EP0030323B1 - Procédé de fonctionnement d'un réacteur à lit fluidisé pour gazéifier des matières carbonacées - Google Patents

Procédé de fonctionnement d'un réacteur à lit fluidisé pour gazéifier des matières carbonacées Download PDF

Info

Publication number
EP0030323B1
EP0030323B1 EP80107380A EP80107380A EP0030323B1 EP 0030323 B1 EP0030323 B1 EP 0030323B1 EP 80107380 A EP80107380 A EP 80107380A EP 80107380 A EP80107380 A EP 80107380A EP 0030323 B1 EP0030323 B1 EP 0030323B1
Authority
EP
European Patent Office
Prior art keywords
post
temperature
gasification
fluidised bed
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80107380A
Other languages
German (de)
English (en)
Other versions
EP0030323A1 (fr
Inventor
Friedrich H. Dr. Ing. Franke
Ernst Dipl.-Ing. Pattas
Wolfgang Dr. Adlhoch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinbraun AG
Original Assignee
Rheinische Braunkohlenwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19792949533 external-priority patent/DE2949533A1/de
Priority claimed from DE19803033115 external-priority patent/DE3033115A1/de
Application filed by Rheinische Braunkohlenwerke AG filed Critical Rheinische Braunkohlenwerke AG
Publication of EP0030323A1 publication Critical patent/EP0030323A1/fr
Application granted granted Critical
Publication of EP0030323B1 publication Critical patent/EP0030323B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/503Fuel charging devices for gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water

Definitions

  • the invention relates to a method for operating a fluidized bed reactor for the gasification of solid, carbonaceous material using exothermic and endothermic reactions causing gasification with a post-reaction space located above the fluidized bed, through which the gas mixture emerging from the fluidized bed and carbon-containing solid particles flows, whereby gasifying agents in the fluidized bed and at least three injection areas arranged along the longitudinal axis of the reactor are introduced into the post-reaction space.
  • Suitable gasification agents are, for example, air, oxygen and hydrogen as exothermic gasification agents and water vapor and CO 2 as endothermic gasification agents.
  • DE-A-27 41 805 discloses a process of the type described in the introduction, in which gasifying agents, e.g., in a fluidized bed reactor with a lower fluidized bed containing the carbon-containing solid particles and an after-reaction space above, in which entrained carbon-containing solid particles are located. Oxygen and water vapor are blown in and the gasifying agents blown into the lower region of the reactor also simultaneously fluidize the fluidized bed.
  • the temperature distribution along the longitudinal axis of the reactor in the post-reaction space is influenced by the addition of gasification agents in several areas spaced apart from one another along the longitudinal axis of the reactor with the aim of making the temperature profile dependent on the quality of the gas desired in each case and on the nature of the carbon-containing materials used in each case adjust, the temperature falling from a maximum just above the upper limit of the fluidized bed more or less continuously to a noticeably lower temperature in the upper region of the after-reaction space.
  • DE-A-26 43 298 discloses a method for operating a fluidized bed reactor for gasifying solid, carbon-containing material, in which the highest possible temperature is to be maintained in the post-reaction space.
  • the temperature profile ie the temperature profile along the longitudinal axis in the after-reaction space, is of great importance for the operation of the reactor and for the quality of the gas produced therein.
  • the temperature profile is also important for the greatest possible conversion of the carbonaceous material.
  • a high temperature favors the CO and H 2 yield.
  • it is necessary to remain at the maximum temperature below the melting point of the ash of the carbon-containing material, since otherwise agglomerates are formed and caking occurs in the reactor and / or in the lines in which the product gas after leaving the reactor is led to subordinate facilities. Such agglomerates and / or caking adversely affect the operation of the reactor and can lead to interruptions in operation.
  • a too low temperature avoids difficulties due to melting the ash, but on the other hand leads to a higher CO 2 and H 2 0 content in the product gas.
  • the conversion of the solid carbon with C0 2 and H 2 0 to CO and H 2 does not find any particularly favorable conditions.
  • the invention has for its object to modify the method of the type described in the introduction so that, taking into account the limits set by the ash melting point, the most complete possible implementation of the carbon-containing material in the after-reaction space is achieved.
  • the gasification agents introduced into the reactor should be able to be used in a targeted manner so that the greatest possible effect in terms of extensive gasification of the solid carbon particles with the formation of usable gases can be achieved with the least possible expenditure on gasification agents.
  • the invention proposes that the gasifying agents which bring about exothermic reactions and endothermic reactions are distributed and metered into the after-reaction space along the longitudinal axis of the reactor in such a way that a temperature which is as constant as possible along the longitudinal axis of the reactor in the area of the gasifying agent supply is maintained above the fluidized bed and the temperature in the after-reaction space in this area is not lower than the temperature of the gas emerging from the fluidized bed.
  • the amount of gasifying agent causing exothermic reactions can be kept constant in each section.
  • the invention provides the possibility that both the amount of the gasifying agent causing exothermic reactions and the amount of the gasifying agent causing endothermic reactions decrease in each section from bottom to top. Furthermore, the ratio between gasification agent causing exothermic reactions and gasifying agent causing endothermic reactions can increase in each section from below or else remain constant depending on the respective conditions from bottom to top.
  • the implementation of the process according to the invention achieves a reaction in the entire post-reaction space which is directed over the longitudinal extent of the post-reaction space and which leads to clear operating conditions, so that it is easier from the start to determine the desired operating parameters, for example the temperature profile and, depending on this, the addition of gasifying agent to control optimally.
  • the desired operating parameters for example the temperature profile and, depending on this, the addition of gasifying agent to control optimally.
  • overheating which can lead to caking and thus to malfunctions, can be avoided in this way despite a high mean temperature.
  • the gasification agents can be supplied in the usual manner.
  • the distances between the individual blowing areas or levels can be constant.
  • the solid-gas mixture emerging from the fluidized bed has a temperature which is approximately equal to the temperature in the post-reaction space or in the section thereof above the fluidized bed is to be observed.
  • the gasification agents should be introduced into the post-reaction space in at least four, advantageously at least six, spaced apart areas.
  • the addition of the gasification agent which brings about an exothermic reaction in the individual blowing regions can be controlled as a function of the temperature determined there and / or of the solids content determined there. Furthermore, it is possible to control the addition of the gasification agent which brings about an endothermic reaction in the individual blowing-in regions as a function of the carbon-containing solid present there in each case.
  • a feed device indicated at 12 which can be designed as a screw or otherwise in a suitable manner.
  • a fluidized bed 15 is built up, the upper and lower limits of which are designated 16 and 17, respectively.
  • a layer 18 Below the lower boundary 17 there is a layer 18, the at least predominantly ash-containing parts of which are discharged through an opening 19 located at the lower end of the reactor 10.
  • the gasifying agents which cause the bed 15 to swirl can normally be oxygen-containing gasifying agents, that is to say an exothermic reaction, and steam and / or CO 2 , that is to say gasifying agents which bring about an endothermic reaction.
  • the gases can be blown in via nozzles, several of which are arranged distributed over the circumference of the reactor, it being possible to supply gasification agents which bring about endothermic reactions and gasification agents which bring about exothermic reactions also in two separate, for example superimposed, areas or levels.
  • the finer solid particles from the fluidized bed 15 are entrained in the post-reaction space 20 located above it by the gas mixture flowing upwards.
  • the latter is firstly the gaseous reaction products from the fluidized bed and secondly residues of the unreacted gasifying agents, in particular steam.
  • the solid particles still contain carbon, which is to be converted within the post-reaction space.
  • the heat required for this is supplied by burning part of the combustible gases contained in the gas mixture, essentially CO and H 2 , and part of the carbon-containing solid.
  • the agent required for this for example oxygen, is blown in through lines and nozzles which, distributed along the longitudinal axis of the reactor, open into the after-reaction space 20 above the fluidized bed 15 and are designated by 21, 23, 25 and 27. It also applies here that a plurality of lines or nozzles can flow into the post-reaction space and flow into it. Furthermore, gasification agent is blown into the after-reaction space 20 through the nozzles 21, 23, 25, and 27. It is possible to inject exothermic gases on the one hand and endothermic gases on the other hand as a mixture or through separate supply systems and nozzles. In the temperature profile shown in FIG. 1 in addition to the reactor 10, the levels in which gasification agents are introduced into the after-reaction space 20 are indicated by dashed lines which end at the arrows assigned to the individual injection levels corresponding to the injection levels.
  • a high and uniform temperature builds up in the fluidized bed 15 relatively quickly, which should be approximately 1050 ° C. in the exemplary embodiment shown in FIG. 1.
  • the first supply of gasification agent into the after-reaction space 20 takes place via the feed lines 21, which are located at a relatively short distance above the upper boundary 16 of the fluidized bed 15.
  • a quenching agent is introduced via lines 40 in the level 40a into the post-reaction space, which lowers the temperature of the gas by approximately 80 to 100 ° C. in order to ensure that the gas mixture leaving the reactor does not contain any solid particles contains, whose ashes have softened and could cause caking in the downstream lines.
  • the amount of solid carbon in the after-reaction space 20 decreases from bottom to top, so that consequently fewer gasifying agents are required for the conversion from bottom to top. This is taken into account in the exemplary embodiment according to FIG. 1 in that the distances between the blowing levels 21a, 23a, 25a and 27a increase from the bottom up.
  • the temperature within the fluidized bed 115 is significantly lower than that in accordance with FIG. 1. It is between approximately 700 and 800 ° C.
  • the addition of exothermic gasifying agent immediately above the upper boundary 116 of the fluidized bed 115 in the blowing-in plane 121 must be such that the gas and solid mixture flowing out of the fluidized bed causes a noticeable increase in the temperature from the peak 130 to the peak 136 reaching lower section of consistently high temperature of approx. 1100 ° C.
  • the subsequent operating mode corresponds to the blowing level 127a, i.e. to the peak 136 in principle that of the exemplary embodiment according to FIG.
  • the blowing in of the endothermally reacting gasification agent along the longitudinal axis of the after-reaction space depends on the desired uniform conversion at a uniform temperature profile. It is the case that depending on the endothermic gasifying agent blown into the lower blowing area Only a more or less large part of the concentration of the carbonaceous material in the after-reaction space is converted, so that the ratio between exothermic and endothermic-reacting amounts of gasifying agent remains constant or can increase at the upper injection areas in the post-reaction space.
  • the injection areas in the post-reaction space can be arranged at the same distance from one another.
  • the temperature profile resulting from this procedure gives a uniform sawtooth-like up and down of the temperature over the length of the after-reaction space.
  • the procedure described above is possible in connection with the exemplary embodiment shown in FIG. 3 of the drawing.
  • the temperature in the fluidized bed 215 corresponds approximately to that of the exemplary embodiment according to FIG. 1, although that according to FIG. 2 is also possible.
  • the blow-in areas 221 to 227 are arranged at constant intervals. In all blowing levels 221a to 227a, the exothermic and endothermic gasifying agents are blown in at constant ratios to one another and, if appropriate, also in constant amounts. The latter would mean that equal amounts of endothermally reacting and exothermally reacting gasifying agents are blown in from all the blowing areas from bottom to top.
  • a quenching agent can be supplied via a feed line 240 shortly before the outlet opening 228 will.
  • the implementation of the carbon-containing substances located in the post-reaction space Solid particles should be guided in such a way that heat consumption and heat supply correspond to each other in such a way that a temperature level that is as constant as possible is maintained in the individual sections or, more precisely, the temperature within the post-reaction space or the sections about its or its axial extent by an average value only slightly varied on both sides, the maximum temperature that may occur being just below the temperature limit at which the ash particles soften to form difficulties, ie could lead to caking or formation of larger agglomerates.
  • the temperature profile is idealized in all the figures of the drawing.
  • the crucial point is that the temperature fluctuations around an average temperature, which in turn can fluctuate to a small extent, are kept as small as possible, and the amplitude does not have to be constant over the entire length of the after-reaction space. Rather, it can fluctuate within limits along the reactor axis, that is, it can become larger or smaller.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Claims (17)

1. Procédé pour mettre en oeuvre un réacteur à lit fluidisé, afin de gazéifier des matières carbonées solides, au moyen d'agents de gazéification qui provoquent des transformations exothermiques et endothermiques, le réacteur comportant au-dessus du lit fluidisé une chambre de réaction secondaire, où phase un courant du mélange gazeux sortant du lit fluidisé avec des particules de matières carbonées solides, le procédé consistant à introduire les agents de gazéification dans le lit fluidisé, et, par au moins trois zones d'insufflation espacées dans le sens de l'axe longitudinal du réacteur, dans la chambre de réaction secondaire, procédé caractérisé en ce qu'on assure l'introduction dans la chambre de réaction secondaire des agents de gazéification qui provoquent les transformations exothermiques' et endothermiques, en répartissant et en dosant ces agents le long de l'axe longitudinal du réacteur, de manière à maintenir dans la zone d'introduction de ces agents de gazéification au-dessus du lit fluidisé une température élevée aussi constante que possible dans le sens de l'axe longitudinal du réacteur, et à obtenir dans la zone précitée de la chambre de réaction secondaire une température qui ne soit pas inférieure à la température du gaz qui sort du lit fluidisé.
2. Procédé pour mettre en oeuvre un réacteur à lit fluidisé afin de gazéifier des matières carbonées solides au moyen d'agents de gazéification qui provoquent des transformations exothermiques et endothermiques, le réacteur comportant au-dessus du lit fluidisé une chambre de réaction secondaire, où passe un courant du mélange gazeux sortant du lit fluidisé avec des particules de matières carbonées solides, le procédé consistant à introduire les agents de gazéification dans le lit fluidisé, et, par au moins trois zones d'insufflation espacées dans le sens de l'axe longitudinal du réacteur dans la chambre de réaction secondaire, procédé caractérisé en ce qu'un assure, le long de l'axe longitudinal du réacteur, une répartition et un dosage des agents de gazéification qui provoquent les transformations exothermiques et endothermiques, en introduisant ces agents de gazéification dans la chambre de réaction secondaire de manière à obtenir au-dessus du lit fluidisé des zones sectorielles couvrant au moins deux zones d'insufflation, dans lesquelles on maintient une température élevée aussi constante que possible le long de l'axe longitudinal du réacteur, alors que la température dans la chambre de réaction secondaire, au voisinage des orifices d'introduction des agents de gazéification, n'est pas inférieure à la température du gaz qui sort du lit fluidisé.
3. Procédé selon la revendication 2, caractérisé en ce que le niveau de température de la zone sectorielle supérieure est plus faible que celui de la zone inférieure.
4. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la somme des agents de gazéification introduits dans chacune des zones sectorielles de la chambre de réaction secondaire diminue en allant du bas vers la haut.
5. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la somme des agents de gazification introduits dans chacune des zones sectorielles de la chambre de réaction secondaire reste constante en allant du bas vers le haut.
6. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que le débit de l'agent de gazéification qui provoque des transformations exothermiques dans chacune des zones sectorielles du réacteur est maintenu à une valeur constante.
7. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que le débit de l'agent de gazéification qui provoque des transformations exothermiques dans chacune des zones sectorielles du réacteur diminue en allant du bas vers le haut.
8. Procédé selon la revendication 4, caractérisé en ce que le débit de l'agent de gazéification qui provoque des réactions exothermiques va en décroissant dans chacune des zones sectorielles en allant du bas vers le haut, ainsi que le débit de l'agent de gazéification qui provoque les réactions endothermiques.
9. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'on fait augmenter dans chaque zone sectorielle, en allant du bas vers le haut, le rapport entre l'agent de gazéification qui provoque des réactions exothermiques et l'agent de gazéification qui provoque des réactions endothermiques.
10. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'on maintient constant dans chaque zone sectorielle, en allant du bas vers le haut, le rapport entre l'agent de gazéification qui provoque des réactions exothermiques et l'agent de gazéification qui provoque des réactions endothermiques.
11. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'on introduit les agents de gazéification dans les zones sectorielles du réacteur secondaire à des intervalles qui vont en croissant du bas vers le haut.
12. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que la température du mélange de gaz et de matières solides qui sort en haut du lit fluidisé est sensiblement égale à la température de consigne de la zone sectorielle située dans la chambre de réaction secondaire et dans la moitié supérieure du lit fluidisé.
13. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que le mélange de matières solides et de gaz qui sort en haut du lit fluidisé se trouve à une température inférieure à la température de consigne de la zone sectorielle qui comprend la chambre de réaction secondaire et la moitié supérieure du lit fluidisé, et en ce que, au moyen d'un adjonction appropriée d'un agent de gazéification qui provoque une transformation exothermique, immédiatement au-dessus du lit fluidisé, on augmente la température, pour la porter à la valeur de consigne prévue dans la chambre de réaction secondaire et dans la zone sectorielle située dans la moitié supérieure du lit fluidisé.
14. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'on introduit les agents de gazéification dans la chambre de réaction secondaire dans au moins quatre zones écartées l'une de l'autre.
15. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'on introduit les agents de gazéification dans la chambre de réaction secondaire dans au moins six zones écartées l'une de l'autre.
16. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'on régie le débit de l'agent de gazéification qui provoque une transformation exothermique dans chacune des zones d'insufflation, en fonction de la valeur constatée dans chaque zone précitée pour la température et/ou la teneur en matières solides.
17. Procédé selon l'une des revendications 1 ou 2, caractérise en ce qu'on règle le débit de l'agent gazeux qui provoque une transformation endothermique dans chacune des zones d'insufflation, en fonction des matières carbonées solides existant dans chacune des zones précitées.
EP80107380A 1979-12-08 1980-11-26 Procédé de fonctionnement d'un réacteur à lit fluidisé pour gazéifier des matières carbonacées Expired EP0030323B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2949533 1979-12-08
DE19792949533 DE2949533A1 (de) 1979-12-08 1979-12-08 Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
DE19803033115 DE3033115A1 (de) 1980-09-03 1980-09-03 Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
DE3033115 1980-09-03

Publications (2)

Publication Number Publication Date
EP0030323A1 EP0030323A1 (fr) 1981-06-17
EP0030323B1 true EP0030323B1 (fr) 1986-05-07

Family

ID=25782316

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80107380A Expired EP0030323B1 (fr) 1979-12-08 1980-11-26 Procédé de fonctionnement d'un réacteur à lit fluidisé pour gazéifier des matières carbonacées

Country Status (7)

Country Link
EP (1) EP0030323B1 (fr)
AU (1) AU536933B2 (fr)
BR (1) BR8008022A (fr)
DD (1) DD155174A1 (fr)
DE (1) DE3071595D1 (fr)
GR (1) GR71896B (fr)
TR (1) TR21877A (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340459C1 (de) * 1993-11-27 1995-05-18 Rheinische Braunkohlenw Ag Verfahren zum Betreiben eines Wirbelschichtreaktors zum Vergasen von kohlenstoffhaltigen Einsatzstoffen
DE19548324A1 (de) * 1994-12-23 1996-06-27 Rheinische Braunkohlenw Ag Verfahren zum Vergasen von kohlenstoffhaltigen Feststoffen in der Wirbelschicht sowie dafür verwendbarer Vergaser
DE102007006980A1 (de) * 2007-02-07 2008-08-14 Technische Universität Bergakademie Freiberg Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2127394A1 (fr) * 1993-07-12 1995-01-13 William Martin Campbell Reacteur de gazeification
DE59507290D1 (de) * 1995-02-13 1999-12-30 Thermoselect Ag Verfahren zum Beseitigen organischer Schadstoffreste in bei der Müllvergasung anfallendem Synthesegas
DE102006005626B4 (de) * 2006-02-06 2008-02-28 Rwe Power Ag Verfahren und Vergasungsreaktor zur Vergasung verschiedenster Brennstoffe mit breitem Körnungsband mit Flüssigschlackeabzug
CN112745966B (zh) * 2019-09-16 2022-04-15 中国科学院工程热物理研究所 循环流化床气化装置和循环流化床气化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1913968A (en) * 1928-02-09 1933-06-13 Ig Farbenindustrie Ag Fuel gas
US2558746A (en) * 1948-02-10 1951-07-03 Texas Co Production of carbon monoxide and other gases from carbonaceous materials
DE937486C (de) * 1949-09-08 1956-01-05 Rudolf Dr-Ing Drawe Verfahren und Gaserzeuger zur Vergasung staubfoermiger oder feinkoerniger Brennstoffe
US3840353A (en) * 1971-07-30 1974-10-08 A Squires Process for gasifying granulated carbonaceous fuel
DE2801574B1 (de) * 1978-01-14 1978-12-21 Davy Powergas Gmbh, 5000 Koeln Wirbelschichtschachtgenerator zum Vergasen feinkörniger Brennstoffe
DE2741805A1 (de) * 1977-09-16 1979-03-29 Rheinische Braunkohlenw Ag Verfahren und vorrichtung zum vergasen von festem, kohlenstoffhaltigem material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2643298A1 (de) * 1976-09-25 1978-04-06 Davy Bamag Gmbh Verfahren zur kontinuierlichen vergasung von feinteiligem, kohlenstoffhaltigem material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1913968A (en) * 1928-02-09 1933-06-13 Ig Farbenindustrie Ag Fuel gas
US2558746A (en) * 1948-02-10 1951-07-03 Texas Co Production of carbon monoxide and other gases from carbonaceous materials
DE937486C (de) * 1949-09-08 1956-01-05 Rudolf Dr-Ing Drawe Verfahren und Gaserzeuger zur Vergasung staubfoermiger oder feinkoerniger Brennstoffe
US3840353A (en) * 1971-07-30 1974-10-08 A Squires Process for gasifying granulated carbonaceous fuel
DE2741805A1 (de) * 1977-09-16 1979-03-29 Rheinische Braunkohlenw Ag Verfahren und vorrichtung zum vergasen von festem, kohlenstoffhaltigem material
DE2801574B1 (de) * 1978-01-14 1978-12-21 Davy Powergas Gmbh, 5000 Koeln Wirbelschichtschachtgenerator zum Vergasen feinkörniger Brennstoffe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340459C1 (de) * 1993-11-27 1995-05-18 Rheinische Braunkohlenw Ag Verfahren zum Betreiben eines Wirbelschichtreaktors zum Vergasen von kohlenstoffhaltigen Einsatzstoffen
DE19548324A1 (de) * 1994-12-23 1996-06-27 Rheinische Braunkohlenw Ag Verfahren zum Vergasen von kohlenstoffhaltigen Feststoffen in der Wirbelschicht sowie dafür verwendbarer Vergaser
DE19548324C2 (de) * 1994-12-23 1998-08-06 Rheinische Braunkohlenw Ag Verfahren zum Vergasen von kohlenstoffhaltigen Feststoffen in der Wirbelschicht sowie dafür verwendbarer Vergaser
DE102007006980A1 (de) * 2007-02-07 2008-08-14 Technische Universität Bergakademie Freiberg Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck
DE102007006980B4 (de) * 2007-02-07 2009-03-19 Technische Universität Bergakademie Freiberg Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck

Also Published As

Publication number Publication date
AU536933B2 (en) 1984-05-31
AU6511580A (en) 1981-06-18
EP0030323A1 (fr) 1981-06-17
DE3071595D1 (en) 1986-06-12
BR8008022A (pt) 1981-06-23
TR21877A (tr) 1987-02-13
GR71896B (fr) 1983-08-10
DD155174A1 (de) 1982-05-19

Similar Documents

Publication Publication Date Title
DE3047622C2 (fr)
DE102007006981B4 (de) Verfahren, Vergasungsreaktor und Anlage zur Flugstromvergasung fester Brennstoffe unter Druck
DE3327743C2 (de) Verfahren zum Vergasen von Feinkohle
DD214858A5 (de) Verfahren zur thermischen crackung von schweroel
DE2244851A1 (de) Verfahren zur herstellung einer mischung eines reduktionsgases
DE2610279A1 (de) Verfahren zum verhindern der bildung von koksablagerungen bei einem wirbelschichtreaktor
DE2721047C2 (de) Verfahren zum kontinuierlichen Einbringen von festen Brennstoffen in einen Vergasungsreaktor
DE2539888A1 (de) Verfahren zur vergasung von fein dispergierte feststoffe enthaltendem oel und einrichtung zu seiner durchfuehrung
EP0030323B1 (fr) Procédé de fonctionnement d'un réacteur à lit fluidisé pour gazéifier des matières carbonacées
DE3902773A1 (de) Verfahren zur herstellung von synthesegas durch partielle oxidation
DE3606108A1 (de) Verfahren und einrichtung zur herstellung eines hauptsaechlich co + h(pfeil abwaerts)2(pfeil abwaerts) enthaltenden gases durch thermisches reformen von gasfoermigem kohlenwasserstoff
DE2620614A1 (de) Verfahren und vorrichtung zur herstellung einer gasfoermigen, kohlenmonoxid und wasserstoff enthaltenden mischung
DE10260734B4 (de) Verfahren und Anlage zur Herstellung von Schwelkoks
EP2356200A2 (fr) Procédé et dispositif pour la gazéification thermochimique de combustibles solides
DE2741805A1 (de) Verfahren und vorrichtung zum vergasen von festem, kohlenstoffhaltigem material
EP3548587B1 (fr) Procédé et appareil de réduction de carbone dans le produit inférieur d'un gazéificateur à lit fluidisé
DE2805244A1 (de) Verfahren und vorrichtung zum kuehlen von staubfoermigen oder feinkoernigen feststoffen
DE3033115A1 (de) Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
DE1592853A1 (de) Verfahren und Vorrichtung zur Herstellung von Russ
DE102008037318B4 (de) Verfahren, Vorrichtung und Anlage zur Flugstromvergasung fester Brennstoffe unter Druck
DE19548324C2 (de) Verfahren zum Vergasen von kohlenstoffhaltigen Feststoffen in der Wirbelschicht sowie dafür verwendbarer Vergaser
DE1023844B (de) Verfahren zum Inberuehrungbringen von Gasen mit kohleartigen Feststoffen
DE2949533A1 (de) Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
DE971897C (de) Verfahren zur Erzeugung von karburiertem Wassergas und/oder karburiertem Generatorgas
DE1924666C3 (de) Vorrichtung zur Behandlung von Rohmaterial mit einem Behandlungsgas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE SE

17P Request for examination filed

Effective date: 19811029

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE SE

REF Corresponds to:

Ref document number: 3071595

Country of ref document: DE

Date of ref document: 19860612

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921117

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931127

EUG Se: european patent has lapsed

Ref document number: 80107380.0

Effective date: 19940610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991129

Year of fee payment: 20