EP0031005A1 - Verfahren zur Herstellung wasserlöslicher Polymer-Festprodukte - Google Patents

Verfahren zur Herstellung wasserlöslicher Polymer-Festprodukte Download PDF

Info

Publication number
EP0031005A1
EP0031005A1 EP80106097A EP80106097A EP0031005A1 EP 0031005 A1 EP0031005 A1 EP 0031005A1 EP 80106097 A EP80106097 A EP 80106097A EP 80106097 A EP80106097 A EP 80106097A EP 0031005 A1 EP0031005 A1 EP 0031005A1
Authority
EP
European Patent Office
Prior art keywords
monomers
polymerization
water
soluble
polymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80106097A
Other languages
English (en)
French (fr)
Other versions
EP0031005B1 (de
Inventor
Jürgen Masanek
Horst Dr. Pennewiss
Hermann Dr. Plainer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roehm GmbH Darmstadt
Original Assignee
Roehm GmbH Darmstadt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roehm GmbH Darmstadt filed Critical Roehm GmbH Darmstadt
Publication of EP0031005A1 publication Critical patent/EP0031005A1/de
Application granted granted Critical
Publication of EP0031005B1 publication Critical patent/EP0031005B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent

Definitions

  • Water-soluble synthetic polymers have become increasingly important in technology. Their areas of application include use as flocculants, dispersants, thickeners, water treatment agents and sizing agents.
  • non-ionogenic polymers e.g. polyacrylamides, polyvinyl alcohol, polyethylene oxide
  • class of ionogenic polymers e.g. pdyelectrolytes
  • copolymers e.g. ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polyso-called pdyelectrolytes
  • copolymers e.g. a differentiation can again be made into anionic polymers (e.g. salts of polymers containing acrylic, methacrylic and maleic acid) and cationic polymers [e.g. macromolecules containing quaternary ammonium groups, cf. M.F. Hoover, J. Macrom. Sci. Chem. A 4 (6) 1327-1417 (1970)].
  • anionic polymers e.g. salts of polymers containing acrylic, methacrylic and
  • the class of copolymers contains anionic and cationic groups. Fewest commercial products are pure homopolymers.
  • the technically particularly important polyacrylates are mostly copolymers which, in addition to the salt-forming monomer, contain other, electrically neutral monomers in copolymerized form.
  • Examples include acrylamide, acrylonitrile, acrylic esters of lower alcohols and the corresponding methacrylic compounds.
  • the solvent water does not need to be transported. There is no need to take climatic fluctuations into account.
  • the cause of the solubility problems is probably too high a molecular weight, probably caused by additional transmission grafting.
  • the residual monomer content is generally very high during the polymerization in a highly concentrated solution. In order to avoid the disadvantages mentioned, it would therefore have to be polymerized at a lower monomer concentration. However, if one proceeds accordingly, the polymerization product obtained is a soft to tough-elastic gel.
  • water-soluble, synthetic polymer solid products which are solid at room temperature can be obtained by polymerizing monomers in an aqueous medium which very largely meet the requirements of the art if the polymerization batch is 0.5 to 50 parts by weight; (based on the monomers used), added to water-soluble mono- or / and oligosaccharides and the polymerization is carried out by free radicals in a manner known per se.
  • the polymerization batch is 0.5 to 50 parts by weight; (based on the monomers used), added to water-soluble mono- or / and oligosaccharides and the polymerization is carried out by free radicals in a manner known per se.
  • the solids content exceeds 80%, especially 83.
  • both the monomers usually used for the production of non-ionogenic polymers and the monomers used for the production of anionic or cationic polymers or for the production of mixed polymers can each be polymerized according to the known polymerization processes according to the invention into water-soluble synthetic polymer solid products.
  • the homogeneous layer produced in the course of the method according to the invention is transparent and therefore also enables polymerization with UV light.
  • the added mono- and / or oligosaccharide apparently fulfills several functions in the polymerization approach. It can be assumed that it not only acts as an inert filler, which gives the product the desired hardness, but that it also takes on the function of a (weak) regulator, which prevents the tendency towards crosslinking, especially in the final stage of the polymerization. In this way, even relatively low molecular weights are achieved with a high carbohydrate addition. However, if - as is normally the case - high molecular weights are sought, the coal should hydrate content does not exceed 20 of the total batch.
  • the polymerization products succeed in imparting two properties which have hitherto been difficult or incompatible, namely freedom from crosslinking and grindability.
  • two properties which have hitherto been difficult or incompatible, namely freedom from crosslinking and grindability.
  • particular reference is made to the copolymerization of acrylamide with other monomers, especially acrylic acid.
  • the process according to the invention can be used with regard to the polymerization of nonionic monomers, for example in the UV polymerization of concentrated acrylamide solutions, as described in DE-OS 25 45 290.
  • the anionic polymers are primarily derived from free-radically polymerizable carboxylic acids, anhydrides or other acid precursors. Therefore, a, ß-unsaturated carboxylic acids are suitable as monomers. Examples include maleic acid, fumaric acid, itaconic acid, crotonic acid and preferably acrylic acid and methacrylic acid.
  • the compounds can be used as such or in the form of their salts. Suitable salts are, for example, alkali metal salts or ammonium salts.
  • Next is also copolymerization with other anionic monomers such as vinyl sulfonic acid and its salts, styrene sulfonates and the like. possible.
  • non-ionized, neutral, water-soluble monomers such as acrylamide or methacrylamide, acrylonitrile, Vinyl compounds of heterocyclic polymerizable monomers, such as vinylpyridine, vinylpyrrolidine, vinylpyrrolidone, vinylimidazole and the like.
  • vinyl compounds of heterocyclic polymerizable monomers such as vinylpyridine, vinylpyrrolidine, vinylpyrrolidone, vinylimidazole and the like.
  • less hydrophilic monomers such as esters of acrylic or methacrylic acid, can be copolymerized to such an extent that water solubility is not adversely affected.
  • monomers are the hydroxyalkyl esters and the aminoalkyl esters of acrylic and methacrylic acid and their aminoalkylamides. These can be derivatives of primary, secondary, tertiary or quaternary amines. Examples of monomers of the type mentioned are 2-hydroxyethyl acrylate or methacrylate, 2-hydroxypropyl acrylate or methacrylate, 4-hydroxybutyl acrylate or methacrylate, dimethylamino ethyl acrylate or methacrylate, and also piperidino, morpholino or piperazinoalkylacrylates or methacrylate.
  • the aminoalkyl acrylates or methacrylates in the form of their salts are to be addressed as cationic monomers.
  • Representative of the cationic monomers are, for example, monomers with quaternary ammonium compounds, in particular the quaternization products of the dialkylaminoalkyl esters of acrylic or methacrylic acid. These are N, N-dimethylaminoethyl acrylate or methacrylate, N, N-diethylaminoethyl acrylate or methacrylate and the like. and their quarters.
  • water-soluble monomers which are not actually water-soluble can also be copolymerized to such an extent that they do not impair the water-solubility of the polymeric product.
  • the proportion of non-water-soluble monomers will therefore generally be below 10% by weight, based on the total monomers used.
  • the polymerization is advantageously carried out at pH values of 5-14, preferably 6-8. The particularly preferred range is practically accessible for the first time through the use of mono- or oligosaccharides and / or derivatives according to the invention.
  • the polymerization can advantageously be carried out at a pH below 8, preferably at pH 3-6.
  • the preparation of copolymers which contain both anionic and cationic monomers is also within the scope of the present invention.
  • the monosaccharides and / or oligosaccharides to be used according to the invention are understood to be sugar units, such as glucose, fructose, sorbose, galactose, mannose, xylose etc., in accordance with the usual nomenclature, and the saccharides with 2 to 20 monosaccharide units built up by glycosidic linkage. especially the di- to tetra-saccharides. There can be the same or different sugar units in the molecule.
  • disaccharides as the sucrose (sucrose), lactose, maltose, cellobiose, melibiose, on trisaccharides called raffinose, mellecitose, gentianose and others, on tetrasaccharides called stachyose.
  • the degradation products of polymeric carbohydrates produced under the influence of acid or enzymes, insofar as they fall within the definitions of the mono- or oligosaccharides are also suitable. Mention may be made, for example, of the oligoglucosides obtained from starch by the action of amylase, and the breakdown products of cellulose, xylan, etc., insofar as they correspond to the definitions.
  • water-soluble sugar derivatives in which functional groups of the sugar units have been changed for example the oxidation and reduction products thereof and esters and / or ethers, are also to be included in the claim.
  • sugar alcohols such as sorbitol or monomethyl ethers such as glucose monomethyl ether can be used for the purposes of the present invention.
  • the (radical) polymerization can be triggered and controlled using the usual accelerators such as peroxides or azo compounds or also by irradiation (UV, ⁇ radiation): (See H. Rauch-Puntigam, T. Völker, acrylic and methacrylic compounds , Springer-Verlag, 1967).
  • the customary auxiliaries such as, for example, regulators, for example sulfur regulators, can also be used, if appropriate.
  • regulators for example sulfur regulators
  • the problem solutions of the prior art can also be used to advantage. It is not necessary in all cases to produce directly grindable products.
  • the addition of monosaccharides and / or oligosaccharides according to the invention makes it possible in any case to increase the dry weight, so that drying is only necessary for a short time in order to reach the grindability range (> 83% dry content).
  • a further advantage in this connection is that in the presence of the monosaccharides or oligosaccharides to be used according to the invention, no significant reduction in the quality of the product, for example through subsequent crosslinking, is observed during drying. In addition, the rate of dissolution of a saccharide-containing polymer in water is significantly increased.
  • the product obtained in this way is hard and brittle and can therefore be ground directly (dry content 85.2%, active substance 74.1%).
  • the 1% solution has a viscosity of 5000 mPa.s; it is homogeneous and is very suitable, for example, as a flocculant for kaolin. Cellobiose, methyl-D-glucopyranoside or starch breakdown products with DE values of 5 - 50 can also be used as a carbohydrate additive with similarly good success.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung wasserlöslicher Polymer-Festprodukte durch Polymerisation in festem Medium, wobei den Polymerisationsansätzen 0,5 - 50 Gew.-% feste, wasserlösliche Mono-oder/und Oligosaccharide und/oder Derivate derselben mit diesen Eigenschaften zugesetzt werden.

Description

  • Wasserlösliche synthetische Polymere haben in der Technik eine stetig wachsende Bedeutung erlangt. Ihre Anwendungsgebiete umfassen unter anderem die Verwendung als Flockungs-, Dispergier-, Verdickungs-, Wasserbehandlungs- und Schlichtmittel.
  • Unter chemischen Gesichtspunkten wird häufig eine Einteilung in die Klasse der nicht-ionogenen Polymere (z.B. Polyacrylamide, Polyvinylalkohol, Polyäthylenoxid), die Klasse der ionogenen Polymere (sog. Pdyelektrolyte) und der Mischpolymerisate vorgenommen. In der Klasse der ionogenen Polymeren kann wiederum eine Unterscheidung in anionische Polymere (z.B. Salze der Acryl-, Methacryl- und Maleinsäure enthaltenden Polymeren) und kationische Polymere [z.B. quartemäre Ammoniumgruppen enthaltende Makromoleküle, vgl. M.F. Hoover, J. Macrom. Sci. Chem. A 4 (6) 1327 - 1417 (1970) ] vorgenommen werden.
  • Die Klasse der Mischpolymerisate enthält anionische und kationische Gruppen. Die wenigsten Handelsprodukte sind reine Homopolymerisate.
  • Gerade die technisch besonders wichtigen Polyacrylate stellen meist Copolymere dar, die neben dem salzbildenden Monomeren noch weitere, elektrisch neutrale Monomere einpolymerisiert enthalten. Genannt seien Acrylamid, Acrylnitril, Acrylester von niederen Alkoholen sowie die entsprechenden Methacrylverbindungen.
  • Das besondere Interesse der Technik galt der Entwicklung fester Formen von wasserlöslichen synthetischen Polymeren aus unmittelbar einsichtigen Gründen: Der Transport ist gegenüber dem gelösten Zustand vereinfacht und verbilligt.
  • Das Lösungsmittel (Wasser) braucht nicht mittransportiert zu werden. Es braucht keine Rücksicht auf klimatische Schwankungen genommen werden.
  • Beim Gebrauch als Hilfsstoff braucht nicht unnötigerweise Wasser den Ansätzen zugefügt zu werden. Jede gewünschte Konzentration im Endprodukt kann nach Belieben durch Einwiegen der erforderlichen Menge des Feststoffes eingestellt werden usw..
  • Bereits bei der Gewinnung des Polymerisats aus den Lösungen stößt man in der Praxis auf Schwierigkeiten. Auf dem Gebiet der Flockungsmittel ist man teilweise zur Isolierung durch Ausfällung der Polymeren mit Alkoholen oder Aceton im Kneter übergegangen. Ferner kennt man azeotrope Wasserauskreisung mittels inerter organischer Lösungsmittel oder auch direktes Trocknen fein verteilter Lösungen auf der Trockenwalze (US-PS 3 714 136).
  • Auf dem Gebiet der UV-induzierten Polymerisation liegt das Verfahren der DE-OS 2 050 988 vor, bei dem eine konzentrierte wäßrige Lösung von Acrylmonomeren (z.B. Acrylamid, Acrylnitril und/oder Acrylsäure bzw. Salze und -ester) mit einem pH von mindestens 8, die einen Photoinitiator enthält in relativ dünner Schicht auf einen wasserabweisenden Träger gegossen oder aufgesprüht und anschließend bestrahlt wird. Als gravierender Nachteil dieses Verfahrens wird in der Zusatzanmeldung DE-OS 22 48 715 die große Klebrigkeit der Verfahrensprodukte herausgestellt. Die Zusatzanmeldung, bei der der Zusatz eines (thermischen) Initiators empfohlen wird, zielt auf die Herstellung von Polymerisaten mit niedrigerem Molgewicht ab.
  • Unvermindert dringlich stellt sich somit die Forderung nach mahlbaren, wasserlöslichen, synthetischen Polymeren. Der Erfüllung dieser Forderung war man beispielsweise bei den anionischen Polyelektrolyten noch nicht wesentlich näher gekommen. Die Problematik sei am Beispiel der Herstellung von festen, direkt mahlbaren, wasserlöslichen Polymeren in Schicht unter Verwendung von UV-Initiatoren genauer dargestellt. Im Prinzip ist die Polymerisation mit hohen Monomerkonzentrationen anzustreben. Dabei besteht durchwegs die Gefahr einer unerwünscht hohen Vernetzung. In ganz besonderem Maße gilt dies bei Mitverwendung von Acrylamid als Copolymeren. Im Falle der UV-induzierten Copolymerisation von Acrylsäure mit Acrylamid ist zwar ein Trockengehalt des Polymeren von > 83 % bei erhöhter Temperatur erreichbar und man erhält auch ohne speziellen Trocknungsschritt ein direkt mahlbares Polymer, aber dieses ist nicht mehr glatt wasserlöslich. Die Ursache der Löslichkeitsprobleme dürfte in einem zu hohen Molekulargewicht liegen, wahrscheinlich hervorgerufen durch zusätzliche Ubertragungspfropfung. Dazu kommt, daß bei der Polymerisation in hochkonzentrierter Lösung der Restmonomerengehalt in der Regel sehr hoch ausfällt. Um die genannten Nachteile zu umgehen, müßte demnach bei niedrigerer Monomerkonzentration polymerisiert werden. Geht man aber entsprechend vor, so erhält man als Polymerisationsprodukt ein weiches bis zähelastisches Gel.
  • Es wurde nun gefunden, daß bei Raumtemperatur feste wasserlösliche, synthetische Polymer-Festprodukte durch Polymerisation von Monomeren in wäßrigem Medium erhalten werden können, die die Anforderungen der Technik sehr weitgehend erfüllen, wenn man dem Polymerisationsansatz 0,5 bis 50 Gew. -Teile; (bezogen auf die eingesetzten Monomere), an wasserlöslichen Mono- oder/und Oligosacchariden zusetzt und die Polymerisation in an sich bekannter Weise radikalisch durchführt. Als Richtwert kann gelten, daß bei dem erfindungsgemäßen Verfahren den Reaktionsansätzen soviel Mono-oder/und Oligosaccharid zugesetzt wird, daß der Feststoffgehalt 80 %, speziell 83 überschreitet.
  • Die Polymerisationsverfahren gemäß der vorliegenden Erfindung können im übrigen in enger Anlehnung an die Verfahren des Standes der Technik durchgeführt werden. So können sowohl die gewöhnlich zur Herstellung nicht-ionogener Polymere verwendeten Monomere als auch die zur Herstellung anionischer oder kationischer Polymerisate oder zur Herstellung von Mischpolymerisaten verwendeten Monomeren jeweils in Anlehnung an die bekannten Polymerisationsverfahren erfindungsgemäß zu wasserlöslichen synthetischen Polymerfestprodukten polymerisiert werden.
  • Besonders hervorgehoben sei die im allgemeinen vorhandene erstklassige Mahlbarkeit der erfindungsgemäß hergestellten Polymerisate.
  • Vorteilhaft für die Einstellung des gewünschten Ergebnisses ist es, wenn im Moment der Polymerisation eine homogene Lösung aller Komponenten vorliegt. Die im Zuge des erfindungsgemäßen Verfahrens hergestellte homogene Schicht ist transparent und ermöglicht daher auch eine Polymerisation mit UV-Licht.
  • Das zugesetzte Mono- und/oder Oligosaccharid erfüllt offenbar mehrere Funktionen im Polymerisationsansatz. Anzunehmen ist, daß es nicht nur als inerter Füllstoff wirkt, der dem Produkt die erwünschte Härte verleiht, sondern daß es auch noch die Funktion eines (schwachen) Reglers übernimmt, der die Vernetzungstendenz vor allem im Endstadium der Polymerisation hintanhält. So werden bei hohem Kohlehydratzusatz sogar relativ niedrige Molekulargewichte erzielt. Werden jedoch - wie im Normalfall - hohe Molekulargewichte, angestrebt, so soll der Kohlehydratgehalt 20 des Gesamtansatzes nicht übersteigen.
  • Beim Vorgehen nach dem erfindungsgemäßen Verfahren gelingt es den Polymerisationsprodukten zwei bisher schwer- bis unvereinbare Eigenschaften zu erteilen, nämlich Vernetzungsfreiheit und Mahlbarkeit. Als Beispiel sei besonders auf die Copolymerisation von Acrylamid mit anderen Monomeren, insbesondere Acrylsäure, verwiesen.
  • Das erfindungsgemäße Verfahren kann im Hinblick auf die Polymerisation von nicht-ionogenen Monomeren beispielsweise bei der UV-Polymerisation konzentrierter Acrylamid-Lösungen, wie in DE-OS 25 45 290 beschrieben, angewandt werden.
  • Die anionischen Polymerisate leiten sich vor allem von radikalisch polymerisierbaren Carbonsäuren, Anhydriden oder anderen Säure-Vorstufen ab. Als Monomere kommen daher a,ß-ungesättigte Carbonsäuren infrage. Genannt seien z.B. Maleinsäure, Fumarsäure, Itakonsäure, Crotonsäure und bevorzugt Acrylsäure und Methacrylsäure. Die Verbindungen können als solche oder in Form ihrer Salze eingesetzt werden. Als Salze kommen z.B. Alkalisalze oder Ammoniumsalze infrage. Weiter ist auch Copolymerisation mit anderen anionischen Monomeren, wie Vinylsulfonsäure und ihren Salzen, Styrolsulfonaten u.dgl. möglich. Gleichzeitig können als weitere Comonomere nicht-ionisierte, neutrale, wasserlösliche Monomere, wie Acrylamid öder Methacrylamid, Acrylnitril, Vinylverbindungen heterocyclischer polymerisationsfähiger Monomerer, wie z.B. Vinylpyridin, Vinylpyrrolidin, Vinylpyrrolidon, Vinylimidazol u.ä. eingesetzt werden. Ferner können in einem solchen Maße, daß die Wasserlöslichkeit nicht negativ beeinflußt wird, auch weniger hydrophile Monomere, wie Ester der Acryl- bzw. Methacrylsäure copolymerisiert werden.
  • Weiter seien als Monomeren genannt die Hydroxyalkylester und die Aminoalkylester der Acryl- und der Methacrylsäure sowie deren Aminoalkylamide. Dabei kann es sich um Derivate primärer, sekundärer, tertiärer oder quartärer Amine handeln. Beispiele für Monomere der genannten Art sind das 2-Hydroxyäthylacrylat oder -methacrylat, 2-Hydroxypropylacrylat oder Methacrylat, 4-Hydroxybutylacrylat oder -methacrylat, Dimethylamino- äthylacrylat oder -methacrylat, sowie Piperidino-, Morpholino- oder Piperazinoalkylacrylate oder -methacrylate. Die Aminoalkylacrylate bzw. -methacrylate in Form ihrer Salze sind als kationische Monomere anzusprechen. Repräsentativ für die kationischen Monomeren sind ferner z.B. Monomere mit quartemären Ammoniumverbindungen, insbesondere die Quarternierungsprodukte der Dialkylaminoalkylester der Acryl- oder Methacrylsäure. Genannt seien das N,N-Dimethylaminoäthylacrylat oder -methacrylat, N,N-Diäthylaminoäthylacrylat oder -methacrylat u.ä. und deren Quartemierungsprodukte. Daneben können,wie bereits oben ausgeführt, auch nicht eigentlich wasserlösliche Monomere in einem solchen Umfang copolymerisiert werden, daß sie die Wasserlöslichkeit des polymeren Produkts nicht beeinträchtigen. Der Anteil der nicht-wasserlöslichen Monomeren wird sich daher in der Regel unter 10 Gew.-%, bezogen auf die gesamten eingesetzten Monomeren, halten. Bei der Durchführung des Verfahrens unter Verwendung anionischer Monomere wird die Polymerisation vorteilhaft bei pH-Werten von 5 - 14, vorzugsweise 6 - 8, durchgeführt. Der besonders bevorzugte Bereich wird praktisch erstmalig durch die erfindungsgemäße Anwendung von Mono- bzw. Oligosacchariden und/oder Derivaten zugänglich. Bei Anwendung des Verfahrens mit kationischen Monomeren kann man die Polymerisation vorteilhaft bei einem pH-Wert unterhalb 8, vorzugsweise bei pH 3 - 6, vornehmen. Auch die Herstellung von Mischpolymerisaten, die sowohl anionische als kationische Monomere enthalten, liegt innerhalb der vorliegenden Erfindung. Dabei ist bei der Vorgabe des pH-Werts zweckmäßig dafür Sorge zu tragen, daß genügend weit außerhalb des isoelektrischen Punktes der vorhandenen Elektrolyte gearbeitet wird.
  • Unter den erfindungsgemäß zu verwendenden Mono- und/ oder Oligosacchariden seien im Einklang mit der üblichen Nomenklatur die Zuckereinheiten, wie Glucose, Fructose, Sorbose, Galactose, Mannose, Xylose usw., verstanden sowie die durch glykosidische Verknüpfung aufgebauten Saccharide mit 2 bis 20 Monosaccharideinheiten, insbesondere die Di- bis Tetra-Saccharide. Es können sowohl gleiche als verschiedene Zuckereinheiten im Molekül vorhanden sein. An Disacchariden seien beispielsweise die Saccharose (Sucrose), Lactose, Maltose, Cellobiose, Melibiose,an Trisacchariden die Raffinose, Mellecitose, Gentianose u.a., an Tetrasacchariden die Stachyose genannt. Ferner kommen die unter dem Einfluß von Säure oder Enzymen hergestellten Abbauprodukte polymerer Kohlehydrate, soweit sie in die Definitionen der Mono- bzw. Oligosaccharide fallen, infrage. Genannt seien z.B. die aus Stärke durch Amylaseeinwirkungen gewonnenen Oligoglucoside sowie Abbauprodukte der Cellulose, des Xylans usw., soweit sie den Definitionen entsprechen. Daneben sollen aber auch wasserlösliche Zuckerderivate, bei denen funktionelle Gruppen der Zuckereinheiten verändert wurden, z.B. die Oxidations- und Reduktionsprodukte derselben sowie Ester und/oder Äther vom Anspruch umfaßt sein. So sind z.B. Zuckeralkohole, wie Sorbit oder Monomethyläther wie Glucosemonomethyläther im Sinne der vorliegenden Erfindung anwendbar.
  • Im Journal of Applied Polymer Science Vol 22, 3327 (1978) wird über die Fähigkeit zuvor mit UV-Licht bestrahlter Saccharide berichtet, die Homopolymerisation von Acrylamid in wäßrigem Medium auszulösen. Die Autoren fanden auch, daß bezüglich der Polymerisation der Acrylsäure, des N-Vinyl-2-pyrrolidons, Acrylnitrils und Methylmethaciylats die zuvor bestrahlte Sucrose nahezu inaktiv war. 0 Die Polymerisation kann in an sich bekannter Weise, beispielsweise gemäß BE-PS 695 342 in Folienbeuteln, gemäß DE-PS 1 770 588 in offenen Wannen, gemäß DE-OS 25 45 290 auf einem endlosen Band durchgeführt werden. Die (radikalische) Polymerisation kann unter Verwendung der üblichen Beschleuniger wie Peroxide oder Azo-Verbindungen oder auch durch Bestrahlung (UV, γ-Strahlung) ausgelöst und gesteuert werden: (Vgl. H. Rauch-Puntigam, T. Völker, Acryl- und Methacrylverbindungen, Springer-Verlag, 1967). Dabei können auch die üblichen Hilfsstoffe, wie z.B. Regler, beispielsweise Schwefelregler, soweit zweckdienlich, mitverwendet werden. Bei der Bewältigung der auftretenden technischen Probleme, wie Wärmeabfuhr usw., können ebenfalls die Problemlösungen des Standes der Technik nutzbringend angewendet werden. Es ist nicht in allen Fällen notwendig, gleich direkt mahlbare Produkte herzustellen. Der erfindungsgemäße Zusatz von Mono- und/oder Oligosacchariden ermöglicht in jedem Fall ein Anheben des Trockengewichts, so daß nur kurzfristig nachgetrocknet werden muß, um in den Bereich der Mahlbarkeit ( > 83 % Trockengehalt) zu gelangen.
  • Es wurde weiter gefunden, daß überraschenderweise bei Anwesenheit der erfindungsgemäßen Mono- und/oder Oligosaccharide bzw. Derivate, die normalerweise sonst zu beobachtende Übertragymgspfropfung auf anwesende Polymere nicht oder nur in untergeordnetem Maße stattfindet, so daß z.B. die Durchführung der Reaktion in Anwesenheit von löslicher Stärke (einem bekanntlich besonders pfropfaktiven Polymeren) neben niedermolekularen Stärkeabbauprodukten, gemäß der Kennzeichnung der vorliegenden Erfindung, möglich wird.
  • Ein weiterer Vorteil in diesem Zusammenhang liegt darin, daß in Gegenwart der erfindungsgemäß einzusetzenden Mono- bzw. Oligosaccharide beim Trocknen keine ins Gewicht fallende Qualitätsminderung des Produkts, etwa durch nachträgliche Vernetzung beobachtet wird. Außerdem ist die Lösegeschwindigkeit eines saccharidhaltigen Polymeren im Wasser deutlich erhöht.
  • Die nachfolgenden Beispiele dienen zur Erläuterung der Erfindung, sollen aber den nachgesuchten Schutz nicht auf diese Ausführungsart beschränken.
  • Beispiel 1
  • Polymerisation unter Verwendung von Mono- bzw. Oligosacchariden.
    Figure imgb0001
    wird bei 50°C eine homogene Lösung hergestellt (pH = 10,5). Diese wird als 1 cm dicke Schicht in einer Aluminiumblechwanne aus 18,5 cm mit UV-Licht, (20 W-Paus-. lampe) bestrahlt und bei 60°C isotherm (Lampe schaltet ab, wenn Temperaturfühler anzeigt, daß 60°C überschritten sind), polymerisiert. Das so erhaltene Produkt ist hart und spröde, daher direkt mahlbar (Trockengehalt 85,2 %, Wirksubstanz 74,1 %). Die 1 %-ige Lösung hat eine Viskosität von 5000 mPa.s; sie ist homogen und eignet sich z.B. sehr gut als Flockungsmittel für Kaolin. Mit ähnlich gutem Erfolg kann auch Cellobiose, Methyla-D-glucopyranosid oder Stärkeabbauprodukte mit DE-Werten von 5 - 50 als Kohlehydratzusatz verwendet werden.
  • Beispiel 2
  • Polymerisation ohne Verwendung von Mono- bzw. Oligosacchariden.
    Figure imgb0002
    wird bei 50°C eine homogene Lösung hergestellt (pH = 10,3) und analog Beispiel 1 polymerisiert. Nach Abschluß der Polymerisation erhält man ein zähelastisches Gel (Trockengehalt bzw. Wirksubstanz 79,8 %), das nicht direkt mahlbar ist. Eine 1 %-ige Lösung ist vernetzt. Sie hat eine Viskosität von 6400 mPa.s. Als Flockungsmittel ist das Produkt unbrauchbar.

Claims (9)

1. Verfahren zur Herstellung von wasserlöslichen, synthetischen Polymer-Festprodukten durch Polymerisation von Monomeren in wäßrigem Medium,
dadurch gekennzeichnet,
daß dem Polymerisationsansatz 0,5 bis 50 Gew.-Teile feste wasserlösliche Mono- oder/und Oligosaccharide - und/oder Derivate derselben - bezogen auf das eingesetzte Monomere zugesetzt werden.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß der Feststoffgehalt im Polymerisationsansatz größer 80 %, speziell größer 83 ist.
3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß als Monomere ausschließlich oder überwiegend hydrophile Acrylat- und/oder Methacrylatmonomere verwendet werden.
4. Verfahren gemäß den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß als Monomere mindestens teilweise anionische Monomere verwendet werden.
5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, daß als Monomere Acrylamid und/oder Methacrylamid zusammen mit Acrylsäure und/oder Methacrylsäure verwendet werden.
6. Verfahren gemäß den Ansprüchen 4 und 5,
dadurch gekennzeichnet, daß die Polymerisation bei einem pH-Wert von 5 - 14, vorzugsweise 6 - 8, durchgeführt wird.
7. Verfahren gemäß den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß als Monomere mindestens teilweise kationische Monomere verwendet werden.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, daß als Monomere Ester oder Amide der Methacrylsäure und/oder der Acrylsäure verwendet werden, die eine tertiäre Aminogruppe,*)vorzugsweise Dialkylaminoalkylester- bzw. -amidgruppe,**) tragen
9. Verfahren gemäß den Ansprüchen 7 und 8, dadurch gekennzeichnet, daß die Polymerisation bei einem pH-Wert unter 8, vorzugsweise 3 - 6, durchgeführt wird. *) (oder) quart. Ammoniumgruppe bzw. eine quart. Ammoniumgruppe derselben
EP80106097A 1979-12-19 1980-10-08 Verfahren zur Herstellung wasserlöslicher Polymer-Festprodukte Expired EP0031005B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2951087 1979-12-19
DE19792951087 DE2951087A1 (de) 1979-12-19 1979-12-19 Verfahren zur herstellung wasserloeslicher polymer-festprodukte

Publications (2)

Publication Number Publication Date
EP0031005A1 true EP0031005A1 (de) 1981-07-01
EP0031005B1 EP0031005B1 (de) 1984-08-08

Family

ID=6088904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80106097A Expired EP0031005B1 (de) 1979-12-19 1980-10-08 Verfahren zur Herstellung wasserlöslicher Polymer-Festprodukte

Country Status (4)

Country Link
US (1) US4563497A (de)
EP (1) EP0031005B1 (de)
JP (1) JPS5693703A (de)
DE (2) DE2951087A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3714732A1 (de) * 1987-05-02 1988-11-10 Grillo Werke Ag Copolymerisate ungesaettigter carbonsaeuren, verfahren zur herstellung derselben und ihre verwendung
FR2761366A1 (fr) * 1997-03-26 1998-10-02 Synthron Nouveaux copolymeres greffes amphoteres a biodegradabilite amelioree utilisables comme agents dispersants
FR2908135A1 (fr) * 2006-11-03 2008-05-09 Limousine D Applic Biolog Dite Procede d'obtention d'un polymere saccharidique, polymeres saccharidiques et compositions cosmetiques

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797221A (en) * 1985-09-12 1989-01-10 S. C. Johnson & Son, Inc. Polymer sheet for delivering laundry care additive and laundry care product formed from same
GB8610719D0 (en) * 1986-05-01 1986-06-04 Shell Int Research Saccharide polymers
US4959432A (en) * 1986-05-19 1990-09-25 Union Carbide Chemicals And Plastics Company Inc. Acid viscosifier compositions
US5015713A (en) * 1988-04-19 1991-05-14 Polysar Financial Services S.A. Alkaline polymerization of carboxylated polymers
US5132284A (en) * 1988-04-26 1992-07-21 National Starch And Chemical Investment Holding Corporation Polyamphoteric polysaccharide graft copolymers neutrally charged
US5132285A (en) * 1988-04-26 1992-07-21 National Starch And Chemical Investment Holding Corporation Method for thickening or stabilizing aqueous media with polyamphoteric polysaccharides
US5441739A (en) * 1990-06-22 1995-08-15 The Regents Of The University Of California Reduced and controlled surface binding of biologically active molecules
JP3113698B2 (ja) * 1991-06-01 2000-12-04 住友精化株式会社 水溶性カチオン系重合体の製造方法
DE4221381C1 (de) * 1992-07-02 1994-02-10 Stockhausen Chem Fab Gmbh Pfropf-Copolymerisate von ungesättigten Monomeren und Zuckern, Verfahren zu ihrer Herstellung und ihre Verwendung
JP2671724B2 (ja) * 1992-08-11 1997-10-29 株式会社日本触媒 (メタ)アクリル酸塩系重合体の製法
JP4873876B2 (ja) * 2005-03-28 2012-02-08 オリンパス株式会社 光量調節機構、それを備えた照明ユニット、及び光量調節機構又は光量調節機構を備えた照明ユニットを備えた顕微鏡

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE556214A (de) * 1956-03-29
FR1483742A (fr) * 1965-11-30 1967-06-09 Centre Nat Rech Scient Gels mixtes d'acrylamide-agarose, procédé pour leur préparation et leurs applications
US3635857A (en) * 1969-12-12 1972-01-18 Atlas Chem Ind Graft copolymers of starch

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1113631A (en) * 1912-10-29 1914-10-13 Farbenfab Vorm Bayer F & Co Production of caoutchouc substances.
US2163305A (en) * 1935-05-21 1939-06-20 Du Pont Process of polymerizing acrylic and alkacrylic compounds
US2380476A (en) * 1941-02-19 1945-07-31 Goodrich Co B F Catalysts for the addition polymerization of unsaturated organic compounds
DE918779C (de) * 1942-01-18 1954-10-04 Roehm & Haas G M B H Verfahren zur Herstellung von Faellungsmitteln fuer Farb- und Gerbstoffe mit sauren Gruppen
FR2064729A5 (de) * 1969-10-22 1971-07-23 Progil
US3714136A (en) * 1971-10-21 1973-01-30 American Cyanamid Co Process for recovering acrylamide polymers from gels
DE2248715B2 (de) * 1971-11-08 1979-06-13 Rhone-Progil S.A., Paris Weitere Ausbildung des Verfahrens zur Herstellung von im festen Zustand wasserlöslichen Acrylpolymerisaten und -copolymerisaten
US3919140A (en) * 1972-08-31 1975-11-11 Sumitomo Chemical Co Process for producing acrylamide polymers in an acetone-water solvent system
DE2545290A1 (de) * 1975-10-09 1977-04-21 Roehm Gmbh Verfahren zum polymerisieren mittels uv-licht
US4261870A (en) * 1979-12-21 1981-04-14 Dart Industries Inc. Peroxyester-monosaccharide redox catalyst system for vinyl chloride polymerization

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE556214A (de) * 1956-03-29
FR1483742A (fr) * 1965-11-30 1967-06-09 Centre Nat Rech Scient Gels mixtes d'acrylamide-agarose, procédé pour leur préparation et leurs applications
US3635857A (en) * 1969-12-12 1972-01-18 Atlas Chem Ind Graft copolymers of starch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3714732A1 (de) * 1987-05-02 1988-11-10 Grillo Werke Ag Copolymerisate ungesaettigter carbonsaeuren, verfahren zur herstellung derselben und ihre verwendung
FR2761366A1 (fr) * 1997-03-26 1998-10-02 Synthron Nouveaux copolymeres greffes amphoteres a biodegradabilite amelioree utilisables comme agents dispersants
FR2908135A1 (fr) * 2006-11-03 2008-05-09 Limousine D Applic Biolog Dite Procede d'obtention d'un polymere saccharidique, polymeres saccharidiques et compositions cosmetiques

Also Published As

Publication number Publication date
US4563497A (en) 1986-01-07
DE3068885D1 (en) 1984-09-13
JPS5693703A (en) 1981-07-29
DE2951087A1 (de) 1981-07-09
EP0031005B1 (de) 1984-08-08

Similar Documents

Publication Publication Date Title
EP0873188B1 (de) Wasserabsorbierende polymere mit verbesserten eigenschaften, verfahren zu deren herstellung und deren verwendung
EP1028129B1 (de) Wasserlösliche oder wasserquellbare Polymerisate
EP1116733B1 (de) Wasserlösliche oder wasserquellbare vernetzte Copolymere
EP0862590B1 (de) Flüssigkeitsabsorbierende polymere, verfahren zu deren herstellung und deren verwendung
DE2800520C2 (de)
EP0031005B1 (de) Verfahren zur Herstellung wasserlöslicher Polymer-Festprodukte
DE3331644A1 (de) Verfahren zur herstellung eines stark wasserabsorbierenden polymerisats
DE102006060156A1 (de) Wasserabsorbierende Polymergebilde, welche unter Einsatz von Polymerdispersionen hergestellt wurden
EP0413953A2 (de) Als Verdickungsmittel für wässrige Zubereitungen eines pH-Wertes 5,5 wirkendes Copolymerisat, Verfahren zu seiner Herstellung und seine Verwendung als Verdickungsmittel
EP0324985A2 (de) Verfahren zur Herstellung von wasserabsorbierenden und wasserquellbaren Polysaccharid-Pfropfpolymeren
DE112005002719B4 (de) Herstellung einer Vinylpyrrolidonpolymerlösung
DE10119338A1 (de) Verwendung von Copolymerisaten auf Basis von Acrylamidoalkylsulfonsäuren als Verdicker in Zubereitungen enthaltend organische Lösemittel
DE2636243A1 (de) Verfahren zur herstellung von pulverfoermigen polymerisaten
EP0527867B1 (de) Vernetztes, wasserabsorbierendes polymer und verwendung zur herstellung von hygieneartikeln
EP0055801A2 (de) Verfahren zum Verdicken von wässrigen Systemen
EP0027850A2 (de) Emulsionspolymerisat mit Verdickungswirkung im sauren Bereich und seine Verwendung
DE3021767A1 (de) Verfahren zur herstellung von acrylamidpolymeren
DE3402182A1 (de) Verfahren zur herstellung von kationischen polymeren
EP0100423A1 (de) Vernetzer für wasserquellbare Polymere
DE4110360A1 (de) Verfahren zur herstellung eines poroesen und wasserabsorbierenden polymers
DE10139003A1 (de) Verfahren zur Herstellung eines N-Vinyl-Verbindungs-Polymers
EP2912110B1 (de) Geruchs- und farbstabile wasserabsorbierende zusammensetzung
EP0547519A1 (de) Verfahren zur Herstellung einer wasserlöslichen Polymersuspension
DE1182828B (de) Verfahren zur Herstellung wasserloeslicher Copolymerisate
DE1023014B (de) Agglomerierungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB SE

17P Request for examination filed

Effective date: 19810714

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB SE

REF Corresponds to:

Ref document number: 3068885

Country of ref document: DE

Date of ref document: 19840913

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 80106097.1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950929

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951017

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19951025

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951031

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961009

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970701

EUG Se: european patent has lapsed

Ref document number: 80106097.1

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST