetauscher als ein konzentrisch zur Längsachse innerhalb der Verbrennungseinrichtung erstreckendes Rohrbündel aus geraden Rohren ausgebildet, deren Enden jeweils in Lochplatten eingeschweisst sind.
  • Diese konstruktive Gestaltung des Wärmetauschers kann sich jedoch als nachteilhaft erweisen, wenn die Verbrennungseinrichtung nur zeitweilig betrieben wird. In Aufheiz- und Abkühlphasen und bei schwankenden Betriebszuständen erhalten die einzelnen Rohre des Wärmetauscherbündels unterschiedliche Temperaturen, und es entsteht damit eine unterschiedliche Ausdehnung, die zwangsläufig zu Spannungen an den Endplatten führt, so dass es zum Ausreissen einzelner Rohre oder Rissbildung an den Endplatten kommen kann. Ausserdem sind die Anströmbedingungen der Abgase an den Brenner noch verbesserungsbedürftig.
  • Die Aufgabe der vorliegenden Erfindung war es nun, eine Verbrennungseinrichtung zu schaffen, bei der der Wärmetauscher so ausgebildet ist, dass temperaturbedingte unterschiedliche Ausdehnungen einzelner Rohre keine Wärmespannungen an den Endplatten des Wärmetauschers erzeugen und das eine Ende des Wärmetauschers gleichzeitig so augebildet wird, dass die Anströmbedingungen des Brenners verbessert werden.
  • Diese Aufgabe wird gelöst durch eine Verbrennungseinrichtung zur Verbrennung oxidierbarer Substanzen in Abgasen mit einem Brenner und einer Mischvorrichtung, einem daran anschliessenden Hochgeschwindigkeitsrohr, einer an dessen freiem Ende gelegenen, als Brennraum ausgeführten Wirbelkammer, wobei das Hochgeschwindigkeitsrohr konzentrisch in die Wirbelkammer hineinragt, sowie einem mit der Wirbelkammer über einen Nachbrennraum in Verbindung stehenden, diesen konzentrisch umgebenden Wärmetauscher, bei dem die einzelnen Rohre des sich parallel zur Längsachse erstreckenden Rohrbündels an einem Ende in die Stirnwand des Abgaseintrittsringraumes eingefügt sind, und ein um die Längsachse der Verbrennungseinrichtung angeordneter Brennervorbau einen solchen Durchmesser aufweist, dass zwischen dem Rand des Brennervorbaus und dem Anströmkonus ein Ringspalt entsteht. Das Kennzeichnende der Erfindung besteht darin, dass die einzelnen Rohre des Wärmetauschers an ihren anderen Enden nach innen auf die Längsachse der Verbrennungseinrichtung abgebogen sind, wobei die abgebogenen Enden in einer konzentrisch den Brennervorbau umgebenden Trommel eingefügt sind und die einzelnen Rohre des Wärmetauschers auf zur Längsachse konzentrischen Kreisringen so angeordnet sind, dass dieselben mit annähernd gleicher Luftgeschwindigkeit umströmt werden.
  • Bevorzugte Ausführungsformen der Erfindung sind in den Unteransprüchen beschrieben.
  • Durch die Biegung der einzelnen Rohre des Wärmetauschers in Richtung auf die Achse der Verbrennungseinrichtung und das Eindringen der Rohrenden in eine konzentrisch um die Längsachse angeordnete, vorzugsweise zylindrische oder kegelige Lochtrommel, wird dieses Ende des Wärmetauschers nicht mehr direkt von den heissen Rauchgasen angeströmt, sondern diese werden durch eine Verbindungswand so ab- und umgelenkt, dass sie auf ein noch nicht abgebogenes Teilstück des Rohres auftreffen. Dies hat zur Folge, dass die thermische Belastung der Verbindungsstellen zwischen den Rohrenden und der Trommel gleichmässiger wird. Durch das Abbiegen in Winkeln zwischen 45° und 120°, vorzugsweise annähernd 90° konzentrisch nach innen, werden Kräfte, die durch Wärmeausdehnung auf die Rohre in Längsrichtung wirken, aufgehoben und abgelenkt, so dass sich an beiden Enden der Rohre des Wärmetauschers keine mechanischen Spannungen mehr aufbauen und ein Ausreissen der Rohre aus der Endplatte bzw. der Lochtrommel oder Rissbildung an der Endplatte sicher und zuverlässig vermieden wird. Durch die Ausbildung des einen Endes des Wärmetauschers als konzentrisch angeordnete, vorzugsweise zylindrische oder kegelige Trommel entsteht in ihrem Inneren ein Anströmraum für die vom Brenner gebildete eigentliche Flamme. Es wurde nun gefunden, dass diese konstruktive Gestaltung des Wärmetauscherendes nicht nur Thermospannungen innerhalb des Wärmetauschers zuverlässig vermeidet, sondern dass diese Ausbildung eines Anströmraumes auch eine besonders günstige Vermischung des Abgases mit dem Brennstoff ermöglicht.
  • Bei der Verbrennungseinrichtung ist innerhalb des Anströmraumes im Abstand von der Trommel der Brennervorbau so ausgebildet, dass zwischen dem Ende des Brennervorbaus mit dem Anströmkonus ein Ringspalt entsteht. Der Brennervorbau ist mit Gasdurchlassöffnungen einer solchen Grösse versehen, so dass deren Gesamtquerschnitt eine Teilung des aus dem Wärmetauscher in den Anströmraum tretenden Gasstromes herbeiführt. Ein Teilgasstrom tritt durch den Ringspalt direkt in das Hochgeschwindigkeitsrohr ein, und der andere Teilstrom gelangt durch die Öffnungen direkt in den Innenraum des Brennervorbaus, in dem die eigentliche Brennstoff-Flamme erzeugt wird. Auf diese Weise wird eine besonders intensive Mischung der Abluft mit dem Brennstoff erreicht und der für das Brennen erforderliche Sauerstoff aus der Abluft entnommen.
  • Um den Querschnitt des Ringspaltes zwischen dem Rand des Brennervorbaues und dem Anströmkonus den betrieblichen Erfordernissen anpassen zu können, ist bei einer besonderen Ausführungsform der Erfindung der Brennervorbau in Richtung der Längsachse verschiebbar ausgebildet, und/oder das im Mischraum zugewandte Ende des Brennervorbaues weist einen verstellbaren, aufgesetzten Blendenring auf. Dieser Blendenring hat Einrichtungen, die ein Verstellen von aussen ohne Betriebsunterbrechungen ermöglichen. Durch das Verändern des Ringspaltquerschnittes ändert sich die Grösse dieser Austrittsfläche im Vergleich zur Fläche der Öffnungen an der Fläche des Brennervorbaus und damit das Mengenverhältnis der der Flamme direkt zugeführten Abluftmenge zu der erst im Mischraum hinzutretenden Abluftmenge, die erst dort zur Teilnahme an der Verbrennung eingemischt wird.
  • Bei einer weiteren Ausführungsform der Erfindung werden Brennervorbau und Trommel in ihren Durchmessern so dimensioniert, dass der dazwischen entstehende Anströmraum ausreichend gross genug ausgebildet ist, um eine ringförmige Eindüsvorrichtung für weitere Stoffe aufnehmen zu können. Wenn bei dieser Ausführungsform der Erfindung im Anströmraum eine Eindüsvorrichtung vorhanden ist, besteht die Möglichkeit einer weiteren Optimierung der Wirkungsweise der erfindungsgemässen Verbrennungseinrichtung durch Einbringen von flüssigen oder gasförmigen Substanzen, wie Wasser, Abfallflüssigkeiten u. dgl. Die Verdampfung der eingedüsten flüssigen Produkte erfolgt aufgrund der vorhandenen Strahlungsenergie des Brenners.
  • Das Flammrohr oder Hochgeschwindigkeitsrohr ist im Querschnitt sehr eng ausgebildet, so dass darin Strömungsgeschwindigkeiten von 40 bis 60 m/sec erreicht werden. Das dem Brennervorbau zugewandte Ende des Flammrohres ist konisch als Venturirohr ausgebildet, dessen Innenraum als zusätzliche Mischzone für die Abluft mit den Brennergasen dient. Das andere Ende des Hochgeschwindigkeitsrohres ragt in den Hauptbrennraum hinein.
  • Durch die erfindungsgemässe Ausbildung des Wärmetauscherendes und des Anströmraumes wird eine so intensive Vormischung des Abgases mit dem Brennstoff erreicht, dass bei den hohen Strömungsgeschwindigkeiten im Flammrohr schon bei Temperaturen von 720° im Brennraum ein weitgehender oder vollständiger Abbrand der in den Abgasen enthaltenen Störstoffe erfolgt. Die Trennung von Wärmetauscherteil und Brennkammerteil in der Verbrennungseinrichtung hat den besonderen Vorteil, dass am Rohr Länge und Grösse der eigentlichen Brennkammer je nach den Erfordernissen des eigentlichen Verbrennungsprozesses variiert werden können, der Wärmetauscherteil und das Kopfteil der Verbrennungseinrichtung jedoch nicht verändert werden müssen. Damit ist aber eine kostengünstige Serienfertigung dieser Teile in mehreren Grundgrössen möglich, während Hochgeschwindigkeitsrohr und Brennraum jeweils den spezifischen Verhältnissen angepasst werden können.
  • Die erfindungsgemässe Ausbildung der Verbrennungseinrichtung gestattet es, Anlagen für einen Abluftdurchsatz von 5000 m3, aber auch von 20 000 m3 in einer besonders kompakten Bauweise auszuführen und mit diesen Anlagen Störstoffgehalte in der Abluft von 100 mg bis zu mehreren Gramm pro m3 sicher und zuverlässig zu beseitigen und auf diese Weise die gesetzlichen Bestimmungen über die zulässigen Grenzwerte in Abluft einzuhalten.
  • Der besondere Vorteil der erfindungsgemässen Verbrennungseinrichtung besteht aber darin, dass sie produktionsbedingte Betriebsunterbrechungen zulässt, ohne dass sich beim Aufheizen und Abkühlen Wärmespannungen, insbesondere im Bereich des Wärmetauschers, aufbauen können, die zu Schäden in der Einrichtung führen können.
  • Die Erfindung wird nun anhand einer Zeichnung und einer Verfahrensbeschreibung näher erläutert. Gleiche Bezugsziffern beziehen sich auf die gleichen Teile.
    • Fig. 1 zeigt eine Ausführungsform der erfindungsgemässen Verbrennungseinrichtung im Längsschnitt.
    • Fig. 1a zeigt einen Querschnitt längs der Linie A-B von Fig. 1.
    • Fig. 2 zeigt eine Ausführungsform, bei der im Ausströmraum eine ringförmige Eindüsvorrichtung angeordnet und der verstellbare Blendenring vorhanden ist.
  • Die in Fig. 1 wiedergegebene Verbrennungseinrichtung besteht aus einem in der Länge variierbaren und in seinem Querschnitt engen Hochgeschwindigkeitsrohr 1, dessen hinteres Ende in den eigentlichen Brennraum 4 ragt. Vorzugsweise reicht das Hochgeschwindigkeitsrohr 1 weit in den Brennraum hinein, so dass zwischen dessen Ende und der Stirnwand der Verbrennungseinrichtung ein Ringraum entsteht, der einen Übergang in den eigentlichen Brennraum 4 ergibt. Durch diese Ausbildung wird eine intensive Turbulenz des Gasstromes im eigentlichen Brennraum 4 erzeugt, um die Ablagerung von in den Abgasen enthaltenen Feststoffteilchen an den Wänden der Wirbelkammer 4 zu vermeiden und einen nahezu vollständigen Abbrand derartiger Teilchen zu ermöglichen. In der Wirbelkammer 4 können deshalb auch noch in der Abbildung nicht gezeigte Einbauten vorhanden sein, um dem Gasstrom einen zusätzlichen Drall zu geben und die Turbulenz zu erhöhen. Dadurch wird auch die Verweilzeit von Feststoffteilchen in der Wirbelkammer 4 erhöht, so dass sich der Abbrand der Teilchen verbessert.
  • Das entgegengesetzte Ende 1 des Hochgeschwindigkeits- oder Flammrohres (HGR) 1 ist als Venturirohr ausgebildet und dient als Mischvorrichtung oder zusätzlicher Mischraum. Der Ringraum 9, der das HGR 1 teilweise umgibt, dient als Nachbrennraum und schliesst sich an den Brennraum 4 an. Axial in Verlängerung an das Venturiteil 1a des HGR 1 schliesst sich ein Brennervorbau 14 derart an, dass zwischen Anströmkonus 7 und Brennervorbau 14 ein Ringspalt 2 entsteht, durch den ein Teil des Abgases in das HGR 1 eintreten kann.
  • Unter dem mit Ziffer 13 bezeichneten Brenner wird jegliche Art von konventionellen Industriebrennern verstanden, also auch sogenannte Flächenbrenner, die entweder als Primär- oder als Sekundär-Luftbrenner ausgelegt sind. Die wesentlichen Teile des Brenners 13 können ausserhalb der Gesamtanlage sowie konzentrisch zur Anlagenachse an der Stirnseite der Verbrennungseinrichtung angebracht sein.
  • Der Brennervorbau 14 weist Löcher auf, durch die ein Teilstrom des Abgases aus dem Anströmraum 15 zur Flamme 3 gelangen kann.
  • Konzentrisch im Abstand wird der Brennervorbau 14 von einer zylindrischen oder kegeligen durchlöcherten Trommel 6 umgeben. Die eine Stirnseite der Trommel 6 ist durch den Anströmkonus 7 mit dem Ende der Mischvorrichtung 1a a des Hochgeschwindigkeitsrohres 1 verbunden. Die andere Stirnseite der Trommel 6 ist über die Trennwand 8 mit der Aussenwand der Verbrennungseinrichtung verbunden und schliesst so den Anströmraum 15 gegen den Aussenraum 17 ab. Diese Trennwand ist vorzugsweise als bewegliche Membran ausgebildet oder weist Wellkompensatoren auf.
  • Die Trommel 6 weist eine zylindrische oder kegelige Form auf, und die Wandung ist durchlöchert zur Aufnahme der Enden der einzelnen Rohre des Rohrbündels des Wärmetauschers 5. Diese Rohre sind in die Löcher der Trommel eingeschweisst oder eingerollt, um eine gasdichte Verbindung zu erzeugen. In der Figur sind die einzelnen Rohre des Wärmetauscherrohrbündels 5 nicht als solche, sondern nur als Block wiedergegeben. Die einzelnen Rohre sind auf zur Längsachse konzentrischen Kreisringen angeordnet. Der Abstand und die Anordnung werden so gewählt, dass die Strömungsgeschwindigkeit der Gase an der Oberfläche der Rohre gleich ist. Vorzugsweise beträgt die Strömungsgeschwindigkeit 8-18 m/sek. Dieses Rohrbündel erstreckt sich von der Trommel 6 zunächst in Richtung auf die Aussenwand der Verbrennungseinrichtung und biegt dann in eine Richtung parallel zur Längsachse der Verbrennungseinrichtung ab und verläuft durch den Aussenraum des Wärmetauschers 17 und endet anderStirnwandzurAbgaseintrittsringkammer 17. Auch an diesem Ende sind die einzelnen Rohre des Rohrbündels in die Wand eingeschweisst oder eingerollt. Durch diese Ausbildung des Rohrbündels 5 im Aussenraum 17 entsteht ein rekuperativer Wärmetauscher, bei dem die kalten Gase in den Rohren strömen und wobei diese Rohre aussen im sogenannten Aussenraum 17 von den heissen Verbrennungsgasen umspült sind, so dass das der Verbrennungseinrichtung zugeführte Abgas durch die heissen Verbrennungsgase vorgewärmt wird. Der Aussenraum des Wärmetauschers 17 weist an dem an die Eintrittsringkammer 12 anschliessenden Ende einen Verbrennungsaustrittsstutzen 11 auf. Das Rohrbündel 5 wird innerhalb des Aussenraumes 17 durch Abstandshalter 5a gehalten, die so angeordnet und ausgebildet sind, dass die Gase einen Drall bekommen und sich spiralförmig durch den Raum 17 mit dem darin angeordneten Rohrbündel 5 bewegen, so dass ein guter Wärmeübergang von den heissen Verbrennungsgasen auf die zunächst kühleren Abgase erfolgt.
  • Fig. 1a, ein Schnitt längs der Linie A-B der Fig. 1, zeigt die nach innen in Richtung auf die Längsachse der Verbrennungseinrichtung abgebogenen Enden der Rohre des Wärmetauscherrohrbündels 5, die in die Trommel 6 eingefügt sind. Der zwischen dem Brennervorbau 14 und der Trommel 6 im Inneren entstehende Raum ist der Anströmraum 15.
  • Fig. 2 zeigt die Ausführungsform, bei der im Anströmraum 15 zusätzlich eine Eindüsvorrichtung 18 angeordnet ist, um weitere Stoffe in die Verbrennungseinrichtung einführen zu können. Um eine gleichmässige Verteilung zu ermöglichen, ist eine ringförmige Eindüsvorrichtung bevorzugt, dies ist aber nicht zwingend. Es sind auch andere Formen möglich und geeignet. Ausserdem ist ein verstellbarer Blendenring 19 vorhanden.
  • Zum besseren Verständnis der erfindungsgemässen Verbrennungseinrichtung wird im nachfolgenden Beispiel aufgezeigt, wie diese Einrichtung arbeitet.
  • 20000 Nm3 Abgas aus einem Prozess, in welchem verschiedenartige Lösungsmittel Verwendung finden, strömen durch den Abgaseintrittsstutzen 10 in die Abgaseintrittsringkammer 12 vor dem Wärmetauscher 5 der Verbrennungseinrichtung mittig von oben bzw. tangential von oben mit beispielsweise 100°C ein. Das Abgas verteilt sich gleichmässig in der gesamten Anzahl der Einzelrohre des Wärmetauschers 5, durchströmt diese und wird dabei auf 550°C aufgeheizt. Das vorgeheizte Abgas verlässt den Wärmetauscher 5 durch die Öffnungen in der Trommel 6 und gelangt in den Anströmraum 15. Von dort aus gelangt es teilweise durch die Öffnungen in dem Brennervorbau 14 zur eigentlichen Flamme 3, während ein anderer Teilstrom durch den Ringspalt 2 direkt in den Venturiteil 1 (Mischvorrichtung) des Flammrohres 1 eintritt. Der Teilstrom, der durch Brennervorbau 14 zur Flamme 3 gelangt, führt der Flamme den benötigten Sauerstoff zu und mischt sich durch die Anströmung intensiv mit dem Brennstoff. Der durch den Ringspalt 2 eintretende Abgastrom wird in der Mischvorrichtung 1a dem bereits mit Abgas vermischten Brennstoff zugemischt. Durch diese Führung des vorgeheizten Abgasstromes im Anströmraum 15 wird von Anfang an eine besonders intensive Mischung des Abgasstromes mit dem Brennstoff erreicht.
  • Um den Mischvorgang den speziellen Bedürfnissen im Einzelfall noch besonders anpassen zu können, ist eine Ausführungsform vorgesehen, die eine Verstellung des Querschnittes des Ringspaltes 2 ermöglicht. Das kann entweder durch einen auf das Ende des Brennervorbaues 14 aufgesetzten verstellbaren Blendenring 19 oder durch die in Richtung der Längsachse der Verbrennungseinrichtung verschiebbar ausgebildeten Brennervorbau geschehen. Durch die Veränderung des Querschnittes des Ringspaltes 2 kann dessen Fläche im Verhältnis zur offenen Fläche des Brennervorbaues 14 variiert und damit die Teilung des Gasstromes gesteuert werden.
  • Der Brenner 13 feuert in Richtung des Hochgeschwindigkeitsrohres 1 längs der Achse der Verbrennungseinrichtung. In Nachbarschaft des Brenners 13 befindet sich das vom Nachbrennraum 9 umgebene Hochgeschwindigkeitsrohr 1, das den kleineren Teil des Gesamtbrennvolumens darstellt. In diesem in seinem Durchmesser kleinen und in seiner Länge mindestens über die Länge des Wärmetauschers hinausragenden Flammrohr 1 findet eine weitere Durchmischung der Abgase und der Flammrauchgase sowie eine Erwärmung derselben um etwa 80°C auf etwa 630°C statt. Am Ende des Flammrohres 1 werden die durchmischten Abgase gegebenenfalls durch zusätzliche Dralleinrichtungen verwirbelt und umgelenkt, gelangen dabei in die eigentliche Brenn- oder Wirbelkammer 4, wo sie sich um weitere 120°C auf etwa 750°C aufheizen (Eigenwärme aufgrund exothermer Reaktion). An der Stirnseite der Verbrennungseinrichtung, d.h. der eigentlichen Brennkammer, werden die Abgase wiederum um 180° umgelenkt und dadurch durch den Brennraum 4 in Richtung Nachbrennkammer 9 bewegt, wobei eine zusätzliche Verwirbelung der Abgase bewirkt wird. Am Ende des Nachbrennraumes 9 werden die Gase an der Verbindungswand zwischen Flammrohr und zylindrischer Trommel ab- und umgelenkt in den Aussenraum 17 des Wärmetauschers. In einer bis mehreren Umlenkungen durchströmt das oxidierte heisse Rauchgas das Ringbündel (Röhren-oder Taschenbündel) des Wärmetauschers 5, wobei das Rauchgas das Rohrbündel von innen nach aussen oder von aussen nach innen umströmt. Dadurch werden die heissen Rauchgase auf etwa 315°C abgekühlt und verlassen durch den Austrittsstutzen 11 die Verbrennungseinrichtung.
  • Fällt aus technischen Gründen des vorgeschalteten Prozesses die Konzentration der Störstoffe im Abgas ab, so wird der Brenner 13 automatisch auf höhere Leistung geregelt, so dass eine nahezu konstante Temperatur von 720 bis 750°C in der Brennkammer ermöglicht wird.
  • Im umgekehrten Fall, also beim Ansteigen der Konzentration der Störstoffe im Abgas kann unverbranntes Abgas über einen den Eintrittsringraum 12 und das Flammrohr verbindenden, in der Abbildung nicht gezeigten Durchgang, der dann geöffnet wird, direkt in das Flammrohr eingedüst werden, ohne dass dieser Teil des Abgases vorher im Wärmetauscher aufgeheizt worden ist.
  • Die in Ganzstahl oder Mauerwerk oder in Kombinationen ausgeführte Verbrennungseinrichtung besitzt zusätzlich ein konzentrisch zur Achse der Gesamtanlage angeordnetes, in der Abbildung nicht gezeigtes Mannloch an der Stirnseite, welches die Begehung des Flammrohres 1 gestattet. An dieser an den eigentlichen Brennraum 4 anschliessenden Stirnseite können weiterhin Beobachtungsklappen für die direkte Beobachtung der Flamme sowie Temperaturmesseinrichtungen angeordnet sein.
    Figure imgb0001

Claims (6)

1. Verbrennungseinrichtung zur Verbrennung oxidierbarer Substanzen in Abgasen mit einem Brenner (13) und einer Mischvorrichtung (1a), einem daran anschliessenden Hochgeschwindigkeitsrohr (1), einer an dessen freiem Ende gelegenen, als Brennraum ausgeführten Wirbelkammer (4), wobei das Hochgeschwindigkeitsrohr (1) konzentrisch in die Wirbelkammer (4) hineinragt, sowie einem mit der Wirbelkammer (4) über einen Nachbrennraum (9) in Verbindung stehenden, diesen konzentrisch umgebenden Wärmetauscher (5), bei dem die einzelnen Rohre des sich parallel zur Längsachse erstreckenden Rohrbündels an einem Ende in die Stirnwand des Abgaseintrittsringraumes (12) eingefügt sind, und ein um die Längsachse der Verbrennungseinrichtung angeordneter Brennervorbau (14) einen solchen Durchmesser aufweist, dass zwischen dem Rand des Brennervorbaus (14) und dem Anströmkonus (7) ein Ringspalt entsteht, dadurch gekennzeichnet, dass die einzelnen Rohre des Wärmetauschers (5) an ihren anderen Enden nach innen auf die Längsachse der Verbrennungseinrichtung abgebogen sind, wobei die abgebogenen Enden in einer konzentrisch den Brennervorbau (14) umgebenden Trommel (6) eingefügt sind und die einzelnen Rohre des Wärmetauschers (5) auf zur Längsachse konzentrischen Kreisringen so angeordnet sind, dass dieselben mit annähernd gleicher Luftgeschwindigkeit umströmt werden.
2. Verbrennungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Trommel (6) zylindrisch oder kegelig ausgebildet ist und an derem einen Ende durch einen Anströmkonus (7) mit der Mischvorrichtung (1 a) und dem daran anschliessenden Hochgeschwindigkeitsrohr (1) verbunden ist und von derem anderen Ende sich eine bewegliche Trennwand (8) bis zur Aussenwand der Verbrennungseinrichtung erstreckt.
3. Verbrennungseinrichtung nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass die einzelnen Rohre des Wärmetauscherrohrbündels (5) annähernd rechtwinkelig nach innen zur Längsachse der Verbrennungseinrichtung hin abgebogen sind.
4. Verbrennungseinrichtung nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die einzelnen Rohre des Wärmetauscherrohrbündels (5) annähernd rechtwinkelig nach innen auf die kegelige Trommel (6) hin abgebogen sind.
5. Verbrennungseinrichtung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass der Brennervorbau (14) in Richtung der Längsachse der Verbrennungseinrichtung verschiebbar ausgebildet ist und am der Mischeinrichtung (1 a) zugewandten Ende des Brennervorbaus (14) ein verstellbarer Blendenring (19) angeordnet ist.
6. Verbrennungseinrichtung nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass der zwischen der den Brennervorbau (14) umgebenden Trommel (6) und Brennervorbau (14) gebildete Anströmraum (15) eine solche Abmessung hat, dass darin eine ringförmige Eindüsvorrichtung (18) angeordnet werden kann.
EP81102739A 1980-04-14 1981-04-10 Einrichtung zur Verbrennung oxidierbarer Substanzen in Abgasen Expired EP0040690B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81102739T ATE5022T1 (de) 1980-04-14 1981-04-10 Einrichtung zur verbrennung oxidierbarer substanzen in abgasen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3014269A DE3014269C2 (de) 1980-04-14 1980-04-14 Verbrennungseinrichtung zur Verbrennung von Störstoffen in Abluft- und Abfallsubstanzen
DE3014269 1980-04-14

Publications (2)

Publication Number Publication Date
EP0040690A1 EP0040690A1 (de) 1981-12-02
EP0040690B1 true EP0040690B1 (de) 1983-10-12

Family

ID=6099954

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81102739A Expired EP0040690B1 (de) 1980-04-14 1981-04-10 Einrichtung zur Verbrennung oxidierbarer Substanzen in Abgasen

Country Status (3)

Country Link
EP (1) EP0040690B1 (de)
AT (1) ATE5022T1 (de)
DE (2) DE3014269C2 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3532232A1 (de) * 1985-09-10 1987-03-19 Katec Betz Gmbh & Co Vorrichtung zum verbrennen oxidierbarer bestandteile in einem traegergas
DE3605415A1 (de) * 1986-02-20 1987-08-27 Katec Betz Gmbh & Co Verfahren und vorrichtung zum verbrennen oxidierbarer bestandteile in einem traegergas
US4802423A (en) * 1987-12-01 1989-02-07 Regenerative Environmental Equipment Co. Inc. Combustion apparatus with auxiliary burning unit for liquid fluids
EP0446435B1 (de) * 1990-03-10 1993-05-26 H. Krantz GmbH & Co. Vorrichtung zum Verbrennen von in einem Abluftstrom enthaltenen oxidierbaren Bestandteilen
EP0446434B1 (de) * 1990-03-10 1994-06-08 H KRANTZ-TKT GmbH Verbrennungsvorrichtung
US20040018460A1 (en) * 2002-07-29 2004-01-29 Korwin Michel J. Apparatus and method for thermal neutralization of gaseous mixtures
DE102012023257B4 (de) * 2012-11-29 2014-10-09 C-Nox Gmbh & Co. Kg Verfahren und Vorrichtung zur thermischen Nachverbrennung von Kohlenwasserstoffe enthaltenden Gasen
DE102013203448A1 (de) 2013-02-28 2014-08-28 Dürr Systems GmbH Anlage und Verfahren zum Behandeln und/oder Verwerten von gasförmigemMedium
CN105757689B (zh) * 2016-05-09 2017-12-15 洛阳瑞昌石油化工设备有限公司 一种自预热焚烧炉
CN108980865A (zh) * 2018-08-16 2018-12-11 扬州斯普莱机械制造有限公司 一种废气燃烧装置
DE102021113266A1 (de) * 2021-05-21 2022-11-24 Dürr Systems Ag Rekuperativer brenner für eine thermische prozessluftbehandlungsvorrichtung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607118A (en) * 1969-07-03 1971-09-21 Air Preheater Fume incinerator
DE1962800C3 (de) * 1969-12-15 1974-04-18 Universal Oil Products Co., Des Plaines, Ill. (V.St.A.) Verbrennungsgerät für Abgase
US3690840A (en) * 1970-01-16 1972-09-12 Herbert Volker Apparatus for incinerating waste gases
US3898040A (en) * 1972-06-29 1975-08-05 Universal Oil Prod Co Recuperative form of thermal-catalytic incinerator
US3838975A (en) 1973-05-18 1974-10-01 Universal Oil Prod Co Thermal incinerator with heat recuperation
DE2352204B2 (de) * 1973-10-18 1976-01-22 Katec Katalytische Lufttechnik Betz & Co, 6461 Neuenhaßlau Verbrennungseinrichtung zur verbrennung von stoerstoffen in abgasen
DE2418108C3 (de) * 1974-04-13 1981-04-02 UOP Inc., 60016 Des Plaines, Ill. Thermisch-katalytische Abgas-Reinigungsvorrichtung

Also Published As

Publication number Publication date
ATE5022T1 (de) 1983-10-15
EP0040690A1 (de) 1981-12-02
DE3161162D1 (en) 1983-11-17
DE3014269A1 (de) 1981-10-15
DE3014269C2 (de) 1982-11-25

Similar Documents

Publication Publication Date Title
DE2461078C2 (de) Verfahren zur Verringerung des Gehalts an Stickstoffoxiden, Kohlenmonoxid und Kohlenstoff in einem Abgas, sowie Feuerungsanlage zur Durchführung des Verfahrens
DE2527618C2 (de) Verfahren und Vorrichtung zur Verbrennung von Kohlenstaub
DE3327597A1 (de) Verfahren und brenner zum verbrennen von fluessigen oder gasfoermigen brennstoffen unter verminderter bildung von nox
DE2432144A1 (de) Brenner fuer verschiedene brennstoffe
EP0040690B1 (de) Einrichtung zur Verbrennung oxidierbarer Substanzen in Abgasen
DE2352204B2 (de) Verbrennungseinrichtung zur verbrennung von stoerstoffen in abgasen
DE10045322C2 (de) Zerstäubungsbrenner für die thermische Spaltung von schwefelhaltigem Reststoff
DE2808874C2 (de) Vorrichtung zur Verbrennung von in einem Gasstrom mitgeführten brennbaren Stoffen bzw. zur Erwärmung von Luft
EP0686250B1 (de) Vorrichtung und verfahren zum verbrennen oxidierbarer bestandteile in einem zu reinigenden trägergas
DE3206074C2 (de)
DE3043286C2 (de) Verbrennungseinrichtung zur Verbrennung von Störstoffen in Abgasen
DE4113412C2 (de) Vorrichtung zur Verbrennung von flüssigem oder gasförmigem Brennstoff für eine Feuerungsanlage
EP0639742A2 (de) Verfahren und Vorrichtung zum emissionsarmen Verbrennen von fliessfähigen und/oder gasförmigen Brennstoffen mit interner Rauchgaszirkulation
DE2241891C3 (de) Verfahren und Vorrichtung zur Verbrennung von bei der Reinigung von Koksofengasen anfallenden Ammoniakschwaden
EP0005714B1 (de) Topfbrenner zur Verfeuerung von Kohlenstaub
DE3923238A1 (de) Feuerung mit einer einrichtung zum rueckfuehren von verbrennungsprodukten
EP0145920B1 (de) Verbrennungsvorrichtung
EP0006974B1 (de) Kohlenstaubbrenner
DE8010154U1 (de) Verbrennungseinrichtung zur verbrennung von stoerstoffen in abgasen
DE19542644B4 (de) Vormischverbrennung
DE3009764A1 (de) Kohlebrenner
DE2816282C2 (de) Müllverbrennungsofen mit einem Wirbelbett
DE3131948C2 (de)
EP0518007B1 (de) Brennereinrichtung
DE918614C (de) Insbesondere fuer Zement- u. dgl. OEfen bestimmter Brenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19820202

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 5022

Country of ref document: AT

Date of ref document: 19831015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3161162

Country of ref document: DE

Date of ref document: 19831117

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: GRACE GMBH

Ref country code: CH

Ref legal event code: PFA

Free format text: VERFAHRENSTECHNIK BETZ + CO. GMBH

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: KATEC BETZ GMBH & CO. TE HASSELROTH, BONDSREPUBLIE

NLS Nl: assignments of ep-patents

Owner name: GRACE GMBH TE NORDERSTEDT, BONDSREPUBLIEK DUITSLAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

ITPR It: changes in ownership of a european patent

Owner name: CESSIONE;GRACE GMBH

ITTA It: last paid annual fee
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

EAL Se: european patent in force in sweden

Ref document number: 81102739.0

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: GRACE GMBH TRANSFER- SEQUA GMBH & CO. MEGTEC SYSTE

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: SEQUA GMBH & CO. MEGTEC SYSTEMS KG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000405

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000406

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000410

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000411

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000412

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20000414

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20000428

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20000622

Year of fee payment: 20

BE20 Be: patent expired

Free format text: 20010410 *SEQUA G.M.B.H. & CO. MEGTEC SYSTEMS K.G.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010409

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010409

Ref country code: CH

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010410

Ref country code: AT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20010410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20010429

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20010409

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20010410

EUG Se: european patent has lapsed

Ref document number: 81102739.0