EP0030323B1 - Verfahren zum Betreiben eines Wirbelbettreaktors zum Vergasen von kohlenstoffhaltigem Material - Google Patents

Verfahren zum Betreiben eines Wirbelbettreaktors zum Vergasen von kohlenstoffhaltigem Material Download PDF

Info

Publication number
EP0030323B1
EP0030323B1 EP80107380A EP80107380A EP0030323B1 EP 0030323 B1 EP0030323 B1 EP 0030323B1 EP 80107380 A EP80107380 A EP 80107380A EP 80107380 A EP80107380 A EP 80107380A EP 0030323 B1 EP0030323 B1 EP 0030323B1
Authority
EP
European Patent Office
Prior art keywords
post
temperature
gasification
fluidised bed
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80107380A
Other languages
English (en)
French (fr)
Other versions
EP0030323A1 (de
Inventor
Friedrich H. Dr. Ing. Franke
Ernst Dipl.-Ing. Pattas
Wolfgang Dr. Adlhoch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinbraun AG
Original Assignee
Rheinische Braunkohlenwerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19792949533 external-priority patent/DE2949533A1/de
Priority claimed from DE19803033115 external-priority patent/DE3033115A1/de
Application filed by Rheinische Braunkohlenwerke AG filed Critical Rheinische Braunkohlenwerke AG
Publication of EP0030323A1 publication Critical patent/EP0030323A1/de
Application granted granted Critical
Publication of EP0030323B1 publication Critical patent/EP0030323B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/50Fuel charging devices
    • C10J3/503Fuel charging devices for gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water

Definitions

  • the invention relates to a method for operating a fluidized bed reactor for the gasification of solid, carbonaceous material using exothermic and endothermic reactions causing gasification with a post-reaction space located above the fluidized bed, through which the gas mixture emerging from the fluidized bed and carbon-containing solid particles flows, whereby gasifying agents in the fluidized bed and at least three injection areas arranged along the longitudinal axis of the reactor are introduced into the post-reaction space.
  • Suitable gasification agents are, for example, air, oxygen and hydrogen as exothermic gasification agents and water vapor and CO 2 as endothermic gasification agents.
  • DE-A-27 41 805 discloses a process of the type described in the introduction, in which gasifying agents, e.g., in a fluidized bed reactor with a lower fluidized bed containing the carbon-containing solid particles and an after-reaction space above, in which entrained carbon-containing solid particles are located. Oxygen and water vapor are blown in and the gasifying agents blown into the lower region of the reactor also simultaneously fluidize the fluidized bed.
  • the temperature distribution along the longitudinal axis of the reactor in the post-reaction space is influenced by the addition of gasification agents in several areas spaced apart from one another along the longitudinal axis of the reactor with the aim of making the temperature profile dependent on the quality of the gas desired in each case and on the nature of the carbon-containing materials used in each case adjust, the temperature falling from a maximum just above the upper limit of the fluidized bed more or less continuously to a noticeably lower temperature in the upper region of the after-reaction space.
  • DE-A-26 43 298 discloses a method for operating a fluidized bed reactor for gasifying solid, carbon-containing material, in which the highest possible temperature is to be maintained in the post-reaction space.
  • the temperature profile ie the temperature profile along the longitudinal axis in the after-reaction space, is of great importance for the operation of the reactor and for the quality of the gas produced therein.
  • the temperature profile is also important for the greatest possible conversion of the carbonaceous material.
  • a high temperature favors the CO and H 2 yield.
  • it is necessary to remain at the maximum temperature below the melting point of the ash of the carbon-containing material, since otherwise agglomerates are formed and caking occurs in the reactor and / or in the lines in which the product gas after leaving the reactor is led to subordinate facilities. Such agglomerates and / or caking adversely affect the operation of the reactor and can lead to interruptions in operation.
  • a too low temperature avoids difficulties due to melting the ash, but on the other hand leads to a higher CO 2 and H 2 0 content in the product gas.
  • the conversion of the solid carbon with C0 2 and H 2 0 to CO and H 2 does not find any particularly favorable conditions.
  • the invention has for its object to modify the method of the type described in the introduction so that, taking into account the limits set by the ash melting point, the most complete possible implementation of the carbon-containing material in the after-reaction space is achieved.
  • the gasification agents introduced into the reactor should be able to be used in a targeted manner so that the greatest possible effect in terms of extensive gasification of the solid carbon particles with the formation of usable gases can be achieved with the least possible expenditure on gasification agents.
  • the invention proposes that the gasifying agents which bring about exothermic reactions and endothermic reactions are distributed and metered into the after-reaction space along the longitudinal axis of the reactor in such a way that a temperature which is as constant as possible along the longitudinal axis of the reactor in the area of the gasifying agent supply is maintained above the fluidized bed and the temperature in the after-reaction space in this area is not lower than the temperature of the gas emerging from the fluidized bed.
  • the amount of gasifying agent causing exothermic reactions can be kept constant in each section.
  • the invention provides the possibility that both the amount of the gasifying agent causing exothermic reactions and the amount of the gasifying agent causing endothermic reactions decrease in each section from bottom to top. Furthermore, the ratio between gasification agent causing exothermic reactions and gasifying agent causing endothermic reactions can increase in each section from below or else remain constant depending on the respective conditions from bottom to top.
  • the implementation of the process according to the invention achieves a reaction in the entire post-reaction space which is directed over the longitudinal extent of the post-reaction space and which leads to clear operating conditions, so that it is easier from the start to determine the desired operating parameters, for example the temperature profile and, depending on this, the addition of gasifying agent to control optimally.
  • the desired operating parameters for example the temperature profile and, depending on this, the addition of gasifying agent to control optimally.
  • overheating which can lead to caking and thus to malfunctions, can be avoided in this way despite a high mean temperature.
  • the gasification agents can be supplied in the usual manner.
  • the distances between the individual blowing areas or levels can be constant.
  • the solid-gas mixture emerging from the fluidized bed has a temperature which is approximately equal to the temperature in the post-reaction space or in the section thereof above the fluidized bed is to be observed.
  • the gasification agents should be introduced into the post-reaction space in at least four, advantageously at least six, spaced apart areas.
  • the addition of the gasification agent which brings about an exothermic reaction in the individual blowing regions can be controlled as a function of the temperature determined there and / or of the solids content determined there. Furthermore, it is possible to control the addition of the gasification agent which brings about an endothermic reaction in the individual blowing-in regions as a function of the carbon-containing solid present there in each case.
  • a feed device indicated at 12 which can be designed as a screw or otherwise in a suitable manner.
  • a fluidized bed 15 is built up, the upper and lower limits of which are designated 16 and 17, respectively.
  • a layer 18 Below the lower boundary 17 there is a layer 18, the at least predominantly ash-containing parts of which are discharged through an opening 19 located at the lower end of the reactor 10.
  • the gasifying agents which cause the bed 15 to swirl can normally be oxygen-containing gasifying agents, that is to say an exothermic reaction, and steam and / or CO 2 , that is to say gasifying agents which bring about an endothermic reaction.
  • the gases can be blown in via nozzles, several of which are arranged distributed over the circumference of the reactor, it being possible to supply gasification agents which bring about endothermic reactions and gasification agents which bring about exothermic reactions also in two separate, for example superimposed, areas or levels.
  • the finer solid particles from the fluidized bed 15 are entrained in the post-reaction space 20 located above it by the gas mixture flowing upwards.
  • the latter is firstly the gaseous reaction products from the fluidized bed and secondly residues of the unreacted gasifying agents, in particular steam.
  • the solid particles still contain carbon, which is to be converted within the post-reaction space.
  • the heat required for this is supplied by burning part of the combustible gases contained in the gas mixture, essentially CO and H 2 , and part of the carbon-containing solid.
  • the agent required for this for example oxygen, is blown in through lines and nozzles which, distributed along the longitudinal axis of the reactor, open into the after-reaction space 20 above the fluidized bed 15 and are designated by 21, 23, 25 and 27. It also applies here that a plurality of lines or nozzles can flow into the post-reaction space and flow into it. Furthermore, gasification agent is blown into the after-reaction space 20 through the nozzles 21, 23, 25, and 27. It is possible to inject exothermic gases on the one hand and endothermic gases on the other hand as a mixture or through separate supply systems and nozzles. In the temperature profile shown in FIG. 1 in addition to the reactor 10, the levels in which gasification agents are introduced into the after-reaction space 20 are indicated by dashed lines which end at the arrows assigned to the individual injection levels corresponding to the injection levels.
  • a high and uniform temperature builds up in the fluidized bed 15 relatively quickly, which should be approximately 1050 ° C. in the exemplary embodiment shown in FIG. 1.
  • the first supply of gasification agent into the after-reaction space 20 takes place via the feed lines 21, which are located at a relatively short distance above the upper boundary 16 of the fluidized bed 15.
  • a quenching agent is introduced via lines 40 in the level 40a into the post-reaction space, which lowers the temperature of the gas by approximately 80 to 100 ° C. in order to ensure that the gas mixture leaving the reactor does not contain any solid particles contains, whose ashes have softened and could cause caking in the downstream lines.
  • the amount of solid carbon in the after-reaction space 20 decreases from bottom to top, so that consequently fewer gasifying agents are required for the conversion from bottom to top. This is taken into account in the exemplary embodiment according to FIG. 1 in that the distances between the blowing levels 21a, 23a, 25a and 27a increase from the bottom up.
  • the temperature within the fluidized bed 115 is significantly lower than that in accordance with FIG. 1. It is between approximately 700 and 800 ° C.
  • the addition of exothermic gasifying agent immediately above the upper boundary 116 of the fluidized bed 115 in the blowing-in plane 121 must be such that the gas and solid mixture flowing out of the fluidized bed causes a noticeable increase in the temperature from the peak 130 to the peak 136 reaching lower section of consistently high temperature of approx. 1100 ° C.
  • the subsequent operating mode corresponds to the blowing level 127a, i.e. to the peak 136 in principle that of the exemplary embodiment according to FIG.
  • the blowing in of the endothermally reacting gasification agent along the longitudinal axis of the after-reaction space depends on the desired uniform conversion at a uniform temperature profile. It is the case that depending on the endothermic gasifying agent blown into the lower blowing area Only a more or less large part of the concentration of the carbonaceous material in the after-reaction space is converted, so that the ratio between exothermic and endothermic-reacting amounts of gasifying agent remains constant or can increase at the upper injection areas in the post-reaction space.
  • the injection areas in the post-reaction space can be arranged at the same distance from one another.
  • the temperature profile resulting from this procedure gives a uniform sawtooth-like up and down of the temperature over the length of the after-reaction space.
  • the procedure described above is possible in connection with the exemplary embodiment shown in FIG. 3 of the drawing.
  • the temperature in the fluidized bed 215 corresponds approximately to that of the exemplary embodiment according to FIG. 1, although that according to FIG. 2 is also possible.
  • the blow-in areas 221 to 227 are arranged at constant intervals. In all blowing levels 221a to 227a, the exothermic and endothermic gasifying agents are blown in at constant ratios to one another and, if appropriate, also in constant amounts. The latter would mean that equal amounts of endothermally reacting and exothermally reacting gasifying agents are blown in from all the blowing areas from bottom to top.
  • a quenching agent can be supplied via a feed line 240 shortly before the outlet opening 228 will.
  • the implementation of the carbon-containing substances located in the post-reaction space Solid particles should be guided in such a way that heat consumption and heat supply correspond to each other in such a way that a temperature level that is as constant as possible is maintained in the individual sections or, more precisely, the temperature within the post-reaction space or the sections about its or its axial extent by an average value only slightly varied on both sides, the maximum temperature that may occur being just below the temperature limit at which the ash particles soften to form difficulties, ie could lead to caking or formation of larger agglomerates.
  • the temperature profile is idealized in all the figures of the drawing.
  • the crucial point is that the temperature fluctuations around an average temperature, which in turn can fluctuate to a small extent, are kept as small as possible, and the amplitude does not have to be constant over the entire length of the after-reaction space. Rather, it can fluctuate within limits along the reactor axis, that is, it can become larger or smaller.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben eines Wirbelbettreaktors zum Vergasen von festem, kohlenstoffhaltigem Material unter Verwendung von exotherme und endotherme Umsetzungen bewirkenden Vergasungsmittein mit einem oberhalb des Wirbelbettes befindlichen Nachreaktionsraum, der von dem aus dem Wirbelbett austretenden Gasgemisch und kohlenstoffhaltigen Feststoffteilchen durchströmt wird, wobei Vergasungsmittel in das Wirbelbett und über mindestens drei entlang der Reaktorlängsachse angeordnete Einblasebereiche in den Nachreaktionsraum eingeführt werden.
  • Als Vergasungsmittel kommen beispielsweise Luft, Sauerstoff und Wasserstoff als exotherm reagierende Vergasungsmittel und Wasserdampf und CO2 als endotherm reagierende Vergasungsmittel in Frage.
  • Die DE-A-27 41 805 offenbart ein Verfahren der einleitend beschriebenen Art, bei welchem in einen Wirbelbettreaktor mit einem unteren, die kohlenstoffhaltigen Feststoffteilchen aufweisenden Wirbelbett und einem darüber befindlichen Nachreaktionsraum, in dem sich mitgerissene, kohlenstoffhaltige Feststoffteilchen befinden, Vergasungsmittel-z.B. Sauerstoff und Wasserdampf-eingeblasen werden und die in den unteren Bereich des Reaktors eingeblasenen Vergasungsmittel zugleich auch die Fluidisierung des Wirbelbettes bewirken. Darüber hinaus wird die Temperaturverteilung entlang der Reaktorlangsachse im Nachrekationsraum durch die Zugabe von Vergasungsmitteln in mehreren entlang der Reaktoriängsachse einen Abstand voneinander aufweisenden Bereichen beeinflußt mit dem Ziel, das Temperaturprofil in Abhängigkeit von der Qualität des jeweils gewünschten Gases und von der Beschaffenheit der jeweils eingesetzten kohlenstoffhaltige Materialien einzustellen, wobei die Temperatur von einem Maximum dicht oberhalb der oberen Begrenzung des Wirbelbettes mehr oder weniger kontinuierlich auf eine merklich tiefere Temperatur im oberen Bereich des Nachreaktionsraumes absinkt.
  • Ferner offenbart die DE-A-26 43 298 ein Verfahren zum Betreiben eines Wirbelbettreaktors zum Vergasen von festem, kohlenstoffhaltigem Material, bei welchem im Nachreaktionsraum die höchstmögliche Temperatur eingehalten werden soll.
  • Dem Temperaturprofil, d.h., dem Temperaturverlauf entlang der Längsachse im Nachreaktionsraum, kommt eine grosse Bedeutung für den Betrieb des Reaktors und für die Qualität des darin hergestellten Gases zu. Der Temperaturverlauf ist darüber hinaus wichtig für eine möglichst weitgehende Umsetzung des kohlenstoffhaltigen Materials. So begünstigt einen hohe Temperatur die CO- und H2-Ausbeute. Dabei ist es jedoch notwendig, mit der Maximaltemperatur unterhalb des Schmelzpunktes der Aschse des kohlenstoffhaltigen Materials zu bleiben, da es im anderen Fall zur Bildung von Agglomeraten und zu Anbackungen im Reaktor und/oder in den Leitungen kommt, in denen das Produktgas nach Verlassen des Reaktors zu nachgeorndeten Einrichtungen geführt wird. Derartige Agglomerate und/oder Anbackungen beeinträchtigen den Betrieb des Reaktors und können zu Betriebsunterbrechungen führen. Eine zu niedrige Temperatur vermeidet zwar Schwierigkeiten durch Schmelzen der Asche, führt jedoch andererseits zu einem höheren CO2- und H20-Anteil im Produktgas. Außerdem findet dabei die Umsetzung des festen Kohlenstoffs mit C02 und H20 zu CO und H2 keine besonders günstigen Bedingungen.
  • Der Erfindung liegt die Aufgabe zugrunde, das Verfahren der einleitend beschriebenen Art so abzuwandeln, daß unter Berücksichtigung der durch den Ascheschmelzpunkt gesetzten Grenzen eine möglichst vollständige Umsetzung des im Nachreaktionsraum befindlichen kohlenstoffhaitigen Materials erreicht wird. Die in den Reaktor eingebrachten Vergasungsmittel sollen gezielt einsetzbar sein, so daß mit einem möglichst geringen Aufwand an Vergasungsmitteln ein möglichst großer Effekt im Sinne einer weitgehenden Vergasung der festen Kohlenpartikel unter Bildung nutzbarer Gase erreichbar ist.
  • Zur Lösung dieser Aufgabe schlägt die Erfindung vor, daß die exotherme Umsetzungen und endotherme Umsetzungen bewirkenden Vergasungsmittel entlang der Reaktorlängsachse derart verteilt und dosiert in den Nachreaktionsraum eingeführt werden, daß oberhalb des Wirbelbettes eine möglichst gleichbleibende hohe Temperatur entlang der Reaktorlängsachse im Bereich der Vergasungsmittelzufuhr eingehalten wird und die Temperatur im Nachreaktionsraum in diesem Bereich nicht tiefer liegt als die Temperatur des aus dem Wirbelbett austretenden Gases.
  • Selbstverständlich ist es nicht möglich, eine über die Höhe des Nachreaktionsraumes absolut konstante Temperatur einzuhalten, da praktisch in jeder Ebene, in welcher exotherme Umsetzungen bewirkendes Vergasungsmittel eingeblasen wird, ein kleines Temperaturpeak entsteht und im Anschluß daran in Strömungsrichtung, d.h., nach oben, die Temperatur aufgrund der danach überwiegend endothermen Umsetzungen abnimmt. Jedoch sollte die Anzahl der Bereiche oder Ebenen, in denen exotherm reagierendes Vergasungsmittel in den Nachreaktionsraum eingeblasen wird, so groß sein, daß der vorangehende Temperaturabfall nicht sehr ausgeprägt ist. Es ergibt sich dann ein etwa sägezahnartiger Verlauf des Temperaturprofils, wobei sich mit zunehmender Anzahl der Einblasebereiche oder -ebenen die Abweichung der oberen und der unteren Werte von der vorgegebenen hohen Temperatur verringert.
  • Es ist auch möglich, das erfindungsgemäße Verfahren so zu führen, daß die exotherme Umsetzungen und endotherme Umsetzungen bewirkenden Vergasungsmittel entlang der Reaktorlängsachse derart verteilt und dosiert in den Nachreaktionsraum eingeführt werden, daß oberhalb des Wirbelbettes wenigstens zwei sich über mindestens zwei Einblasbereiche erstreckende Abschnitte vorhanden sind, in denen eine möglichst gleichbleibende hohe Temperatur entlang der Reaktorlängsachse eingehalten wird, und die Temperatur im Nachreaktionsraum in den Bereichen der Vergasungsmittel-zufuhr nicht tiefer liegt als die Temperatur des aus dem Wirbelbett austretenden Gases. Für den zweiten Abschnitt gilt ebenfalls, daß die Temperatur im vorbeschriebenen Sinne möglichst gleichbleibend ist, wobei sie in Anpassung an den jeweils in diesem Bereich vorhandenen bzw. umzusetzenden Kohlenstoff optimal eingestellt wird.
  • Es ist bekannt, Produktgas unmittelbar vor dem Austritt aus dem Wirbelbettreaktor durch Einblasen von Wasser oder Dampf abzukühlen. Dieses Quenchen wird-wie auch das Absenken der Temperatur im oberen Abschnitt des Nachreaktionsraumes -insbesondere dann zur Anwendung kommen, wenn die im Nachreaktionsraum eingehaltene hohe Temperatur so dicht am Ascheschmelzpunkt liegt, daß zur sichere Vermeidung von Anbackungen in den dem Reaktor nachgeordneten Leitungen eine Herabsetzung der Temperatur des Produktgases vor Verlassen des Nachreaktionsraumes zweckmäßig ist. Bei Anwendung des Quenchens würden somit der. bzw. die Abschnitt(e) gleichbleibend hoher Temperatur sich zwischen Wirbelbett und Quenchzone erstrecken. Im anderen Fall, also ohne Quenchen, würden der bzw. die Abschnitt(e) gleichbleibend hoher Temperatur sich bis kurz oberhalb des Bereiches erstrecken, in weichem die letzte Zuführung von Vergasungsmittel vor dem Reaktorausgang erfolgt.
  • Es ist möglich, die Umsetzung der im Nachreaktionsraum befindlichen Kohlenstoffhaltigen Feststoffpartikel so zu führen, daß über die Längserstreckung des Nachreaktionsraumes die Umsetzung möglichst gleichbleibend ist. Dabei kann die Summe der jeweils im Nachreaktionsraum in jedem Abschnitt zugegebenen Vergasungsmittel von unten nach oben konstant bleiben. Es besteht aber auch die Möglichkeit, daß die Summe der jeweils im Nachrekationsraum in jedem Abschnitt zugegebenen Vergasungsmittel von unten nach oben abnimmt. Ein Vorteil dieser Verfahrensführung kann beispielsweise darin bestehen, daß das den Reaktor verlassende Produktgas nur wenig unverbrauchten Wasserdampf enthält.
  • Ferner kann die Menge des exotherme Umsetzungen bewirkenden Vergasungsmittels in jedem Abschnitt konstant gehalten werden. Andererseits besteht auch die Möglichkeit, die Menge des exotherme Umsetzungen bewirkenden Vergasungsmittels so zu dosieren, daß sie in jedem Abschnitt von unten nach oben abnimmt.
  • Ferner sieht die Erfindung die Möglichkeit vor, daß sowohl die Menge des exotherme Umsetzungen bewirkenden Vergasungsmittels als auch die Menge des endotherme Umzetzungen bewirkenden Vergasungsmittels in jedem Abschnitt von unten nach oben abhehmen. Ferner kann das Verhältnis zwischen exotherme Umsetzungen bewirkenden Vergasungsmittel und endotherme Umsetzungen bewirkenden Vergasungsmittel in jedem Abschnitt von unten zunehmen oder aber auch in Abhängigkeit von den jeweilige Verhältnissen von unten nach oben konstant bleiben.
  • Die vorerwähnten Möglichkeiten der Dosierung der Vergasungsmittel basieren auf der Überlegung, daß es nicht nur darauf ankommt, an einer oder ggf. auch an zwei Stellen soviel Vergasungsmittel zuzuführen, daß es zur Umsetzung des im Nachreaktionsraum vorhandenen Kohlenstoffes ausreicht. Dies entspräche z.B. jener bekannten Betriebsweise, bei weicher eine möglichst weitgehende Umsetzung der aus dem Wirbelbett nach oben ausgetragenen kohlenstoffhaltige Feststoffpartikel angestrebt wird, ohne daß jedoch innerhalb des Nachreaktionsraumes eine kontrollierte Reaktionsführung zur Aufrechterhaltung einer möglichst hohen Temperatur über die gesamte Länge des Nachreaktionsraumes möglich wäre. Demgegenüber wird durch die erfindungsgemäße Verfahrensführung eine über die Längserstreckung des Nachreaktionsraumes gelenkte Umsetzung im gesamten Nachreaktionsraum erzielt, die zu übersichtlichen Betriebsverhältnissen führt, so daß es von vornherein leichter ist, die angestrebten Betriebskenngrößen, beispielsweise das Temperaturprofil und in Abhängigkeit davon die Zugabe an Vergasungsmittel, in optimaler Weise zu steuern. Insbesondere lassen sich auf diese Weise trotz einer hohen mittleren Temperatur Überhitzungen vermeiden, die zu Anbackungen und damit zu Betriebsstörungen führen können.
  • Die Zuführung der Vergasungsmittel kann in der üblichen Weise erfolgen. Die Abstände zwischen den einzelnen Einblasebereichen oder -ebenen können konstant sein. Es besteht aber auch die Möglichkeit, die Vergasungsmittel in von unten nach oben größer werdenden Abständen in den Nachreaktionsraum bzw. in die Abschnitte desselben einzublasen, wobei es dann zwecks Erzielung einer von unten nach oben abnehmenden Vergasungsmittelmenge möglich, wenngleich nicht notwendig ist, die eingeblasene Vergasungsmittelmenge pro Bereich konstant zu halten.
  • Es ist möglich, den Vergasungsvorgang in der Wirbelschicht so zu betreiben, daß das aus dem Wirbelbett nach oben austretende Feststoff-Gas- Gemisch eine Temperatur aufweist, die etwa gleich der Temperatur ist, die im Nachreaktionsraum bzw. in dem oberhalb des Wirbelbettes befindlichen Abschnitt desselben einzuhalten ist. Es kann aber auch zweckmäßig sein, die Vergasung im Wirbelbett so zu führen, daß das aus ihm nach oben austretende Feststoff-Gas-Gemisch eine niedrigere Temperatur als die im Nachreaktionsraum bzw. in dem oberhalb des Wirbelbettes befindlichen Abschnitt einzuhaltende Temperatur aufweist und durch entsprechende Zugabe von eine exotherme Umsetzung bewirkenden Vergasungsmittel.dicht oberhalb des Wirbelbettes auf die im Nachreaktionsraum bzw. in dem oberhalb des Wirbelbettes befindlichen Abschnitt einzuhaltende Temperatur georacht wird. Es ist auch möglich, die Steigerung der Temperatur des aus dem Wirbelbett austretenden Gas- und Feststoffgemisches auf das im Nachreaktionsraum gewünschte Temperaturniveau in Stufen durchzuführen, so daß erst im Anschluß an einen weiter oberhalb des Wirbelbettes befindlichen Einblasebereich das im verbleibenden Abschnitt des Nachreaktionsraumes einzuhaltende Temperaturiveau erreicht wird.
  • Die Vergasungsmittel sollten in wenigstens vier, vorteilhaft wenigstens sechs, Abstände voneinander aufweisenden Bereichen in den Nachreaktionsraum eingeführt werden.
  • Die Zugabe des eine exotherme Umsetzung bewirkenden Vergasungsmittels in den einzelnen Einblasebereichen kann in Abhängigkeit von der dort jeweils festgestellten Temperatur und/oder vom dort jeweils gestgestellten Feststoffgehalt gesteuert werden. Ferner ist es möglich, die Zugabe des eine endotherme Umsetzung bewirkenden Vergasungsmittels in den einzelnen Einblasebereichen in Abhängigkeit von dem dort jeweils vorhandenen kohlenstoffhaltigen Feststoff zu steuern.
  • Im übrigen besteht die an sich bekannte Möglichkeit, durch Zugabe von CaO und/oder MgO oder Verbindungen, die CaO und/oder MgO freisetzen, eine Heraufsetzung des Ascheschmelzpunktes bewirken.
  • In der Zeichnung sind einige Ausführungsbeispiele der Erfindung dargestellt. Es zeigen:
    • Fig. 1 im Schema einen Längsschnitt durch einen Wirbelbettreaktor mit deneben dargestelltem Temperaturprofil entlang der Längsachse des Reaktors,
    • Fig. 2 eine der Fig. 1 entsprechende Darstellung eines anderen Ausführungsbeispiels,
    • Fig. 3 eine der Fig. 1 entsprechende Darstellung eines dritten Ausführungsbeispiels.
  • In den unteren Bereich eines Wirbelbettreaktors 10 werden zu vergasender Brennstoff und ggf. Zuschlagsstoffe, die beispielsweise dazu dienen, den Ascheschmelzpunkt zu erhöhen, durch eine bei 12 angedeutete Zuführeinrichtung, die als Schnecke oder sonstwie in geeigneter Weise ausgebildet sein kann, eingebracht. Unter dem Einfluss von Vergasungsmittein, die nahe dem unteren Ende bei 14 in den Wirbelbettreaktor eingeblasen werden, baut sich ein Wirbelbett 15 auf, dessen obere und untere Begrenzung 16 bzw. 17 bezeichnet sind. Unterhalb des unteren Begrenzung 17 befindet sich eine Schicht 18, deren zumindest überwiegend Asche enthaltende Teile durch eine am unteren Ende des Reaktors 10 befindliche Öffnung 19 ausgetragen werden.
  • Bei den die Wirbefung des Bettes 15 bewirkenden Vergasungsmitteln kann es sich normalerweise um sauerstoffhaltige, also eine exotherme Umsetzung bewirkende Vergasungsmittel, und um Dampf und/oder CO2, also um eine endotherme Umsetzung bewirkende Vergasungsmittel handeln. Die Gase können über Düsen, von denen mehrere über den Umfang des Reaktors verteilt angeordnet sind, eingeblasen werden, wobei es möglich- ist, endotherme Umsetzungen bewirkende Vergasungsmittel sowie exotherme Umsetzungen bewirkende Vergasungsmittel auch in zwei getrennten, z.B. übereinanderliegenden Bereichen oder Ebenen zuzuführen.
  • Es ist unvermeidbar, dass zumindest ein Teil der feineren Feststoffpartikel aus dem Wirbelbett 15 in den oberhalb desselben befindlichen Nachreaktionsraum 20 durch das nach oben strömende Gasgemisch mitgerissen wird. Bei letzterem handelt es sich einmal um die gasförmigen Umsetzungsprodukte aus dem Wirbelbett und zum anderen um Reste der nicht umgesetzten Vergasungsmittel, insbesondere Dampf. Die Feststoffpartikel enthalten noch Kohlenstoff, der innerhalb des Nachreaktionsraumes umgesetzt werde.n soll. Die dazu notwendige Wärme wird durch Verbrennen eines Teils der im Gas- gemisch enthaltenen brennbaren Gase, im wesentlichen CO und H2, und eines Teils des kohlenstoffhaltigen Feststoffes zugeführt. Das dazu erforderliche Mittel, z.B. Sauerstoff, wird durch Leitungen und Düsen eingeblasen, die entlang der Längsachse des Reaktors verteilt oberhalb des Wirbelbettes 15 in den Nachreaktionsraum 20 münden und mit 21, 23, 25 und 27 bezeichnet sind. Auch hier gilt, dass jeweils mehrere Leitungen oder Düsen über den Umfang des Nachreaktionsraumes verteilt in diesen einmünden können. Weiterhin wird durch die Düsen 21, 23, 25, und 27 Vergasungsmittel in den Nachreaktionsraum 20 eingeblasen. Dabei ist es möglich, exotherm reagierende Gase einerseits und endotherm reagierende Gase andererseits in Mischung oder aber auch durch getrennte Zuleitungssysteme und Düsen einzublasen. In dem in Fig. 1 neben dem Reaktor 10 dargestellten Temperaturprofil sind die Ebenen, in denen Vergasungsmittel in den Nachreaktionsraum 20 eingeführt werden, durch gestrichelte Linien angedeutet, die an den den einzelnen Einblasebenen entsprechenden Leitung bzw. Düsen zugeordneten Pfeilen enden.
  • Im Wirbelbett 15 baut sich aufgrund der exothermen Umsetzung der Kohle mit dem bei 14 zugeführten Vergasungsmittel verhältnismässig schnell eine hohe und gleichmässige Temperatur auf, die bei dem in Fig. 1 dargestellten Ausführungsbeispiel etwa 1050°C betragen soll. So ist es z.B. in einem weniger dichten Wirbelbett ohne weiteres möglich, eine Maximaltemperatur aufrechtzuerhalten, die nahe der durch den Ascheschmelzpunkt gegebenen Grenztemperatur liegt. Die erste Zuführung von Vergasungsmittel in den Nachreaktionsraum 20 hinein erfolgt über die Zuleitungen 21, die sich in verhältnismässig kurzem Abstand oberhalb der oberen Begrenzung 16 des Wirbelbettes 15 befindet. Bei Betrieb eines Reaktors mit höheren Gasgeschwindigkeiten im Wirbelbett wird ein grösserer Anteil Feinkorn in den Nachreaktionsraum mitgerissen. Dies kann soweit gehen, dass die Grenze zwischen dem Wirbelbett einerseits und den im Nachreaktionsraum verteilten Feststoffteilchen andererseits nicht sehr scharf ist, der Unterschied bezüglich der Anzahl der Feststoffteilchen pro Volumeneinheit zwischen Wirbelbett einerseits und Nachreaktionsraum andererseits somit relativ gering ist. Ein Teil der das Wirbelbett verlassenden brennbaren Gase, vor allem H2 und CO, sowie der Feststoffpartikel werden mit z.B. Sauerstoff des über die Zuleitungen 21 zugeführten Vergasungsmitteigemisches verbrannt. Dies hat eine entsprechende, von der Menge des Sauerstoffs und somit der Menge der verbrannten Gase sowie der kohlenstoffhaltigen Feststoffpartikel abhängige Temperatursteigerung bis zur oberen Temperatur von etwa 1100°C zur Folge, die im Scheitelbereich des Peaks 30 kurz oberhalb der Einblaseebene 21 a erreicht wird Diese zusätsliche Zufuhr von Wärme begünstigt die Umsetzung des Kohlenstoffs der im Nachreaktionsraum befindlichen Partikel mit der ebenfalls über Zuleitung 21 zuge- führteri--z.B.-CO2- und Dampfmenge unter Bildung von CO und H2. Diese Vergasungsreaktion verbraucht Wärme, so dass im Zuge der Aufwärtsbewegung des Gasgemisches dieses wieder eine Herabsetzung seiner Temperatur erfährt. Es wird alsdann, sobald die Temperaturverringerung ein bestimmtes Mass überschritten hat-bei dem in Fig. 1 der Zeichnung dargestellten Ausführungsbeispiel bei Erreichen einer Temperatur von ca. 1050°C-durch die Zuführungsleitungen 23, 25, 27 erneut exotherm und endotherm reagierendes Vergasungsmittel in den Nachreaktionsraum 20 in den Einblaseebenen 23a, 25a, 27a eingeblasen, wobei jeweils die geschilderte Reaktionsfolge eintritt.
  • Kurz vor der Austrittsöffnung 28 des Reaktors wird über Zuleitungen 40 in der Ebene 40a ein Quenchmittel in den Nachreaktionsraum gegeben, welches die Temperatur des Gases um etwa 80 bis 100°C herabsetzt, um auf diese Weise sicherzustellen, dass das den Reaktor verlassende Gasgemische keine Feststoffteilchen enthält, deren Asche erweicht ist und Anbackungen in nachgeschalteten Leitungen verursachen könnte.
  • Aufgrund der Kohlenstoffumsetzung nimmt die Menge des festen Kohlenstoffes im Nachreaktionsraum 20 von unten nach oben ab, so dass demzufolge von unten nach oben auch weniger Vergasungsmittel für die Umsetzung benötigt werden. Dem wird bei dem Ausführungsbeispiel gemäss Fig. 1 dadurch Rechnung getragen, dass die Abstände zwischen den Einblaseebenen 21a, 23a, 25a und 27a von unten nach oben zunehmen.
  • Beim Ausführungsbeispiel gemäss Fig. 2 ist die Temperatur innerhalb des Wirbelbettes 115 wesentlich tiefer als bei jenem gemäss Fig. 1. Sie liegt zwischen etwa 700 und 800°C. Somit ist die Zugabe von exotherm reagierendem Vergasungsmittel unmittelbar oberhalb der oberen Begrenzung 116 des Wirbelbettes 115 in der Einblaseebene 121 so zu bemessen, dass das aus dem Wirbelbett ausströmende Gas- und Feststoffgemisch eine merkliche Temperatursteigerung des auf die obere Temperatur des vom Peak 130 bis zum Peak 136 reichenden unteren Aschnittes gleichbleibend hoher Temperatur von ca. 1100°C erfährt. Die daran anschliessende Betriebsweise entspricht bis zur Einblaseebene 127a, d.h. bis zum Peak 136 im Prinzip der des Ausführungsbeispiels gemäss Fig. 1, wobei allerdings die Zuleitungen 121, 123, 125, 127 einerseits und die Zuleitungen 142, 144 andererseits und demzufolge auch die zugehörigen Einblasebereiche bzw. -ebenen 121a, 123a, 125a, 127a einerseits und die Einblasebereiche bzw. -ebenen 142a, 144a andererseits in im wesentlichen gleichbleibenden vertikalen Abständen voneinander angeordnet sind. D.h., dass die Abnahme der Zugabe der Vergasungsmittel von unten nach oben durch entsprechende Verringerung der Menge pro Einblasebene bewirkt wird.
  • Abweichend vom Ausführungsbeispiel gemäss Fig. 1 sind sechs anstelle von vier Zuleitungen und Einblasebereiche vorhanden, wobei nach dem dem Einblasebereich 127a zugeordneten Peak 136 die mittlere Temperatur, die bis dahin 1075°C beträgt, um 40°C gesenkt wird, so dass bei einer Amplitude von 50° zwischen oberem und unterem Wert die Temperaturen im folgenden, in Strömungsrichtung 148 auf den Peak 136 folgenden Bereich zwischen 1010 und 1060°C schwanken. D.h., dass in diesem Abschnitt das gleichbleibend hohe Temperaturniveau gegenüber dem unteren Aschnitt etwas herabgesetzt ist, und zwar zwecks Anpassung an den in diesem Bereich noch im Nachreaktionsraum vorhandenen festen Kohlenstoff. D.h., dass in beiden Bereichen jeweils die dafür optimalen Temperaturen eingestellt werden.
  • Wie oben bereits erwähnt, kann bei Betrieb eines Wirbelbettreaktors mit höheren Gasgeschwindigkeiten ein grösserer Anteil Feinkorn in den Nachreaktionsraum mitgerissen werden. Die Menge dieses mitgerissenen Feinkorns kann in der Grössenordnung der Menge des frish in den Wirbelbettreaktor eingetragenen kohlenstoffhaltigen Materials liegen oder auch sehr viel grösser sein. Bei einer solchen Betriebsweise wird im allgemeinen das aus dem Produktgas ausgeschiedene Feinkorn, welches normalerweise noch Kohlenstoff enthält, zusätzlich zum frisch in der Reaktor eingeführten Kohlenstoff in das Wirbelbett, also in den Reaktor, zurückführt.
  • In diesem Fall ist es zweckmässig, das exotherm reagierende Vergasungsmittel in gleichen Mengen über die entlang der Längsachse des Nachrekationsraums angeordneten Einblasebereiche einzublasen. Das Einblasen des endotherm reagierenden Vergasungsmittels entlang der Längsachse des Nachreaktionsraumes richtet sich nach der angestrebten gleichmässigen Umsetzung bei einem gleichmässigen Temperaturprofil. Dabei ist es so, dass von dem in den unteren Einblasebereich eingeblasenen endotherm reagierenden Vergasungsmittel in Abhängigkeit von der Konzentratiön des kohlenstoffhaltigen Materials im Nachreaktionsraum nur ein mehr oder weniger grosser Teil umgesetzt wird, so dass an den oberen Einblasebereichen im Nachreaktionsraum des Verhältnis zwischen exotherm reagierenden und endotherm reagierenden Vergasungsmittelmengen konstant bleibt oder auch zunehmen kann. Bei dieser Verfahrensweise können die Einblasebereiche in den Nachreaktionsraum mit gleichem Abstand voneinander angeordnet sein. Das aus dieser Verfahrensweise resultierende Temperaturprofil gibt ein gleichmässiges sägezahnförmiges Auf und Ab der Temperatur über die Länge des Nachreaktionsraumes.
  • Die vorbeschriebene Verfahrensweise ist um Zusammenhang mit dem in Fig. 3 der Zeichnung dargestellten Ausführungsbeispiel möglich. Die Temperatur im Wirbelbett 215 entspricht etwa jener des Ausführungsbeispiels gemäss Fig. 1, wenngleich auch die gemäss Fig. 2 möglich ist. Die Einblasebereiche 221 bis 227 sind in gleichbleibenden Abständen angeordnet. In sämtlichen Einblaseebenen 221a bis 227a werden die exotherm reagierenden und die endotherm reagierenden Vergasungsmittel in konstanten Verhältnissen zueinander und gegebenenfalls auch in konstanten Mengen eingeblasen. Letzteres würde bedeuten, dass über sämtliche Einblasebereiche von unten nach oben gleich Mengen an endotherm reagierenden und exotherm reagierenden Vergasungsmitteln eingeblasen werden.-Kurz vor der Austrittsöffnung 228 kann-wie bei den Ausführungsbeispielen gemäss den Fig: und 2-über eine Zuleitung 240 ein Quenchmittel zugeführt werden.
  • Unabhängig davon, ob die Temperatur des aus dem Wirbelbett austretenden Gas- und Feststoffgemisches bereits die im Nachreaktionsraum einzuhaltende Temperatur aufweist oder aber erst oberhalb des Wirbelbettes auf die im Nachreaktionsraum vorgesehene Temperatur gebracht wird, gilt für alle Ausführungsbeispiele, dass die Umsetzung der in Nachreaktionsraum befindlichen kohlenstoffhaltigen Feststoffpartikel so geführt werden soll, dass Wärmeverbrauch und Wärmezufuhr einander derart entsprechen, dass in den einzelnen Abschnitten ein möglichst konstantes Temperaturniveau aufrechterhalten bleibt oder-genauer gesagt-die Temperatur innerhalb des Nachreaktionsraumes bzw. der Abschnitte über dessen bzw. deren axiale Estreckung um einem Mittelwert nur geringfügig nach beiden Seiten variiert, wobei die auftretende Maximaltemperatur ggf. dicht unterhalb der Temperaturgrenze liegt, bei welcher das Erweichen der Aschepartikel zu Schweierigkeiten, d.h. zu Anbackungen oder Bildungen von grösseren Agglomeraten führen könnte.
  • Selbstverständlich ist in sämtlichen Figuren der Zeichnung das Temperaturprofil idealisiert dargestellt. Der entscheidende Punkt ist der, dass die Temperaturschwankungen um eine mittlere Temperatur, die ihrerseits auch um ein geringes Ausmass schwanken kann, so klein wie möglich gehalten werden, wobei auch die Amplitude nicht über die gesamte Länge des Nachreaktionsraumes konstant zu sein braucht. Sie kann vielmehr entlang der Reaktorachse in Grenzen schwanken, also grösser oder kleiner werden.

Claims (17)

1. Verfahren zum Betrieben eines Wirbelbettreaktors zum Vergasen von festem, kohlenstoffhaltigem Material unter Verwendung von exotherme und endotherme Umsetzungen bewirkenden Vergasungsmitteln mit einem oberhalb des Wirbelbettes befindlichen Nachreaktionsraum. der von dem aus dem Wirbelbett austretenden Gasgemisch und kohlenstoffhaltigen Feststoffteilchen durchströmt wird, wobet Vergasungsmittel in das Wirbelbett und über mindestens drei entlang der Reaktorlängsachse angeordneten Einblasebereichen in den Nachreaktionsraum eingeführt werden, dadurch gekennzeichnet, daß die exotherme Umsetzungen und endotherme Umsetzungen bewirkenden Vergasungsmittel entlang der Reaktorlängsachse derart verteilt und dosiert in den Nachreaktionsraum eingeführt werden, daß oberhalb des Wirbelbettes eine möglichst gleichbleibende hohe Temperatur entlang der Reaktorlängsachse im Bereich der Vergasungsmittelzufuhr eingehalten wird, und die Temperatur im Nachreaktionsraum in deisem Bereich nicht tiefer liegt als die Temperatur des aus dem Wirbelbett austretenden. Gases.
2. Verfahren zum Betreiben eines Wirbelbettreaktors zum Vergasen von festem, kohlenstoffhaltigem Material unter Verwendung von exotherme und endotherme Umsetzungen bewirkenden. Vergasungsmitteln mit einem oberhalb des Wirbelbettes befindlichen Nachreaktionsraum, der von dem aus dem Wirbelbett austretenden Gasgemisch und kohlenstoffhaltigen Feststoffteilchen durchströmt wird, wobei Vergasungsmittel in das Wirbelbett und über mindestens drei entlang der Reaktorlängsachse angeordneten Einblasebereichen in den Nachreaktionsraum eingeführt werden, dadurch gekennzeichnet, daß die exotherme Umsetzungen und endotherme Umsetzungen bewirkenden Vergasungsmittel entlang der Reaktorlängsachse derart verteilt und dosiert in den Nachreaktionsraum eingeführt werden, daß oberhalb des Wirbelbettes wenigstens zwei sich über mindestens zwei Einblasbereich erstreckende Abschnitte vorhanden sind, in denen eine möglichst gleichbleibende hohe Temperatur entlang der Reaktorlängsachse eingehalten wird, und die Temperatur im Nachreaktionsraum in den Bereichen der Vergasungsmittelzufuhr nicht tiefer liegt als die Temperatur des aus dem Wirbelbett austretenden Gases.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Temperaturniveau im oberen Abschnitt geringer ist als im unteren.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Summe der jeweils im Nachreaktionsraum in jedem Abschnitt zugegebenen Vergasungsmittel von unten nach oben abnimmt.
5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Summe der jeweils im Nachreaktionsraum in jedem Abschnitt zuzugebenen Vergasungsmittel von unten nach oben konstant bleibt
6. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Menge des exotherme Umsetzungen bewirkenden Vergasungsmittels in jedem Abschnitt konstant gehalten wird.
7. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Menge des exotherme Umsetzungen bewirkenden Vergasungsmittels in jedem Abschnitt von unten nach oben abnimmt.
8. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass sowohl die Menge des exotherme Umsetzungen bewirkenden Vergasungsmittels als auch die Menge des endotherme Umsetzungen bewirkenden Vergasungsmittels in jedem Abschnitt von unten nach oben abnehmen.
9. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verhältnis zwischen exotherme Umsetzungen bewirkenden Vergasungsmittel und endotherme Umsetzungen bewirkenden Vergasungsmittel in jedem Abschnitt von unten nach oben zunimmit.
10. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verhältnis zwischen exotherme Umsetzungen bewirkendem Vergasungsmittei und endotherme Umsetzungen bewirkendem Vergasungsmittel in jedem Abschnitt von unten nach oben konstant bleibt.
11. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vergasungsmittel in von unten nach oben grösser werdenden Abständen in den Nachreaktionsraum bzw. in die Abschnitte eingeführt werden.
12. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das aus dem Wirbelbett nach oben austretende Feststoff-Gas-Gemisch eine Temperatur aufweist, die etwa gleich der Temperatur ist, die im Nachreaktionsraum bzw. in dem oberhalb des Wirbelbettes befindlichen Abschnitt desselben einzuhalten ist.
13. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das aus dem Wirbelbett nach oben austretende Feststoff-Gas-Gemisch eine niedrigere Temperatur als die im Nachreaktionsraum bzw. in dem oberhalb des Wirbelbettes befindlichen Abschnitt einzuhaltende Temperatur aufweist und durch entsprechende Zugabe von eine exotherme Umsetzung bewirkendem Vergasungsmittel dicht oberhalb des Wirbelbettes auf die im Nachreaktionsraum bzw. in dem oberhalb des Wirbelbettes befindlichen Abschnitt einzuhaltende Temperatur gebracht wird.
14. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vergasungsmittel in wenigstens vier, Abstände voneinander aufweisenden Bereichen in den Nachreaktionsraum eingeführt werden.
15. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Vergasungsmittel in wenigstens sechs Abstände voneinander aufweisenden Bereichen in den Nachreaktionsraum eingeführt werden.
16. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Zugabe des eine exotherme Umsetzung bewirkenden Vergasungsmittels in den einzelnen Einblase-Bereichen in Abhängigkeit von der dort jeweils festgestellten Temperatur und/oder Feststoffgehalt gesteuert wird.
17. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Zugabe des eine endotherme Umsetzung bewirkenden Vergasungsmittels in den einzelnen Einblasebereichen in Abhängigkeit von dem dort jeweils vorhandenen kohlenstoffhaltigen Feststoff gesteuert wird.
EP80107380A 1979-12-08 1980-11-26 Verfahren zum Betreiben eines Wirbelbettreaktors zum Vergasen von kohlenstoffhaltigem Material Expired EP0030323B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2949533 1979-12-08
DE19792949533 DE2949533A1 (de) 1979-12-08 1979-12-08 Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
DE19803033115 DE3033115A1 (de) 1980-09-03 1980-09-03 Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
DE3033115 1980-09-03

Publications (2)

Publication Number Publication Date
EP0030323A1 EP0030323A1 (de) 1981-06-17
EP0030323B1 true EP0030323B1 (de) 1986-05-07

Family

ID=25782316

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80107380A Expired EP0030323B1 (de) 1979-12-08 1980-11-26 Verfahren zum Betreiben eines Wirbelbettreaktors zum Vergasen von kohlenstoffhaltigem Material

Country Status (7)

Country Link
EP (1) EP0030323B1 (de)
AU (1) AU536933B2 (de)
BR (1) BR8008022A (de)
DD (1) DD155174A1 (de)
DE (1) DE3071595D1 (de)
GR (1) GR71896B (de)
TR (1) TR21877A (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340459C1 (de) * 1993-11-27 1995-05-18 Rheinische Braunkohlenw Ag Verfahren zum Betreiben eines Wirbelschichtreaktors zum Vergasen von kohlenstoffhaltigen Einsatzstoffen
DE19548324A1 (de) * 1994-12-23 1996-06-27 Rheinische Braunkohlenw Ag Verfahren zum Vergasen von kohlenstoffhaltigen Feststoffen in der Wirbelschicht sowie dafür verwendbarer Vergaser
DE102007006980A1 (de) * 2007-02-07 2008-08-14 Technische Universität Bergakademie Freiberg Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2127394A1 (en) * 1993-07-12 1995-01-13 William Martin Campbell Transport gasifier
DK0726307T3 (da) * 1995-02-13 2000-07-10 Thermoselect Ag Fremgangsmåde til eliminering af rester af organiske skadelige stoffer i ved affaldsforgasning opnået syntesegas
DE102006005626B4 (de) * 2006-02-06 2008-02-28 Rwe Power Ag Verfahren und Vergasungsreaktor zur Vergasung verschiedenster Brennstoffe mit breitem Körnungsband mit Flüssigschlackeabzug
CN110591762B (zh) * 2019-09-16 2021-01-15 中国科学院工程热物理研究所 循环流化床气化装置和循环流化床气化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1913968A (en) * 1928-02-09 1933-06-13 Ig Farbenindustrie Ag Fuel gas
US2558746A (en) * 1948-02-10 1951-07-03 Texas Co Production of carbon monoxide and other gases from carbonaceous materials
DE937486C (de) * 1949-09-08 1956-01-05 Rudolf Dr-Ing Drawe Verfahren und Gaserzeuger zur Vergasung staubfoermiger oder feinkoerniger Brennstoffe
US3840353A (en) * 1971-07-30 1974-10-08 A Squires Process for gasifying granulated carbonaceous fuel
DE2801574B1 (de) * 1978-01-14 1978-12-21 Davy Powergas Gmbh, 5000 Koeln Wirbelschichtschachtgenerator zum Vergasen feinkörniger Brennstoffe
DE2741805A1 (de) * 1977-09-16 1979-03-29 Rheinische Braunkohlenw Ag Verfahren und vorrichtung zum vergasen von festem, kohlenstoffhaltigem material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2643298A1 (de) * 1976-09-25 1978-04-06 Davy Bamag Gmbh Verfahren zur kontinuierlichen vergasung von feinteiligem, kohlenstoffhaltigem material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1913968A (en) * 1928-02-09 1933-06-13 Ig Farbenindustrie Ag Fuel gas
US2558746A (en) * 1948-02-10 1951-07-03 Texas Co Production of carbon monoxide and other gases from carbonaceous materials
DE937486C (de) * 1949-09-08 1956-01-05 Rudolf Dr-Ing Drawe Verfahren und Gaserzeuger zur Vergasung staubfoermiger oder feinkoerniger Brennstoffe
US3840353A (en) * 1971-07-30 1974-10-08 A Squires Process for gasifying granulated carbonaceous fuel
DE2741805A1 (de) * 1977-09-16 1979-03-29 Rheinische Braunkohlenw Ag Verfahren und vorrichtung zum vergasen von festem, kohlenstoffhaltigem material
DE2801574B1 (de) * 1978-01-14 1978-12-21 Davy Powergas Gmbh, 5000 Koeln Wirbelschichtschachtgenerator zum Vergasen feinkörniger Brennstoffe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340459C1 (de) * 1993-11-27 1995-05-18 Rheinische Braunkohlenw Ag Verfahren zum Betreiben eines Wirbelschichtreaktors zum Vergasen von kohlenstoffhaltigen Einsatzstoffen
DE19548324A1 (de) * 1994-12-23 1996-06-27 Rheinische Braunkohlenw Ag Verfahren zum Vergasen von kohlenstoffhaltigen Feststoffen in der Wirbelschicht sowie dafür verwendbarer Vergaser
DE19548324C2 (de) * 1994-12-23 1998-08-06 Rheinische Braunkohlenw Ag Verfahren zum Vergasen von kohlenstoffhaltigen Feststoffen in der Wirbelschicht sowie dafür verwendbarer Vergaser
DE102007006980A1 (de) * 2007-02-07 2008-08-14 Technische Universität Bergakademie Freiberg Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck
DE102007006980B4 (de) * 2007-02-07 2009-03-19 Technische Universität Bergakademie Freiberg Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck

Also Published As

Publication number Publication date
GR71896B (de) 1983-08-10
BR8008022A (pt) 1981-06-23
EP0030323A1 (de) 1981-06-17
DD155174A1 (de) 1982-05-19
TR21877A (tr) 1987-02-13
DE3071595D1 (en) 1986-06-12
AU6511580A (en) 1981-06-18
AU536933B2 (en) 1984-05-31

Similar Documents

Publication Publication Date Title
DE3047622C2 (de)
DE3411268C2 (de)
DE102007006981B4 (de) Verfahren, Vergasungsreaktor und Anlage zur Flugstromvergasung fester Brennstoffe unter Druck
DE3327743C2 (de) Verfahren zum Vergasen von Feinkohle
DD214858A5 (de) Verfahren zur thermischen crackung von schweroel
DE2244851A1 (de) Verfahren zur herstellung einer mischung eines reduktionsgases
DE2721047C2 (de) Verfahren zum kontinuierlichen Einbringen von festen Brennstoffen in einen Vergasungsreaktor
DE2539888A1 (de) Verfahren zur vergasung von fein dispergierte feststoffe enthaltendem oel und einrichtung zu seiner durchfuehrung
EP0030323B1 (de) Verfahren zum Betreiben eines Wirbelbettreaktors zum Vergasen von kohlenstoffhaltigem Material
DE3902773A1 (de) Verfahren zur herstellung von synthesegas durch partielle oxidation
DE3606108A1 (de) Verfahren und einrichtung zur herstellung eines hauptsaechlich co + h(pfeil abwaerts)2(pfeil abwaerts) enthaltenden gases durch thermisches reformen von gasfoermigem kohlenwasserstoff
DE2620614A1 (de) Verfahren und vorrichtung zur herstellung einer gasfoermigen, kohlenmonoxid und wasserstoff enthaltenden mischung
DE10260734B4 (de) Verfahren und Anlage zur Herstellung von Schwelkoks
EP2356200A2 (de) Verfahren und vorrichtung zum thermochemischen vergasen fester brennstoffe
DE2741805A1 (de) Verfahren und vorrichtung zum vergasen von festem, kohlenstoffhaltigem material
EP3548587B1 (de) Verfahren und anlage zur kohlenstoff-reduzierung im bodenprodukt eines wirbelschichtvergasers
DE2805244A1 (de) Verfahren und vorrichtung zum kuehlen von staubfoermigen oder feinkoernigen feststoffen
DE3033115A1 (de) Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
DE1592853A1 (de) Verfahren und Vorrichtung zur Herstellung von Russ
DE102008037318B4 (de) Verfahren, Vorrichtung und Anlage zur Flugstromvergasung fester Brennstoffe unter Druck
DE19548324C2 (de) Verfahren zum Vergasen von kohlenstoffhaltigen Feststoffen in der Wirbelschicht sowie dafür verwendbarer Vergaser
DE1023844B (de) Verfahren zum Inberuehrungbringen von Gasen mit kohleartigen Feststoffen
DE2949533A1 (de) Verfahren zum betreiben eines wirbelbettreaktors zum vergasen von kohlenstoffhaltigem material
DE971897C (de) Verfahren zur Erzeugung von karburiertem Wassergas und/oder karburiertem Generatorgas
DE1924666C3 (de) Vorrichtung zur Behandlung von Rohmaterial mit einem Behandlungsgas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE SE

17P Request for examination filed

Effective date: 19811029

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE SE

REF Corresponds to:

Ref document number: 3071595

Country of ref document: DE

Date of ref document: 19860612

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19921117

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931127

EUG Se: european patent has lapsed

Ref document number: 80107380.0

Effective date: 19940610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991129

Year of fee payment: 20