EP0030403A1 - Verfahren zum Trocknen und Kalzinieren von Schüttgütern - Google Patents

Verfahren zum Trocknen und Kalzinieren von Schüttgütern Download PDF

Info

Publication number
EP0030403A1
EP0030403A1 EP80201140A EP80201140A EP0030403A1 EP 0030403 A1 EP0030403 A1 EP 0030403A1 EP 80201140 A EP80201140 A EP 80201140A EP 80201140 A EP80201140 A EP 80201140A EP 0030403 A1 EP0030403 A1 EP 0030403A1
Authority
EP
European Patent Office
Prior art keywords
insert body
rotary tube
heat exchange
tube
hot gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80201140A
Other languages
English (en)
French (fr)
Other versions
EP0030403B1 (de
Inventor
Gerhard Dipl.-Ing. Krüger
Werner Dipl.-Ing. Kepplinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine AG
GEA Group AG
Original Assignee
Voestalpine AG
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine AG, Metallgesellschaft AG filed Critical Voestalpine AG
Priority to AT80201140T priority Critical patent/ATE4559T1/de
Publication of EP0030403A1 publication Critical patent/EP0030403A1/de
Application granted granted Critical
Publication of EP0030403B1 publication Critical patent/EP0030403B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/028Arrangements for the supply or exhaust of gaseous drying medium for direct heat transfer, e.g. perforated tubes, annular passages, burner arrangements, dust separation, combined direct and indirect heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/18Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
    • F26B3/22Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source and the materials or objects to be dried being in relative motion, e.g. of vibration
    • F26B3/24Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source and the materials or objects to be dried being in relative motion, e.g. of vibration the movement being rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/14Rotary-drum furnaces, i.e. horizontal or slightly inclined with means for agitating or moving the charge
    • F27B7/16Rotary-drum furnaces, i.e. horizontal or slightly inclined with means for agitating or moving the charge the means being fixed relatively to the drum, e.g. composite means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/34Arrangements of heating devices

Definitions

  • the invention relates to a method for drying and calcining bulk materials in a rotary tube with countercurrent flow of hot gases, the drying and optionally precalcination taking place in direct contact with hot gases in the part of the rotary tube adjoining the loading end, the calcination by indirect heat exchange over the length of one Insert body takes place in front of the discharge end of the rotary tube, and hot gases are passed into the insert body and flow out of this into the rotary tube.
  • a drying drum is known in which the hot gases and the material are carried in cocurrent.
  • a heating tube with a smaller diameter and then a heating tube with a larger diameter are arranged in the rotary tube.
  • the material is charged into the annular space. Part of the hot gases is led into the annular space and the other part into the heating pipe.
  • the rotary tube is arranged in a fixed housing, and the exhaust gases are directed into this housing for heat utilization, flow through the housing in countercurrent and are directed into the chimney.
  • the rotary tube and the heating tube must be made of heat-resistant steel according to the gas temperature, and the exhaust gas can cause the rotary tube to cool down.
  • a method for the production of gypsum in which a second tube is arranged in a rotary tube, the material travels in the annular space to the closed end of the rotary tube, enters the inner tube there and through it migrates in the opposite direction to its discharge.
  • the hot gases are directed in counterflow and direct contact through the inner tube and then through the annulus.
  • the device In the high temperature zone there is the risk of overheating due to direct fluctuations in operation, the device is very complicated and the long inner tube must be made of stainless steel.
  • FR-PS 927 063 From FR-PS 927 063 it is known to carry out preheating in direct contact with hot gases and further heating by indirect heat transfer.
  • An insert body is arranged in the rotary tube from the discharge end, into which hot gases are introduced and from which they flow into the rotary tube.
  • the insert body consists of an inner tube and a lining between the inner tube and the rotary tube.
  • channels are arranged in a star shape on the wall of the rotary tube, into which the material enters and from which the material is discharged at the discharge end of the rotary tube.
  • the disadvantages of this method are that the channels have a very small diameter, the transport speed is low due to the small diameter, and the throughput is therefore also low. This is made worse by the fact that the channels are not round.
  • a material jam forms at the inlet of the channels. Because of this material jam and the low throughput of the ducts, it is only possible to work in the rotary tube with a low bed height. As a result of the resulting high degree of filling in the channels and the resulting poor circulation, heat builds up and the risk of overheating and build-up occurs. The heat transfer from the heating gases to the material in the ducts is poor and uneven.
  • the object of the invention is to avoid overheating in the calcining zone with as little effort as possible and to achieve good throughput.
  • This object is achieved according to the invention in that the calcination takes place largely by indirect heat exchange in an annular space on the surface of the insert body.
  • the insert body is expediently designed as a central tube, which is fastened to the inner wall of the rotary tube by connecting pieces.
  • lifting blades are arranged, which take the material from below and let it trickle onto the outer wall of the insert body, so that it is moved in a spiral path through the annular space to the discharge.
  • the inner wall of the rotary tube in the annular space can be lined fireproof.
  • Lifting vanes can be arranged in the drying and, if appropriate, precalcination zone.
  • the hot gases can be generated by combustion directly in the insert body, but they can also be generated in an upstream combustion chamber. Protective gases or reaction gases can also be passed through the annular space.
  • a preferred embodiment consists in that a partial flow of the exhaust gas of the rotary tube is returned to the insert body. This makes it possible to reduce and regulate the temperature of the combustion gases in a simple manner if no upstream combustion chamber is used. If the direct heating has to take place at a considerably lower temperature, a partial flow of the exhaust gas can also be passed into the first part of the insert body, as seen on the loading side, or up to the end of the insert body.
  • a preferred embodiment consists in that the insert body is fastened to the rotary tube by means of lifting blades, the edge of each lifting blade located at the rear in the direction of rotation being connected to the rotary tube and not allowing material to pass through, each lifting blade being connected to the insert body by connecting pieces which result from the lifting blades let falling material trickle down on the outer wall of the insert body, and the shape of the lifting blades is chosen so that the falling material from the front edge trickles down on both sides of the insert body in as equal amounts as possible. This ensures a good and even transfer of heat to the material.
  • a preferred embodiment consists in that the heat transfer from the heating gases to the bulk material is increased during the indirect heat exchange in that the insert body is provided with ribs or pins on the inside.
  • a preferred embodiment is that the amount of heat transferred by the indirect heat exchange per unit of material is regulated by regulating the degree of filling in the annular space. This enables simple and effective regulation of the heat transfer.
  • the rotary tube 1 has a refractory lining 2.
  • the insert body is arranged as a central tube 3.
  • the central tube 3 is connected via connecting pieces 4 and lifting blades 5 to an inner tube 6 which bears against the refractory lining 2.
  • the lifting blades 5 are connected to the inner tube 6 by their rear edges in the direction of rotation.
  • the rear edges of the lifting blades 5 are connected directly to the rotary tube 1.
  • the burner 7 generates the hot gases, which flow through the central tube 3 into the drying and, if appropriate, precalcination zone and are passed via line 8 into a cyclone separator 9.
  • the fresh material and the return 11 from the cyclone 9 are charged via the loading device 10.
  • 12 represents a blower.
  • the pilot plant was charged with 70 kg / h aluminum fluoride trihydrate with a free moisture content of 6%. After an average residence time of 29.6 minutes at an oven speed of 6.8 rpm, 39.4 kg / h of calcined aluminum fluoride with an A1F3 content of over 97% and an ignition loss of 0.3 to 0.4 left the product discharge %.
  • the total length of the rotary tube was 5 m, of which 3.8 m were heated directly and 1.2 m indirectly.
  • the tubular steel jacket had a diameter of 650 mm and was lined with a high-alumina ramming compound. The free inside diameter was 430 mm.
  • a cylindrical inner tube made of steel with eight internal lifting blades was installed, which in turn support the central tube made of heat-resistant stainless steel ...
  • the outer diameter of the central tube for indirect material heating was 300 mm.
  • the hot gas required for the heat treatment of the goods was generated by burning 5.5 kg / h of heating oil.
  • the hot gas temperature was approx. 1200 ° C.
  • about 10% of the amount of fuel could be saved by flue gas recirculation to set the hot gas temperature.
  • the transition from indirect to direct heated zone, the gas temperature was still 890 0 C and leaving the furnace to the product record is still 250 ° C.
  • entrained dust particles were separated from the gas stream and returned to the furnace with the feed material.
  • a fan was used to generate the required negative pressure in the system and led the exhaust gas to the atmosphere.
  • the advantages of the invention are that overheating of the material in the calcining zone is avoided with simple means, the rotary tube can be made of normal steel, the insert body can be made thin-walled, since it is hardly subjected to static loads, thereby improving the heat transfer, Extensive optimization of the heat transfer is possible, and the insert body can be easily replaced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)

Abstract

Das Schüttgut 16 wird in einem Drehrohr 1 in den an das Beschickungsende anschliessenden Teil zunächst im Gegenstrom zu heissen Gasen geführt und durch direkten Wärmeaustausch getrocknet und gegebenenfalls vorkalziniert. Im anschliessenden Teil des Drehrohrs 1 ist in der Kalzinierzone ein Einschubkörper 3 angeordnet, der zwischen seiner Oberfläche und dem Drehrohr 1 einen ringförmigen Raum bildet. In diesen ringförmigen Raum wird das getrocknete Schüttgut transportiert und weitgehend auf der Oberfläche des Einschubkörpers 3 durch indirekten Wärmeaustausch kalziniert. In den Einschubkörper 3 werden heisse Gase 7 geleitet und strömen aus ihm in das Drehrohr 1.

Description

  • Die Erfindung betrifft ein Verfahren zum Trocknen und Kalzinieren von Schüttgütern im Drehrohr unter Gegenstromführung heißer Gase, wobei die Trocknung und gegebenenfalls Vorkalzination im direkten Kontakt mit heißen Gasen in dem an das Beschickungsende anschließenden Teil des Drehrohres erfolgt, die Kalzination durch indirekten Wärmeaustausch auf der Länge eines Einschubkörpers vor dem Austragsende des Drehrohrs erfolgt, und heiße Gase in den Einschubkörper geleitet werden und aus diesem in das Drehrohr strömen.
  • Beim Trocknen und Kalzinieren von Schüttgütern muß in vielen Fällen die Trocknung und evtl. die Vorkalzinierung langsam und/oder bei niedrigeren Temperaturen erfolgen, während zur Kalzinierung höhere Temperaturen erforderlich sind.
  • Aus der DE-PS 261 997 ist eine Trockentrommel bekannt, in der die heißen Gase und das Material im Gleichstrom geführt werden. In dem Drehrohr ist zunächst ein Heizrohr mit geringerem Durchmesser und dann ein Heizrohr mit größerem Durchmesser angeordnet. Das Material wird in den ringförmigen Raum chargiert. Ein Teil der heißen Gase wird in den ringförmigen Raum und der andere Teil in das Heizrohr geleitet. Das Drehrohr ist in einem feststehenden Gehäuse angeordnet, und die Abgase werden zur Wärmeausnutzung in dieses Gehäuse geleitet, durchströmen das Gehäuse im Gegenstrom und werden in den Kamin geleitet.
  • Bei diesem Verfahren treten die heißesten Gase mit dem kältesten Material in Berührung, das Drehrohr und das Heizrohr müssen entsprechend der Gastemperatur aus hitzebeständigem Stahl bestehen, und das Abgas kann eine Abkühlung des Drehrohrs bewirken.
  • Aus der DE-OS 14 33 860 ist ein Verfahren zur Herstellung von Gips bekannt, bei dem in einem Drehrohr ein zweites Rohr angeordnet ist, das Material in dem Ringraum bis zum geschlossenen Ende des Drehrohres wandert, dort in das innere Rohr eintritt und durch dieses in entgegengesetzter Richtung zu dessen Austrag wandert. Die heißen Gase werden im Gegenstrom und direkten Kontakt durch das Innenrohr_und dann durch den Ringraum geleitet. In der Hochtemperaturzone besteht durch den direkten Kontakt die Gefahr der Überhitzung bei Betriebsschwankungen, die Vorrichtung ist sehr kompliziert und das lange Innenrohr muß aus Edelstahl bestehen.
  • Aus "Ullmann", 3. Auflage, 1951, Band 1, Seite 597 ist es bekannt, die Trocknung und Kalzination im Gegenstrom-Trommeltrockner mit zentralem Rohr zum nachträglichen Beimischen von trockener Luft durchzuführen, wobei sich das zentrale Rohr über den größten Teil des Drehrohrs bis in den Anfang der Trockenzone erstreckt. Die heißen Gase werden zum Teil durch den ringförmigen Raum und zum Teil durch das Zentralrohr geleitet. Auch hier besteht durch den direkten Kontakt im Ringraum die Gefahr der Überhitzung und das Zentralrohr und das Drehrohr müssen aus Edelstahl hergestellt werden.
  • Aus der AT-AS 7077/77 ist es bekannt, Aluminiumfluorid-Hydrate nach einer Vortrocknung in Stromrohrtrockner oder Tellertrockner in einer Wirbelschicht zu kalzinieren, oder die Kalzination in direkt oder indirekt beheizten Drehrohröfen oder einer außenbeheizten Wirbelschicht durchzuführen. In allen Fällen muß der Ofen aus Edelstahl bestehen und bei direktem Kontakt besteht die Gefahr der Überhitzung.
  • Aus der FR-PS 927 063 ist es bekannt, die Vorwärmung im direkten Kontakt mit heißen Gasen und die weitere Aufheizung durch indirekten Wärmeübergang vorzunehmen. Dabei ist vom Austragsende ein Einschubkörper im Drehrohr angeordnet, in den heiße Gase eingeleitet werden und aus dem sie in das Drehrohr strömen. Der Einschubkörper besteht aus einem Innenrohr und einer Ausmauerung zwischen Innenrohr und Drehrohr. In dieser Ausmauerung sind sternförmig Kanäle an der Wand des Drehrohrs angeordnet, in die das Material eintritt und aus denen das Material am Austragsende des Drehrohrs ausgetragen wird. Die Nachteile dieses Verfahrens bestehen darin, daß die Kanäle einen sehr kleinen Durchmesser haben, die Transportgeschwindigkeit infolge des kleinen Durchmessers gering ist und dadurch die Durchsatzleistung ebenfalls gering ist. Dieses wird noch dadurch verschlechtert, daß die Kanäle nicht rund sind. Am Einlauf der Kanäle bildet sich ein Materialstau. Wegen dieses Materialstaus und der geringen Durchsatzleistung der Kanäle kann nur mit geringer Betthöhe im Drehrohr gearbeitet werden. Infolge des sich ergebenden hohen Füllungsgrades in den Kanälen und der sich daraus ergebenden schlechten Umwälzung tritt ein Wärmestau und die Gefahr von Überhitzung und Ansatzbildung ein. Die Wärmeübertragung von den Heizgasen auf das Material in den Kanälen ist schlecht und ungleichmäßig.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Überhitzung in der Kalzinierzone mit möglichst geringem Aufwand mit Sicherheit zu vermeiden und eine gute Durchsatzleistung zu erzielen.
  • Die Lösung dieser Aufgabe erfolgt erfindungsgemäß dadurch, daß die Kalzination durch indirekten Wärmeaustausch in einem ringförmigen Raum weitgehend auf der Oberfläche des Einschubkörpers erfolgt.
  • Der Einschubkörper ist zweckmäßigerweise als Zentralrohr ausgebildet, das an der Innenwand des Drehrohres durch Verbindungsstücke befestigt ist. In dem zwischen Einschubkörper und Drehrohr gebildeten ringförmigen Raum sind Hubschaufeln angeordnet, die das Material von unten mitnehmen und auf die Außenwand des Einschubkörpers rieseln lassen, so daß es in einer spiralförmigen Bahn durch den Ringraum zum Austrag bewegt wird. Die Innenwand des Drehrohrs in dem ringförmigen Raum kann feuerfest ausgekleidet werden. In der Trocken-und gegebenenfalls Vorkalzinierzone können Hubschaufeln angeordnet sein. Die heißen Gase können durch Verbrennung direkt in dem Einschubkörper erzeugt werden, sie können aber auch in einer vorgeschalteten Brennkammer erzeugt werden. Durch den Ringraum können auch Schutzgase oder Reaktionsgase geleitet werden.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß ein Teilstrom des Abgases des Drehrohrs in den Einschubkörper zurückgeleitet wird. Dadurch ist eine Verringerung und Regelung der Temperatur der Verbrennungsgase in einfacher Weise möglich, wenn keine vorgeschaltete Brennkammer verwendet wird. Wenn die direkte Beheizung bei einer beträchtlich niedrigeren Temperatur erfolgen muß, kann auch ein Teilstrom des Abgases in den, beschickungsseitig gesehen, ersten Teil des Einschubkörpers oder bis vor das Ende des Einschubkörpers geleitet werden. Eine vorzugsweise Ausgestaltung besteht darin, daß der Einschubkörper mittels Hubschaufeln am Drehrohr befestigt ist, wobei die in Drehrichtung hinten liegende Kante jeder Hubschaufel mit dem Drehrohr verbunden ist und keinen Materialdurchfall gestattet, jede Hubschaufel mit dem Einschubkörper durch Verbindungsstücke verbunden ist, die das aus den Hubschaufeln fallende Material auf der Außenwand des Einschubkörpers herabrieseln lassen, und die Form der Hubschaufeln so gewählt wird, daß das von der Vorderkante herabfallende Material in möglichst gleichen Mengen auf beiden Seiten des Einschubkörpers herabrieselt. Dadurch wird eine gute und gleichmäßige Übertragung der Wärme auf das Material erzielt.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß die Wärmeübertragung von den Heizgasen auf das Schüttgut während des indirekten Wärmeaustausches dadurch erhöht wird, daß der Einschubkörper auf der Innenseite mit Rippen oder Stiften versehen wird.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß die durch den indirekten Wärmeaustausch pro Materialeinheit übertragene Wärmemenge durch Regelung des Füllungsgrades in dem ringförmigen Raum geregelt wird. Dadurch ist eine einfache und wirksame Regelung des Wärmeüberganges möglich.
  • Die Erfindung wird anhand der Figuren näher erläutert.
    • Fig. 1 ist ein schematischer Längsschnitt durch ein Drehrohr
    • Fig. 2 ist ein schematischer Querschnitt durch die Kalzinierzone mit Auskleidung des Drehrohrs
    • Fig. 3 ist ein schematischer Querschnitt durch die Kalzinierzone ohne Auskleidung des Drehrohrs.
  • Das Drehrohr 1 besitzt eine feuerfeste Auskleidung 2. Der Einschubkörper ist als Zentralrohr 3 angeordnet. In den Figuren 1 und 2 ist das Zentralrohr 3 über Verbindungsstücke 4 und Hubschaufeln 5 mit einem Innenrohr 6 verbunden, das an der feuerfesten Auskleidung 2 anliegt. Die Hubschaufeln 5 sind mit ihren in Drehrichtung hinten liegenden Kanten mit dem Innenrohr 6 verbunden. In der Figur 3 sind die hinten liegenden Kanten der Hubschaufeln 5 direkt mit dem Drehrohr 1 verbunden. Durch den Brenner 7 werden die heißen Gase erzeugt, die durch das Zentralrohr 3 in die Trocknungs- und gegebenenfalls Vorkalzinierzone strömen und über Leitung 8 in einen Zyklonabscheider 9 geleitet.werden. Über die Beschickungsvorrichtung 10 wird das frische Material und der Rücklauf 11 aus dem Zyklon 9 chargiert. 12 stellt ein Gebläse dar. Über Leitung 13 wird ein Teil des Abgases durch das Rohr 14 als Mischluft um den Brenner 7 herum in das Zentralrohr 3 geleitet. Über Leitung 15 wird das restliche Abgas abgeführt. Das Materialbett 16 wandert durch die Trocknungszone und gegebenenfalls Vorkalzinierzone in die Kalzinierzone, die sich über die Länge des Zentralrohres 3 erstreckt. Dort wird das Material von den Hubschaufeln 5 erfaßt und böscht sich an den freien Vorderkanten unter seinem Böschungswinkel auf. Der Böschungswinkel ist durch die Linien 17'dargestellt. Bei der Drehbewegung des Drehrohrs 1 fällt entsprechend der Stellung der Hubschaufeln 5 ein Teil des Materials dosiert heraus und rieselt über den Umfang des Zentralrohres 3 verteilt herab. Bei 18 wird das Material ausgetragen. Es ist auch möglich, vorher eine Kühlzone anzuschließen.
  • Ausführungsbeispiel
  • Ein teils direkt teils indirekt beheiztes Drehrohr einer Pilotanlage wurde mit 70 kg/h Aluminiumfluorid-Trihydrat mit einem freien Feuchtegehalt von 6 % beschickt. Nach einer mittleren Verweilzeit von 29,6 min bei einer Ofendrehzahl von 6,8 Upm verließen den Ofen am Produktaustrag 39,4 kg/h kalziniertes Aluminiumfluorid mit einem A1F3-Gehalt von über 97 % und einem Glühverlust von 0,3 bis 0,4 %. Die Gesamtlänge des Drehrohres betrug 5 m, von denen 3,8 m direkt und 1,2 m indirekt beheizt waren. Der Stahlrohrmantel hatte einen Durchmesser von 650 mm und war mit einer tonerdereichen Stampfmasse ausgekleidet. Der freie Innendurchmesser betrug 430 mm. Am Produktaustragsende war ein zylindrisches Innenrohr aus Stahl mit acht innenliegenden Hubschaufeln eingebaut, die ihrerseits das Zentralrohr aus hitzebeständigem Edelstahl tragen... Der Außendurchmesser des Zentralrohres für die indirekte Gutbeheizung betrug 300 mm.
  • Das zur Wärmebehandlung des Gutes erforderliche Heißgas wurde durch die Verbrennung von 5,5 kg/h Heizöl erzeugt. Die Heißgastemperatur betrug ca. 1200°C. Bei einer großtechnischen Anlage könnten unter diesen Umständen durch Rauchgasrückführung zur Einstellung der Heißgastemperatur ca. 10 % der Brennstoffmenge eingespart werden. Am Übergang von der indirekt zur direkt beheizten Zone betrug die Gastemperatur noch 8900C und beim Verlassen des Ofens am Produkteintrag noch 250°C. In einem nachgeschalteten Zyklon wurden mitgerissene Staubpartikel aus dem Gasstrom abgeschieden und mit dem Aufgabegut dem Ofen wieder zugeführt. Ein Ventilator diente zur Erzeugung des erforderlichen Unterdrucks im System und führte das Abgas der Atmosphäre zu.
  • Die Vorteile der Erfindung bestehen darin, daß eine Überhitzung des Materials in der Kalzinierzone mit einfachen Mitteln vermieden wird, das Drehrohr aus Normalstahl hergestellt werden kann, der Einschubkörper dünnwandig ausgeführt werden kann, da er statisch kaum beansprucht wird, dadurch der Wärmedurchgang verbessert wird, eine weitgehende Optimierung des Wärmeüberganges möglich ist, und der Einschubkörper leicht ausgewechselt werden kann.

Claims (5)

1. Verfahren zum Trocknen und Kalzinieren von Schüttgütern im Drehrohr unter Gegenstromführung heißer Gase, wobei die Trocknung und gegebenenfalls Vorkalzination im direkten Kontakt mit heißen Gasen in dem an das Beschickungsende anschließenden Teil des Drehrohrs erfolgt, die Kalzination durch indirekten Wärmeaustausch auf der Länge eines Einschubkörpers vor dem Austragsende des Drehrohrs erfolgt und heiße Gase in den Einschubkörper geleitet werden und aus diesem in das Drehrohr strömen, dadurch gekennzeichnet, daß die Kalzination durch indirekten Wärmeaustausch in einem ringförmigen Raum weitgehend auf der Oberfläche des Einschubkörpers erfolgt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Teilstrom des Abgases des Drehrohrs in den Einschubkörper zurückgeleitet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Einschubkörper mittels Hubschaufeln am Drehrohr befestigt ist, wobei die in Drehrichtung hinten liegende Kante jeder Hubschaufel mit dem 'Drehrohr verbunden ist und keinen Materialdurchfall gestattet, jede Hubschaufel mit dem Einschubkörper durch Verbindungsstücke verbunden ist, die das aus den Hubschaufeln fallende Material auf der Außenwand des Einschubkörpers herabrieseln lassen, und die Form der Hubschaufeln so gewählt wird, daß das von der Vorderkante herabfallende Material in möglichst gleichen Mengen auf beiden Seiten des Einschubkörpers herabrieselt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Wärmeübertragung von den Heizgasen auf das Schüttgut während des indirekten Wärmeaustausches dadurch erhöht wird, daß der Einschubkörper auf der Innenseite mit Rippen oder Stiften versehen wird.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die durch den indirekten Wärmeaustausch pro Materialeinheit übertragene Wärmemenge durch Regelung des Füllungsgrades in dem ringförmigen Raum geregelt wird.
EP80201140A 1979-12-08 1980-12-02 Verfahren zum Trocknen und Kalzinieren von Schüttgütern Expired EP0030403B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80201140T ATE4559T1 (de) 1979-12-08 1980-12-02 Verfahren zum trocknen und kalzinieren von schuettguetern.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2949479 1979-12-08
DE19792949479 DE2949479A1 (de) 1979-12-08 1979-12-08 Verfahren zum trocknen und kalzinieren von schuettguetern

Publications (2)

Publication Number Publication Date
EP0030403A1 true EP0030403A1 (de) 1981-06-17
EP0030403B1 EP0030403B1 (de) 1983-08-31

Family

ID=6087957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80201140A Expired EP0030403B1 (de) 1979-12-08 1980-12-02 Verfahren zum Trocknen und Kalzinieren von Schüttgütern

Country Status (12)

Country Link
US (1) US4354826A (de)
EP (1) EP0030403B1 (de)
JP (1) JPS5697537A (de)
AT (1) ATE4559T1 (de)
AU (1) AU538257B2 (de)
CA (1) CA1148354A (de)
DE (2) DE2949479A1 (de)
ES (1) ES8200234A1 (de)
FI (1) FI803605L (de)
IN (1) IN153275B (de)
YU (1) YU284580A (de)
ZA (1) ZA806527B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0056931A1 (de) * 1981-01-27 1982-08-04 VOEST-ALPINE Aktiengesellschaft Drehrohrofen
FR2564332A1 (fr) * 1984-05-16 1985-11-22 Sofremi Malaxeur a axe horizontal
EP0340462A1 (de) * 1988-05-04 1989-11-08 Deutag Asphalttechnik GmbH Drehofen zum Trocknen und/oder Mischen von rieselfähigem Material
EP0600525A2 (de) * 1993-05-18 1994-06-08 U. Ammann Maschinenfabrik AG Verfahren zum Trocknen und/oder Erwärmen von rieselfähigem Material und Vorrichtung hierzu
DE10240249B3 (de) * 2002-08-31 2004-02-26 Enerco Bv Anlage zum Trocknen und Aufbereiten von rieselfähigem mineralischem Gut

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730564A (en) * 1987-06-08 1988-03-15 Abboud Harry I Multi-stage kiln
ATE115214T1 (de) * 1990-01-30 1994-12-15 Cyclean Inc Trommeltrockner für die wiederaufbereitung von aufgebrochenem altasphalt.
US5188299A (en) * 1991-10-07 1993-02-23 Rap Process Machinery Corp. Apparatus and method for recycling asphalt materials
US5520342A (en) * 1993-02-17 1996-05-28 Hendrickson; Arthur N. Apparatus for recycling asphalt materials
US5616303A (en) * 1994-10-11 1997-04-01 Gas Research Institute Centrifugal bed reactor
US20070070801A1 (en) * 2005-09-23 2007-03-29 Cedarapids, Inc. Pre-combustion mix drum
US8220982B2 (en) 2008-07-22 2012-07-17 Terex Usa, Llc Energy efficient asphalt plant
FR2944344B1 (fr) * 2009-04-10 2013-12-27 Inst Francais Du Petrole Four tournant pour traitement thermique de materiaux solides
EP2281945B1 (de) 2009-07-09 2011-12-07 Ammann Italy S.p.A. Trockentrommel für Anlagen für die Herstellung von bituminösem Mischgut
DE102011005127A1 (de) * 2011-03-04 2012-09-06 Siemens Aktiengesellschaft Verfahren zur Entwässerung von Nitrat-Hydraten
KR101097289B1 (ko) 2011-06-28 2011-12-21 주식회사 백산금속 열이용 효과 및 원료손실이 개선된 로터리 킬른
CN104792154B (zh) * 2015-04-03 2017-01-25 石家庄新华能源环保科技股份有限公司 一种间壁式回转窑装置
CN114034162B (zh) * 2021-12-06 2022-10-04 江苏龙净科杰环保技术有限公司 一种新型回转窑工艺
DE102022202605B4 (de) * 2022-03-16 2024-01-11 Benninghoven Zweigniederlassung Der Wirtgen Mineral Technologies Gmbh Flammschutz-Vorrichtung und Trockentrommel mit einer derartigen Flammschutz-Vorrichtung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE261997C (de) *
FR445432A (fr) * 1912-06-26 1912-11-11 Societe D Etudes Speciales Et D Installations Indu Sécheur à air chaud
US1431037A (en) * 1919-09-18 1922-10-03 William E Prindle Drier
CH114724A (de) * 1925-04-15 1926-04-16 H De Meijer Drehofen mit indirekter Heizung des zu heizenden Gutes.
FR700633A (fr) * 1929-08-13 1931-03-05 Eisenwerk Albert Gerlach Ges M Four tubulaire rotatif à moufle
US1959061A (en) * 1933-06-16 1934-05-15 Philip R Perkins Drier
FR927063A (fr) * 1946-05-18 1947-10-20 A Valuy Sa Des Ets Perfectionnements aux fours tournants
DE1433860A1 (de) * 1962-04-18 1969-02-06 Miguel De Monterde Verfahren zur Herstellung von Gips in kontinuierlichem Arbeitsprozess,und rotierender Ofen zur Ausfuehrung dieses Verfahrens

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1381026A (en) * 1920-05-25 1921-06-07 Snyder Willoughby Elwood Process of and apparatus for burning cements
US1987242A (en) * 1928-04-30 1935-01-08 Madsen Martin Rotary drier
US2319673A (en) * 1941-02-07 1943-05-18 Arnold Dryer Co Dehydrating apparatus
US3678598A (en) * 1970-06-19 1972-07-25 Phillips Petroleum Co Dual-drum dryer
US4285773A (en) * 1977-08-27 1981-08-25 Alberta Oil Sands Technology And Research Authority Apparatus and process for recovery of hydrocarbon from inorganic host materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE261997C (de) *
FR445432A (fr) * 1912-06-26 1912-11-11 Societe D Etudes Speciales Et D Installations Indu Sécheur à air chaud
US1431037A (en) * 1919-09-18 1922-10-03 William E Prindle Drier
CH114724A (de) * 1925-04-15 1926-04-16 H De Meijer Drehofen mit indirekter Heizung des zu heizenden Gutes.
FR700633A (fr) * 1929-08-13 1931-03-05 Eisenwerk Albert Gerlach Ges M Four tubulaire rotatif à moufle
US1959061A (en) * 1933-06-16 1934-05-15 Philip R Perkins Drier
FR927063A (fr) * 1946-05-18 1947-10-20 A Valuy Sa Des Ets Perfectionnements aux fours tournants
DE1433860A1 (de) * 1962-04-18 1969-02-06 Miguel De Monterde Verfahren zur Herstellung von Gips in kontinuierlichem Arbeitsprozess,und rotierender Ofen zur Ausfuehrung dieses Verfahrens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ULLMANNS ENCYKLOPADIE DER TECHNISCHEN CHEMIE, 3. Auflage, Band 1, 1951, München, Berlin, DE, URBAN et al.: "Chemischer Apparatebau und Verfahrenstechnik" *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0056931A1 (de) * 1981-01-27 1982-08-04 VOEST-ALPINE Aktiengesellschaft Drehrohrofen
FR2564332A1 (fr) * 1984-05-16 1985-11-22 Sofremi Malaxeur a axe horizontal
EP0340462A1 (de) * 1988-05-04 1989-11-08 Deutag Asphalttechnik GmbH Drehofen zum Trocknen und/oder Mischen von rieselfähigem Material
EP0600525A2 (de) * 1993-05-18 1994-06-08 U. Ammann Maschinenfabrik AG Verfahren zum Trocknen und/oder Erwärmen von rieselfähigem Material und Vorrichtung hierzu
EP0600525A3 (de) * 1993-05-18 1994-08-31 Ammann U Maschf Ag
DE10240249B3 (de) * 2002-08-31 2004-02-26 Enerco Bv Anlage zum Trocknen und Aufbereiten von rieselfähigem mineralischem Gut
US6823607B2 (en) 2002-08-31 2004-11-30 Enerco Bv Plant for the drying and treatment of pourable mineral material

Also Published As

Publication number Publication date
FI803605L (fi) 1981-06-09
EP0030403B1 (de) 1983-08-31
ES497477A0 (es) 1981-10-16
AU6512480A (en) 1981-06-18
DE3064717D1 (en) 1983-10-06
YU284580A (en) 1983-06-30
ES8200234A1 (es) 1981-10-16
CA1148354A (en) 1983-06-21
US4354826A (en) 1982-10-19
IN153275B (de) 1984-06-23
AU538257B2 (en) 1984-08-02
ZA806527B (en) 1981-10-28
JPS5697537A (en) 1981-08-06
ATE4559T1 (de) 1983-09-15
DE2949479A1 (de) 1981-06-11

Similar Documents

Publication Publication Date Title
EP0030403B1 (de) Verfahren zum Trocknen und Kalzinieren von Schüttgütern
DE2521667C2 (de) Vorrichtung zum Regenerieren von Aktivkohle
DE2420322A1 (de) Anlage zum brennen von koernigem oder pulverfoermigem material
US4108593A (en) Method of heat treating pulverulent or granular raw materials and kiln plant therefor
DE3725512A1 (de) Schwebegas-reaktor
DE2400100C2 (de) Verfahren und Drehofenanlage zur Herstellung von Zementklinker aus Rohschlamm
DE2509127A1 (de) Vorrichtung zum brennen von zementklinker und aehnlichen materialien
DE2644763A1 (de) Ofenanlage
DE1508494A1 (de) Vorrichtung zum Erhitzen von feinverteiltem Material,wie Erzen,insbesondere zur Verwendung mit einer Pelletieranlage
DE2946991C2 (de)
DE2401256C3 (de) Verfahren und Vorrichtung zur Herstellung von Sinterprodukten, wie Zementklinker
DE2161410B2 (de) Verfahren und Vorrichtung zum Trocknen, Vorbrennen und Fertigbrennen von Pellets aus Zementrohmehl
US1929953A (en) Manufacture of hydraulic cement
DE628007C (de) Vorbehandlungseinrichtung fuer Drehrohroefen zum Brennen von Kalksteingemischen, Erzen usw
AT103307B (de) Drehrohrofenanlage zum Brennen von Zement.
DE2700485A1 (de) Verfahren und vorrichtung zum brennen von stueckigem gut, insbesondere eisenerzpellets
DE2201765B2 (de) Verfahren und Anlage zum Sintern oder Brennen von Zementrohmaterial
DE971611C (de) Ofen, insbesondere Drehrohr- oder Schachtofen, zur Waermebehandlung von trockenem, feuchtem oder auf Filtern od. dgl. vorentwaessertem Gut aller Art
AT234019B (de) Doppelschrägofen
DE371804C (de) Verfahren und Vorrichtung zum Brennen und Sintern von Zement, Kalk o. dgl. im Drehrohrofen
DE3725513A1 (de) Verfahren und vorrichtung zur aufbereitung pastoeser materialien
DE1934389A1 (de) Vorrichtung zum Brennen von pulverfoermigen und feinkoernigen Materialien,insbesondere von pulverfoermigem Kalk
DE102021205298A1 (de) Verfahren und Vorrichtung zur Herstellung von Zementklinker
AT344059B (de) Verfahren und ofenanlage zum brennen von pulver- oder granulatformigem rohmaterial
DE2142766A1 (de) Verfahren und vorrichtung zum waermeaustausch beim brennen von materialien in drehoefen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT NL SE

Designated state(s): AT CH DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19810918

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 4559

Country of ref document: AT

Date of ref document: 19830915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3064717

Country of ref document: DE

Date of ref document: 19831006

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840109

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841004

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841024

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19841206

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19841231

Ref country code: CH

Effective date: 19841231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19841231

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19860701

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860829

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19861230

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19881202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19881203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890901

EUG Se: european patent has lapsed

Ref document number: 80201140.3

Effective date: 19891205