EP0020395A1 - Verfahren zum herstellen von halbleiterbauelementen - Google Patents

Verfahren zum herstellen von halbleiterbauelementen

Info

Publication number
EP0020395A1
EP0020395A1 EP79901089A EP79901089A EP0020395A1 EP 0020395 A1 EP0020395 A1 EP 0020395A1 EP 79901089 A EP79901089 A EP 79901089A EP 79901089 A EP79901089 A EP 79901089A EP 0020395 A1 EP0020395 A1 EP 0020395A1
Authority
EP
European Patent Office
Prior art keywords
substrate
semiconductor material
semiconductor
layer
monocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP79901089A
Other languages
English (en)
French (fr)
Inventor
Hanno Schaumburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Original Assignee
Philips Corporate Intellectual Property GmbH
Philips Patentverwaltung GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Corporate Intellectual Property GmbH, Philips Patentverwaltung GmbH filed Critical Philips Corporate Intellectual Property GmbH
Publication of EP0020395A1 publication Critical patent/EP0020395A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/584Non-reactive treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/023Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing from solids with amorphous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for producing semiconductor components with a polycrystalline or monocrystalline semiconductor material layer on a substrate.
  • the active semiconductor layer is applied to a substrate that is resistant to high temperatures, since, at least in the case of a monocrystalline semiconductor layer, this layer is applied to the substrate at high temperatures and because both the substrate and the further temperature treatments required for the production of semiconductor components , as well as the active semiconductor layer are heated to a high temperature in an oven.
  • the invention has for its object to design the method according to the preamble of claim 1, that the use of high temperature resistant substrates can be dispensed with, ie they can be replaced by less expensive materials.
  • substrates can be used which are not resistant to temperatures that are normally required for the application of, in particular, monocrystalline semiconductor material layers.
  • the method according to the invention also allows several layers of different doping and / or of different semiconductor material to be applied next to one another in a substrate, in which then semiconductor circuit elements with different properties can be produced.
  • a semiconductor material can also be used as the substrate.
  • FIG. 1 shows a substrate 1 made of aluminum doped with approximately 1% silicon, onto which an approximately 2 ⁇ m thick amorphous silicon layer 2 is sputtered.
  • the layer 2 can also be deposited on the substrate 1 from the gas phase at low temperatures.
  • the amorphous silicon layer 2 is then N-doped with arsenic by an ion implantation indicated by the arrow 3.
  • an intensive optical radiation is then directed onto the layer 2, which, thanks to a mask 5, remains limited to the two regions 21, in which the amorphous silicon is then locally heated by the optical radiation that it recrystallizes.
  • the radiation 4 is then moved over the surface of the regions 21 of the amorphous silicon layer 2 such that e.g. Form stripe-shaped, largely monocrystalline areas.
  • semiconductor circuit elements can then be produced by further method steps.
  • thermal treatments may be carried out which only heat the areas locally, since otherwise there is a risk that the parts of the layer 2 which have remained amorphous and thus insulating will likewise convert into polycrystalline or monocrystalline and thus conduct the material .
  • a substrate 1 made of aluminum with approximately 1% silicon is assumed, onto which approximately 2 ⁇ m thick layer 2 of amorphous silicon, which is weakly doped with boron, that is to say P-conducting, is deposited.
  • Arsenic is then introduced into this layer 2, as indicated by the arrow 3, by ion implantation, so that (see FIG. 4) an N + conductive zone 22 is formed on the surface of this layer.
  • the amorphous layer 2 is then converted into a polycrystalline silicon layer by an intensive optical radiation indicated by the arrow 4.
  • zone 22 then forms a PN junction with the rest of layer 2 and all PN junctions together form the solar cell.
  • a thin, radiation-permeable metal layer 6 is then vapor-deposited onto the surface of the layer 2, ie the zone 22.
  • the conductive substrate 1 and the metal layer 6 are then provided with connecting conductors 7.
  • a pulsed or continuously operated laser can, for example, be used as the source of the intensive optical radiation 3 in the exemplary embodiments described here.
  • a locally limited thermal treatment can also be carried out with the aid of a laser if semiconductor circuit elements whose production requires thermal treatment are to be produced in the monocrystalline regions (21, FIG. 2).
  • a material should always be used for the substrate 1 which does not yet form an alloy with the amorphous semiconductor material into a polycrystalline or monocrystalline semiconductor material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)
  • Photovoltaic Devices (AREA)

Description

Verfahren zum Herstellen von Halbleiterbauelementen
Die Erfindung betrifft ein Verfahren zum Herstellen von Halbleiterbauelementen mit einer poly- oder monokristallinen Halbleitermaterialschicht auf einem Substrat.
Bisher war eine Voraussetzung der Halbleitertechnologie, daß die aktive Halbleiterschicht auf ein hochtemperaturbeständiges Substrat aufgebracht ist, da, zumindest bei einer monokristallinen Halbleiterschicht, diese Schicht bei hohen Temperaturen auf das Substrat aufgebracht wird und da bei den weiteren zur Herstellung von Halbleiterbauelementen erforderlichen Temperaturbehandlungen sowohl das Substrat, als auch die aktive Halbleiterschicht in einem Ofen auf eine hohe Temperatur erhitzt werden.
Dies erforderte bisher als Substrate hochtemperaturbeständige Materialien, wie das Halbleitermaterial selbst oder z.B. Saphir zu verwenden. Dies sind jedoch verhältnismäßig teure Materialien.
Der Erfindung liegt die Aufgabe zugrunde, das Verfahren nach dem Oberbegriff des Anspruches 1 so auszugestalten, daß auf die Verwendung hochtemperaturfester Substrate verzichtet werden kann, d.h. diese durch kostengünstigere Materialien ersetzt werden können.
Diese Aufgabe wird erfindungsgemäß durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gelöst.
Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.
Mit dem Verfahren nach der Erfindung wird erreicht, daß Substrate verwendet werden können, die gegenüber Temperaturen, die normalerweise zum Aufbringen von insbesondere monokristallinen Halbleitermaterialschichten erforderlich sind, nicht beständig sind.
Das Verfahren nach der Erfindung gestattet es aber auch, auf ein Substrat nebeneinander mehrere, unterschiedlich dotierte und/oder aus verschiedenem Haϊbleitermaterial bestehende Schichten aufzubringen, in denen dann Halbleiterschaltungselemente unterschied- licher Eigenschaften erzeugt werden können. Dabei kann als Substrat auch ein Halbleitermaterial verwendet werden.
Zwei Ausführungsbeispiele der Erfindung werden im folgenden anhand der beigefügten Zeichnung näher erläutert. Es zeigen: Fig. 1+2 Schnitte durch einen Halbleiterkörper mit zwei nebeneinander liegenden, voneinander isolierten monokristallinen Bereichen auf einem Substrat während aufeinanderfolgender Stufen seiner Herstellung und Fig. 3-5 Schnitte durch eine Sonnenzelle mit einer aktiven, polykristallinen Schicht auf einem nichtkristallinen Substrat während aufein anderfolgender Stufen ihrer Herstellung.
Fig. 1 zeigt ein Substrat 1 aus mit etwa 1 % Silicium dotiertem Aluminium, auf das eine etwa 2 μm starke amorphe Siliciumschicht 2 aufgesputtert ist.
Die Schicht 2 kann aber auch bei niedrigen Temperaturen aus der Gasphase auf dem Substrat 1 niedergeschlagen werden.
Die amorphe Siliciumschicht 2 wird dann durch eine mit dem Pfeil 3 angedeutete Ionenimplantation mit Arsen N-dotiert.
Wie in Fig. 2 durch die Pfeile 4 angedeutet, wird dann auf die Schicht 2 eine intensive optische Strahlung gerichtet, die dank einer Maske 5 auf die beiden Bereiche 21 begrenzt bleibt, in denen dann durch die optische Strahlung das amorphe Silicium lokal soweit erhitzt wird, daß es rekristallisiert. Wie durch die waagerechten Pfeile angedeutet, wird dann die Strahlung 4 so über die Oberfläche der Bereiche 21 der amorphen Siliciumschicht 2 bewegt, daß sich z.B. streifenförmige, weitgehend monokristalline Bereiche bilden.
In diesen monokristallinen Siliciumbereichen mit einer Dicke von 2 μm auf einem aus Aluminium bestehenden Substrat 1 können dann durch weitere Verfahrensschritte Halbleiterschaltungselemente erzeugt werden. Zur Erzeugung dieser Halbleiterschaltungselemente dürfen dann allerdings nur thermische Behandlungen durchgeführt werden, die die Bereiche nur örtlich erhitzten, da sonst die Gefahr besteht, daß die amorph und damit isolierend gebliebenen Teile der Schicht 2 sich ebenfalls in poly- oder monokristallines und damit leiten des Material umwandeln. Es ist auch möglich, das amorphe Halbleitermaterial in Öffnungen einer auf das Substrat aufgebrachten Isolierschicht niederzuschlagen und dann in weitgehend monokristallines Material umzuwandeln. Dabei, oder bei dem oben anhand der Fig. 1 und 2 beschriebenen Verfahren können selbstverständlich auch mehrere Schichten aus amorphem, ggf. verschiedenartigen, Halbleitermaterial nacheinander aufgebracht und in bestimmten Bereichen in polykristallines oder weitgehend monokristallines Material umgewandelt werden.
Anhand der Fig. 3 bis 5 wird jetzt die Herstellung einer Sonnenzelle beschrieben. Auch hier wird von einem Substrat 1 aus Aluminium mit etwa 1 % Silicium ausgegangen, auf das etwa 2 μm starke Schicht 2 aus schwach mit Bor dotiertem, also P-leitendem amorphem Silicium niedergeschlagen wird. In diese Schicht 2 wird dann, wie durch den Pfeil 3 angedeutet, durch Ionenimplantation Arsen eingebracht, so daß (siehe Fig. 4) an der Oberfläche dieser Schicht eine N+leitende Zone 22 entsteht.
Anschließend wird durch eine, durch den Pfeil 4 angedeutete intensive optische Bestrahlung die amorphe Schicht 2 in eine polykristalline Siliciumschicht umgewandelt. In den einzelnen, in der Fig. 4 übertrieben groß angedeuteten Kristallen dieser polykristallinen Schicht bildet dann die Zone 22 mit dem Rest der Schicht 2 jeweils einen PN-Übergang und alle PN-Übergänge zusammen die Sonnenzelle. Dazu ist dann, wie in Fig. 5 dargestellt, auf die Oberfläche der Schicht 2, d.h. auf die Zone 22, noch eine dünne, strahlungsdurchlässige Metallschicht 6 zur Kontaktierung aufgedampft. Das leitende Substrat 1 und die Metallschicht 6 werden dann noch mit Anschlußleitern 7 versehen. Als Quelle der intensiven optischen Strahlung 3 in den hier beschriebenen Ausführungsbeispielen kann beispielsweise ein gepulst oder kontinuierlich betriebener Laser verwendet werden.
Mit Hilfe eines Lasers kann auch eine örtlich begrenzte thermische Behandlung durchgeführt werden, wenn in den monokristallinen Bereichen (21, Fig. 2) des ersten Ausführungsbeispiels Halbleiterschaltungselemente erzeugt werden sollen, deren Herstellung eine thermische Behandlung erfordert.
Für das Substrat 1 sollte stets ein Material verwendet werden, das bei der Umwandlungstemperatur des amorphen Halbleitermaterials in ein poly- oder monokristallines Halbleitermaterial mit diesem noch keine Legierung bildet.

Claims

Patentansprüche:
1. Verfahren zum Herstellen von Halbleiterbauelementen mit einer poly- oder monokristallinen Halbleitermateria lschicht auf einem Substrat, dadurch gekennzeichnet, daß das Halbleitermaterial in amorpher Form auf das Substrat aufgebracht und durch eine thermische Behandlung mit Hilfe einer auf das Material gerichteten intensiven optischen Strahlung in poly- oder monokristallines Material umgewandelt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das Halbleitermaterial auf das Substrat aufge sputtert wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein Substrat aus einem halbleitenden Material verwendet wird.
4. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, daß auf das Substrat nebeneinander mehrere, unterschiedlich dotierte und/oder aus verschiedenem
Halbleitermaterial bestehende Schichtenaufgebracht werden.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekenn- zeichnet, daß das Halbleitermaterial in Öffnungen einer auf das Substrat aufgebrachten Isolierschicht niedergeschlagen wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehrere Schichten übereinander aufgebracht werden.
7. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß ein Substrat aus einem Material verwendet wird, das bei der Umwandlungstemperatur mit dem Halbleitermaterial noch keine Legierung bildet.
8. Anwendung des Verfahrens nach Anspruch 7 zur Herstellung einer Sonnenzelle.
9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß als intensive optische Strahlung die Strahlung eines Lasers verwendet wird.
10. Verfahren nach einem der vorangehenden Ansprüche zum Erzeugen einer weitgehend monokristallinen Halbleiterschicht auf einem Substrat, dadurch gekennzeichnet, daß zunächst durch die optische Strahlurg das amorphe Halbleitermaterial lokal soweit erhitzt wird, daß es rekristallisiert und dann die Strahlung so über die Oberfläche des Halbleitermaterials bewegt wird, daß sich z.B. streifenförmige, weitgehend monokristalline Bereiche bilden.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß in diesen Bereichen Halbleiterschaltungselemente erzeugt werden.
12. Verfahren nach einem der vorangehenden Ansprüche, dadurch gek ennzeichnet, daß als Halbleitermaterial Silicium verwendet wird.
EP79901089A 1978-08-30 1980-03-25 Verfahren zum herstellen von halbleiterbauelementen Withdrawn EP0020395A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19782837750 DE2837750A1 (de) 1978-08-30 1978-08-30 Verfahhren zum herstellen von halbleiterbauelementen
DE2837750 1978-08-30

Publications (1)

Publication Number Publication Date
EP0020395A1 true EP0020395A1 (de) 1981-01-07

Family

ID=6048211

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79901089A Withdrawn EP0020395A1 (de) 1978-08-30 1980-03-25 Verfahren zum herstellen von halbleiterbauelementen

Country Status (3)

Country Link
EP (1) EP0020395A1 (de)
DE (1) DE2837750A1 (de)
WO (1) WO1980000510A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115341A (en) * 1979-02-28 1980-09-05 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device
US4309225A (en) * 1979-09-13 1982-01-05 Massachusetts Institute Of Technology Method of crystallizing amorphous material with a moving energy beam
US4381201A (en) * 1980-03-11 1983-04-26 Fujitsu Limited Method for production of semiconductor devices
JPS56135969A (en) * 1980-03-27 1981-10-23 Fujitsu Ltd Manufacture of semiconductor device
EP0045551B1 (de) * 1980-08-05 1984-10-31 L'Etat belge, représenté par le Secrétaire Général des Services de la Programmation de la Politique Scientifique Verfahren zur Herstellung polykristalliner Filme aus Halbleitern, die aus einer Verbindung oder einem Element bestehen, und dabei erhaltene Filme
DE3816256A1 (de) * 1988-05-11 1989-11-23 Siemens Ag Verfahren zum herstellen einer aus einem ersten halbleitermaterial bestehenden einkristallinen schicht auf einem substrat aus einem andersartigen zweiten halbleitermaterial und verwendung der anordnung zur herstellung von optoelektronischen integrierten schaltungen
US9613805B1 (en) * 2015-12-11 2017-04-04 Infineon Technologies Ag Method for forming a semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3585088A (en) * 1968-10-18 1971-06-15 Ibm Methods of producing single crystals on supporting substrates
US3853648A (en) * 1972-08-14 1974-12-10 Material Sciences Corp Process for forming a metal oxide pattern
GB1393337A (en) * 1972-12-29 1975-05-07 Ibm Method of growing a single crystal film
US4059461A (en) * 1975-12-10 1977-11-22 Massachusetts Institute Of Technology Method for improving the crystallinity of semiconductor films by laser beam scanning and the products thereof
FR2390004A1 (en) * 1977-05-04 1978-12-01 Commissariat Energie Atomique Semiconductors, such as bipolar transistors - with amorphous layers locally crystallised by e.g. laser to reduce number of mfg. operations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8000510A1 *

Also Published As

Publication number Publication date
DE2837750A1 (de) 1980-03-13
WO1980000510A1 (en) 1980-03-20

Similar Documents

Publication Publication Date Title
DE1933690C3 (de) Verfahren zum Herstellen eines mindestens bereichsweise einkristallinen Films auf einem Substrat
EP0021087B1 (de) Verfahren zur Herstellung grobkristalliner oder einkristalliner Metall- oder Legierungsschichten sowie Anwendung des Verfahrens zur Herstellung von Halbleiterschaltungen und Kontaktelektroden
DE2820824C2 (de)
DE2046833A1 (de) Verfahren zur Herstellung isolierter Halbleiterzonen
DE2917564A1 (de) Verfahren zum herstellen von solarzellen und dadurch hergestellte gegenstaende
DE2523307C2 (de) Halbleiterbauelement
DE3215101C2 (de) Verfahren zum Herstellen einer Öffnung mit abgeschrägten Kanten in einer Passivierschicht
DE2618445A1 (de) Verfahren zum herstellen einer halbleitervorrichtung
DE4122845C2 (de) Photovoltaische Halbleitereinrichtung und Herstellungsverfahren dafür
DE2103468C3 (de) Verfahren zur Herstellung einer Halbleiteranordnung
EP0005185A1 (de) Verfahren zum gleichzeitigen Herstellen von Schottky-Sperrschichtdioden und ohmschen Kontakten nach dotierten Halbleiterzonen
DE2911484C2 (de) Metall-Isolator-Halbleiterbauelement
DE2340142A1 (de) Verfahren zum herstellen von halbleiteranordnungen
DE3322685A1 (de) Verfahren zur herstellung eines bandes aus polykristallinem silizium
EP0020395A1 (de) Verfahren zum herstellen von halbleiterbauelementen
DE1514359B1 (de) Feldeffekt-Halbleiterbauelement und Verfahren zu seiner Herstellung
DE2448478A1 (de) Verfahren zum herstellen von pn-halbleiteruebergaengen
DE3230569A1 (de) Verfahren zur herstellung eines vertikalkanaltransistors
DE1489250A1 (de) Halbleitereinrichtung und Verfahren zu ihrer Herstellung
DE1696607C3 (de) Verfahren zum Herstellen einer im wesentlichen aus Silicium und Stickstoff bestehenden Isolierschicht
DE3540452C2 (de) Verfahren zur Herstellung eines Dünnschichttransistors
DE2162219A1 (de) Verfahren zum Herstellen eines Feldeffekttransistors
DE3714920C1 (de) Verfahren zur Herstellung einer Duennschicht-Solarzellenanordnung
EP0061787A1 (de) Verfahren zum Dotieren von Trägern aus Silicium für die Halbleiterfertigung
DE2536174B2 (de) Verfahren zum Herstellen von polykristallinen Siliciumschichten für Halbleiterbauelemente und Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

AK Designated contracting states

Designated state(s): FR

18D Application deemed to be withdrawn

Effective date: 19801017

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHAUMBURG, HANNO