WO1980000510A1 - Method for producing semi-conductor devices - Google Patents

Method for producing semi-conductor devices Download PDF

Info

Publication number
WO1980000510A1
WO1980000510A1 PCT/DE1979/000097 DE7900097W WO8000510A1 WO 1980000510 A1 WO1980000510 A1 WO 1980000510A1 DE 7900097 W DE7900097 W DE 7900097W WO 8000510 A1 WO8000510 A1 WO 8000510A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
semiconductor material
semiconductor
layer
monocrystalline
Prior art date
Application number
PCT/DE1979/000097
Other languages
German (de)
French (fr)
Inventor
H Schaumburg
Original Assignee
Philips Patentverwaltung
H Schaumburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Patentverwaltung, H Schaumburg filed Critical Philips Patentverwaltung
Publication of WO1980000510A1 publication Critical patent/WO1980000510A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • C23C14/5813Thermal treatment using lasers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/584Non-reactive treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/023Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing from solids with amorphous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for producing semiconductor components with a polycrystalline or monocrystalline semiconductor material layer on a substrate.
  • the active semiconductor layer is applied to a substrate that is resistant to high temperatures, since, at least in the case of a monocrystalline semiconductor layer, this layer is applied to the substrate at high temperatures and because both the substrate and the further temperature treatments required for the production of semiconductor components , as well as the active semiconductor layer are heated to a high temperature in an oven.
  • the invention has for its object to design the method according to the preamble of claim 1, that the use of high temperature resistant substrates can be dispensed with, ie they can be replaced by less expensive materials.
  • substrates can be used which are not resistant to temperatures that are normally required for the application of, in particular, monocrystalline semiconductor material layers.
  • the method according to the invention also allows several layers of different doping and / or of different semiconductor material to be applied next to one another in a substrate, in which then semiconductor circuit elements with different properties can be produced.
  • a semiconductor material can also be used as the substrate.
  • FIG. 1 shows a substrate 1 made of aluminum doped with approximately 1% silicon, onto which an approximately 2 ⁇ m thick amorphous silicon layer 2 is sputtered.
  • the layer 2 can also be deposited on the substrate 1 from the gas phase at low temperatures.
  • the amorphous silicon layer 2 is then N-doped with arsenic by an ion implantation indicated by the arrow 3.
  • an intensive optical radiation is then directed onto the layer 2, which, thanks to a mask 5, remains limited to the two regions 21, in which the amorphous silicon is then locally heated by the optical radiation that it recrystallizes.
  • the radiation 4 is then moved over the surface of the regions 21 of the amorphous silicon layer 2 such that e.g. Form stripe-shaped, largely monocrystalline areas.
  • semiconductor circuit elements can then be produced by further method steps.
  • thermal treatments may be carried out which only heat the areas locally, since otherwise there is a risk that the parts of the layer 2 which have remained amorphous and thus insulating will likewise convert into polycrystalline or monocrystalline and thus conduct the material .
  • a substrate 1 made of aluminum with approximately 1% silicon is assumed, onto which approximately 2 ⁇ m thick layer 2 of amorphous silicon, which is weakly doped with boron, that is to say P-conducting, is deposited.
  • Arsenic is then introduced into this layer 2, as indicated by the arrow 3, by ion implantation, so that (see FIG. 4) an N + conductive zone 22 is formed on the surface of this layer.
  • the amorphous layer 2 is then converted into a polycrystalline silicon layer by an intensive optical radiation indicated by the arrow 4.
  • zone 22 then forms a PN junction with the rest of layer 2 and all PN junctions together form the solar cell.
  • a thin, radiation-permeable metal layer 6 is then vapor-deposited onto the surface of the layer 2, ie the zone 22.
  • the conductive substrate 1 and the metal layer 6 are then provided with connecting conductors 7.
  • a pulsed or continuously operated laser can, for example, be used as the source of the intensive optical radiation 3 in the exemplary embodiments described here.
  • a locally limited thermal treatment can also be carried out with the aid of a laser if semiconductor circuit elements whose production requires thermal treatment are to be produced in the monocrystalline regions (21, FIG. 2).
  • a material should always be used for the substrate 1 which does not yet form an alloy with the amorphous semiconductor material into a polycrystalline or monocrystalline semiconductor material.

Abstract

To provide onto a substrate of a semi-conductor device a poly or monocrystalline layer of semiconductor material (27) (a polycrystalline layer in the case of solar cells for example), the material is deposited in an amorphous form onto the substrate, vaporised for example, and by means of a thermal treatment by optical radiation (4) applied onto the material, transformed into a poly or monocrystalline layer.

Description

Verfahren zum Herstellen von HalbleiterbauelementenMethod of manufacturing semiconductor devices
Die Erfindung betrifft ein Verfahren zum Herstellen von Halbleiterbauelementen mit einer poly- oder monokristallinen Halbleitermaterialschicht auf einem Substrat.The invention relates to a method for producing semiconductor components with a polycrystalline or monocrystalline semiconductor material layer on a substrate.
Bisher war eine Voraussetzung der Halbleitertechnologie, daß die aktive Halbleiterschicht auf ein hochtemperaturbeständiges Substrat aufgebracht ist, da, zumindest bei einer monokristallinen Halbleiterschicht, diese Schicht bei hohen Temperaturen auf das Substrat aufgebracht wird und da bei den weiteren zur Herstellung von Halbleiterbauelementen erforderlichen Temperaturbehandlungen sowohl das Substrat, als auch die aktive Halbleiterschicht in einem Ofen auf eine hohe Temperatur erhitzt werden.Until now, it was a prerequisite of semiconductor technology that the active semiconductor layer is applied to a substrate that is resistant to high temperatures, since, at least in the case of a monocrystalline semiconductor layer, this layer is applied to the substrate at high temperatures and because both the substrate and the further temperature treatments required for the production of semiconductor components , as well as the active semiconductor layer are heated to a high temperature in an oven.
Dies erforderte bisher als Substrate hochtemperaturbeständige Materialien, wie das Halbleitermaterial selbst oder z.B. Saphir zu verwenden. Dies sind jedoch verhältnismäßig teure Materialien.Until now, this required high-temperature-resistant materials as substrates, such as the semiconductor material itself or e.g. Use sapphire. However, these are relatively expensive materials.
Der Erfindung liegt die Aufgabe zugrunde, das Verfahren nach dem Oberbegriff des Anspruches 1 so auszugestalten, daß auf die Verwendung hochtemperaturfester Substrate verzichtet werden kann, d.h. diese durch kostengünstigere Materialien ersetzt werden können.The invention has for its object to design the method according to the preamble of claim 1, that the use of high temperature resistant substrates can be dispensed with, ie they can be replaced by less expensive materials.
Diese Aufgabe wird erfindungsgemäß durch die im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmale gelöst.This object is achieved by the features specified in the characterizing part of claim 1.
Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.Further developments of the invention result from the subclaims.
Mit dem Verfahren nach der Erfindung wird erreicht, daß Substrate verwendet werden können, die gegenüber Temperaturen, die normalerweise zum Aufbringen von insbesondere monokristallinen Halbleitermaterialschichten erforderlich sind, nicht beständig sind.With the method according to the invention it is achieved that substrates can be used which are not resistant to temperatures that are normally required for the application of, in particular, monocrystalline semiconductor material layers.
Das Verfahren nach der Erfindung gestattet es aber auch, auf ein Substrat nebeneinander mehrere, unterschiedlich dotierte und/oder aus verschiedenem Haϊbleitermaterial bestehende Schichten aufzubringen, in denen dann Halbleiterschaltungselemente unterschied- licher Eigenschaften erzeugt werden können. Dabei kann als Substrat auch ein Halbleitermaterial verwendet werden.However, the method according to the invention also allows several layers of different doping and / or of different semiconductor material to be applied next to one another in a substrate, in which then semiconductor circuit elements with different properties can be produced. A semiconductor material can also be used as the substrate.
Zwei Ausführungsbeispiele der Erfindung werden im folgenden anhand der beigefügten Zeichnung näher erläutert. Es zeigen: Fig. 1+2 Schnitte durch einen Halbleiterkörper mit zwei nebeneinander liegenden, voneinander isolierten monokristallinen Bereichen auf einem Substrat während aufeinanderfolgender Stufen seiner Herstellung und Fig. 3-5 Schnitte durch eine Sonnenzelle mit einer aktiven, polykristallinen Schicht auf einem nichtkristallinen Substrat während aufein anderfolgender Stufen ihrer Herstellung.Two embodiments of the invention are explained below with reference to the accompanying drawings. 1 + 2 sections through a semiconductor body with two adjacent, mutually insulated monocrystalline regions on a substrate during successive stages of its manufacture, and Fig. 3-5 sections through a sun cell with an active, polycrystalline layer on a non-crystalline substrate during to a subsequent stages of their manufacture.
Fig. 1 zeigt ein Substrat 1 aus mit etwa 1 % Silicium dotiertem Aluminium, auf das eine etwa 2 μm starke amorphe Siliciumschicht 2 aufgesputtert ist.1 shows a substrate 1 made of aluminum doped with approximately 1% silicon, onto which an approximately 2 μm thick amorphous silicon layer 2 is sputtered.
Die Schicht 2 kann aber auch bei niedrigen Temperaturen aus der Gasphase auf dem Substrat 1 niedergeschlagen werden.However, the layer 2 can also be deposited on the substrate 1 from the gas phase at low temperatures.
Die amorphe Siliciumschicht 2 wird dann durch eine mit dem Pfeil 3 angedeutete Ionenimplantation mit Arsen N-dotiert.The amorphous silicon layer 2 is then N-doped with arsenic by an ion implantation indicated by the arrow 3.
Wie in Fig. 2 durch die Pfeile 4 angedeutet, wird dann auf die Schicht 2 eine intensive optische Strahlung gerichtet, die dank einer Maske 5 auf die beiden Bereiche 21 begrenzt bleibt, in denen dann durch die optische Strahlung das amorphe Silicium lokal soweit erhitzt wird, daß es rekristallisiert. Wie durch die waagerechten Pfeile angedeutet, wird dann die Strahlung 4 so über die Oberfläche der Bereiche 21 der amorphen Siliciumschicht 2 bewegt, daß sich z.B. streifenförmige, weitgehend monokristalline Bereiche bilden.As indicated in FIG. 2 by the arrows 4, an intensive optical radiation is then directed onto the layer 2, which, thanks to a mask 5, remains limited to the two regions 21, in which the amorphous silicon is then locally heated by the optical radiation that it recrystallizes. As indicated by the horizontal arrows, the radiation 4 is then moved over the surface of the regions 21 of the amorphous silicon layer 2 such that e.g. Form stripe-shaped, largely monocrystalline areas.
In diesen monokristallinen Siliciumbereichen mit einer Dicke von 2 μm auf einem aus Aluminium bestehenden Substrat 1 können dann durch weitere Verfahrensschritte Halbleiterschaltungselemente erzeugt werden. Zur Erzeugung dieser Halbleiterschaltungselemente dürfen dann allerdings nur thermische Behandlungen durchgeführt werden, die die Bereiche nur örtlich erhitzten, da sonst die Gefahr besteht, daß die amorph und damit isolierend gebliebenen Teile der Schicht 2 sich ebenfalls in poly- oder monokristallines und damit leiten des Material umwandeln. Es ist auch möglich, das amorphe Halbleitermaterial in Öffnungen einer auf das Substrat aufgebrachten Isolierschicht niederzuschlagen und dann in weitgehend monokristallines Material umzuwandeln. Dabei, oder bei dem oben anhand der Fig. 1 und 2 beschriebenen Verfahren können selbstverständlich auch mehrere Schichten aus amorphem, ggf. verschiedenartigen, Halbleitermaterial nacheinander aufgebracht und in bestimmten Bereichen in polykristallines oder weitgehend monokristallines Material umgewandelt werden.In these monocrystalline silicon regions with a thickness of 2 μm on a substrate 1 consisting of aluminum, semiconductor circuit elements can then be produced by further method steps. In order to produce these semiconductor circuit elements, however, only thermal treatments may be carried out which only heat the areas locally, since otherwise there is a risk that the parts of the layer 2 which have remained amorphous and thus insulating will likewise convert into polycrystalline or monocrystalline and thus conduct the material . It is also possible to deposit the amorphous semiconductor material in openings in an insulating layer applied to the substrate and then to convert it into largely monocrystalline material. In this case, or in the method described above with reference to FIGS. 1 and 2, it is of course also possible to apply a plurality of layers of amorphous, possibly different, semiconductor material in succession and convert them into polycrystalline or largely monocrystalline material in certain regions.
Anhand der Fig. 3 bis 5 wird jetzt die Herstellung einer Sonnenzelle beschrieben. Auch hier wird von einem Substrat 1 aus Aluminium mit etwa 1 % Silicium ausgegangen, auf das etwa 2 μm starke Schicht 2 aus schwach mit Bor dotiertem, also P-leitendem amorphem Silicium niedergeschlagen wird. In diese Schicht 2 wird dann, wie durch den Pfeil 3 angedeutet, durch Ionenimplantation Arsen eingebracht, so daß (siehe Fig. 4) an der Oberfläche dieser Schicht eine N+leitende Zone 22 entsteht.The production of a solar cell will now be described with reference to FIGS. 3 to 5. Here too, a substrate 1 made of aluminum with approximately 1% silicon is assumed, onto which approximately 2 μm thick layer 2 of amorphous silicon, which is weakly doped with boron, that is to say P-conducting, is deposited. Arsenic is then introduced into this layer 2, as indicated by the arrow 3, by ion implantation, so that (see FIG. 4) an N + conductive zone 22 is formed on the surface of this layer.
Anschließend wird durch eine, durch den Pfeil 4 angedeutete intensive optische Bestrahlung die amorphe Schicht 2 in eine polykristalline Siliciumschicht umgewandelt. In den einzelnen, in der Fig. 4 übertrieben groß angedeuteten Kristallen dieser polykristallinen Schicht bildet dann die Zone 22 mit dem Rest der Schicht 2 jeweils einen PN-Übergang und alle PN-Übergänge zusammen die Sonnenzelle. Dazu ist dann, wie in Fig. 5 dargestellt, auf die Oberfläche der Schicht 2, d.h. auf die Zone 22, noch eine dünne, strahlungsdurchlässige Metallschicht 6 zur Kontaktierung aufgedampft. Das leitende Substrat 1 und die Metallschicht 6 werden dann noch mit Anschlußleitern 7 versehen. Als Quelle der intensiven optischen Strahlung 3 in den hier beschriebenen Ausführungsbeispielen kann beispielsweise ein gepulst oder kontinuierlich betriebener Laser verwendet werden.The amorphous layer 2 is then converted into a polycrystalline silicon layer by an intensive optical radiation indicated by the arrow 4. In the individual crystals of this polycrystalline layer, which are indicated in an exaggerated manner in FIG. 4, zone 22 then forms a PN junction with the rest of layer 2 and all PN junctions together form the solar cell. For this purpose, as shown in FIG. 5, a thin, radiation-permeable metal layer 6 is then vapor-deposited onto the surface of the layer 2, ie the zone 22. The conductive substrate 1 and the metal layer 6 are then provided with connecting conductors 7. A pulsed or continuously operated laser can, for example, be used as the source of the intensive optical radiation 3 in the exemplary embodiments described here.
Mit Hilfe eines Lasers kann auch eine örtlich begrenzte thermische Behandlung durchgeführt werden, wenn in den monokristallinen Bereichen (21, Fig. 2) des ersten Ausführungsbeispiels Halbleiterschaltungselemente erzeugt werden sollen, deren Herstellung eine thermische Behandlung erfordert.A locally limited thermal treatment can also be carried out with the aid of a laser if semiconductor circuit elements whose production requires thermal treatment are to be produced in the monocrystalline regions (21, FIG. 2).
Für das Substrat 1 sollte stets ein Material verwendet werden, das bei der Umwandlungstemperatur des amorphen Halbleitermaterials in ein poly- oder monokristallines Halbleitermaterial mit diesem noch keine Legierung bildet. A material should always be used for the substrate 1 which does not yet form an alloy with the amorphous semiconductor material into a polycrystalline or monocrystalline semiconductor material.

Claims

Patentansprüche: Claims:
1. Verfahren zum Herstellen von Halbleiterbauelementen mit einer poly- oder monokristallinen Halbleitermateria lschicht auf einem Substrat, dadurch gekennzeichnet, daß das Halbleitermaterial in amorpher Form auf das Substrat aufgebracht und durch eine thermische Behandlung mit Hilfe einer auf das Material gerichteten intensiven optischen Strahlung in poly- oder monokristallines Material umgewandelt wird.1. A method for producing semiconductor components with a polycrystalline or monocrystalline semiconductor material layer on a substrate, characterized in that the semiconductor material is applied in amorphous form to the substrate and by thermal treatment with the aid of an intense optical radiation directed onto the material in poly- or monocrystalline material is converted.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das Halbleitermaterial auf das Substrat aufge sputtert wird.2. The method according to claim 1, characterized in that the semiconductor material is sputtered onto the substrate.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein Substrat aus einem halbleitenden Material verwendet wird.3. The method according to claim 1 or 2, characterized in that a substrate made of a semiconducting material is used.
4. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, daß auf das Substrat nebeneinander mehrere, unterschiedlich dotierte und/oder aus verschiedenem4. The method according to claim 1 or 3, characterized in that on the substrate side by side several, differently doped and / or from different
Halbleitermaterial bestehende Schichtenaufgebracht werden.Layers of semiconductor material are applied.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekenn- zeichnet, daß das Halbleitermaterial in Öffnungen einer auf das Substrat aufgebrachten Isolierschicht niedergeschlagen wird.5. The method according to claim 3 or 4, characterized records that the semiconductor material is deposited in openings of an insulating layer applied to the substrate.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehrere Schichten übereinander aufgebracht werden.6. The method according to any one of the preceding claims, characterized in that several layers are applied one above the other.
7. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß ein Substrat aus einem Material verwendet wird, das bei der Umwandlungstemperatur mit dem Halbleitermaterial noch keine Legierung bildet.7. The method according to claim 1, characterized in that a substrate made of a material is used which does not yet form an alloy with the semiconductor material at the transition temperature.
8. Anwendung des Verfahrens nach Anspruch 7 zur Herstellung einer Sonnenzelle.8. Application of the method according to claim 7 for the production of a solar cell.
9. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß als intensive optische Strahlung die Strahlung eines Lasers verwendet wird.9. The method according to any one of claims 1 to 7, characterized in that the radiation from a laser is used as intense optical radiation.
10. Verfahren nach einem der vorangehenden Ansprüche zum Erzeugen einer weitgehend monokristallinen Halbleiterschicht auf einem Substrat, dadurch gekennzeichnet, daß zunächst durch die optische Strahlurg das amorphe Halbleitermaterial lokal soweit erhitzt wird, daß es rekristallisiert und dann die Strahlung so über die Oberfläche des Halbleitermaterials bewegt wird, daß sich z.B. streifenförmige, weitgehend monokristalline Bereiche bilden. 10. The method according to any one of the preceding claims for producing a largely monocrystalline semiconductor layer on a substrate, characterized in that first the amorphous semiconductor material is locally heated by the optical radiation so far that it recrystallizes and then the radiation is moved over the surface of the semiconductor material that, for example Form stripe-shaped, largely monocrystalline areas.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß in diesen Bereichen Halbleiterschaltungselemente erzeugt werden.11. The method according to claim 10, characterized in that semiconductor circuit elements are produced in these areas.
12. Verfahren nach einem der vorangehenden Ansprüche, dadurch gek ennzeichnet, daß als Halbleitermaterial Silicium verwendet wird. 12. The method according to any one of the preceding claims, characterized in that silicon is used as the semiconductor material.
PCT/DE1979/000097 1978-08-30 1979-08-29 Method for producing semi-conductor devices WO1980000510A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2837750 1978-08-30
DE19782837750 DE2837750A1 (en) 1978-08-30 1978-08-30 METHOD FOR PRODUCING SEMICONDUCTOR COMPONENTS

Publications (1)

Publication Number Publication Date
WO1980000510A1 true WO1980000510A1 (en) 1980-03-20

Family

ID=6048211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1979/000097 WO1980000510A1 (en) 1978-08-30 1979-08-29 Method for producing semi-conductor devices

Country Status (3)

Country Link
EP (1) EP0020395A1 (en)
DE (1) DE2837750A1 (en)
WO (1) WO1980000510A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0015677A1 (en) * 1979-02-28 1980-09-17 Vlsi Technology Research Association Method of producing semiconductor devices
EP0035561A1 (en) * 1979-09-13 1981-09-16 Massachusetts Inst Technology Improved method of crystallizing amorphous material with a moving energy beam.
EP0037261A1 (en) * 1980-03-27 1981-10-07 Fujitsu Limited A method of manufacturing a semiconductor device, and a device, for example a BOMIS FET, so manufactured
EP0045551A1 (en) * 1980-08-05 1982-02-10 L'Etat belge, représenté par le Secrétaire Général des Services de la Programmation de la Politique Scientifique Process for the manufacture of polycrystalline films of semiconductors formed by compounds or elements, and films thus obtained
CN106876270A (en) * 2015-12-11 2017-06-20 英飞凌科技股份有限公司 Method for forming semiconductor devices

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381201A (en) * 1980-03-11 1983-04-26 Fujitsu Limited Method for production of semiconductor devices
DE3816256A1 (en) * 1988-05-11 1989-11-23 Siemens Ag Method for preparing a monocrystalline layer, consisting of a first semiconducting material, on a substrate composed of a different-type second semiconducting material, and use of the arrangement for fabricating optoelectronic integrated circuits

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1933690A1 (en) * 1968-10-18 1970-04-30 Ibm Process for the production of single crystals on carrier substrates
FR2212177A1 (en) * 1972-12-29 1974-07-26 Ibm
US3853648A (en) * 1972-08-14 1974-12-10 Material Sciences Corp Process for forming a metal oxide pattern
US4059461A (en) * 1975-12-10 1977-11-22 Massachusetts Institute Of Technology Method for improving the crystallinity of semiconductor films by laser beam scanning and the products thereof
FR2390004A1 (en) * 1977-05-04 1978-12-01 Commissariat Energie Atomique Semiconductors, such as bipolar transistors - with amorphous layers locally crystallised by e.g. laser to reduce number of mfg. operations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1933690A1 (en) * 1968-10-18 1970-04-30 Ibm Process for the production of single crystals on carrier substrates
US3853648A (en) * 1972-08-14 1974-12-10 Material Sciences Corp Process for forming a metal oxide pattern
FR2212177A1 (en) * 1972-12-29 1974-07-26 Ibm
US4059461A (en) * 1975-12-10 1977-11-22 Massachusetts Institute Of Technology Method for improving the crystallinity of semiconductor films by laser beam scanning and the products thereof
FR2390004A1 (en) * 1977-05-04 1978-12-01 Commissariat Energie Atomique Semiconductors, such as bipolar transistors - with amorphous layers locally crystallised by e.g. laser to reduce number of mfg. operations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IBM Technical Disclosure Bulletin, Band 19, Nr. 11, herausgegeben April 1977, Armonk New York (US) P.S. HO: "Multibeam method for growing large-grain semiconductor films", siehe Seiten 4438-4440. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0015677A1 (en) * 1979-02-28 1980-09-17 Vlsi Technology Research Association Method of producing semiconductor devices
EP0035561A1 (en) * 1979-09-13 1981-09-16 Massachusetts Inst Technology Improved method of crystallizing amorphous material with a moving energy beam.
EP0035561A4 (en) * 1979-09-13 1984-08-08 Massachusetts Inst Technology Improved method of crystallizing amorphous material with a moving energy beam.
EP0037261A1 (en) * 1980-03-27 1981-10-07 Fujitsu Limited A method of manufacturing a semiconductor device, and a device, for example a BOMIS FET, so manufactured
EP0045551A1 (en) * 1980-08-05 1982-02-10 L'Etat belge, représenté par le Secrétaire Général des Services de la Programmation de la Politique Scientifique Process for the manufacture of polycrystalline films of semiconductors formed by compounds or elements, and films thus obtained
CN106876270A (en) * 2015-12-11 2017-06-20 英飞凌科技股份有限公司 Method for forming semiconductor devices
CN106876270B (en) * 2015-12-11 2020-06-30 英飞凌科技股份有限公司 Method for forming semiconductor device

Also Published As

Publication number Publication date
EP0020395A1 (en) 1981-01-07
DE2837750A1 (en) 1980-03-13

Similar Documents

Publication Publication Date Title
DE1933690C3 (en) Method for producing an at least regionally monocrystalline film on a substrate
DE2820824C2 (en)
DE3541587C2 (en) Process for the production of a thin semiconductor film
DE2917564A1 (en) Continuous production of solar cells - by depositing small grain semiconductor material and recrystallisation
DE3015706A1 (en) SOLAR CELL WITH SCHOTTKY BARRIER
DE2046833A1 (en) Process for the production of isolated semiconductor zones
DE4315959A1 (en) Electronic device with microstructured electrodes and method for producing such a device
DE3240866A1 (en) SEMICONDUCTOR COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
DE2618445A1 (en) METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE
DE4122845C2 (en) Semiconductor photovoltaic device and manufacturing method therefor
DE3402629A1 (en) METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE
EP0142114B1 (en) Method of manufacturing a solar cell
EP0005185A1 (en) Method for simultaneously forming Schottky-barrier diodes and ohmic contacts on doped semiconductor regions
DE2911484C2 (en) Metal-insulator-semiconductor component
EP0334111A1 (en) Method for the integrated series connection of thick film solar cells, and use of the method in the production of a tandem solar cell
DE2340142A1 (en) METHOD FOR MANUFACTURING SEMICONDUCTOR ARRANGEMENTS
DE2448478A1 (en) PROCESS FOR MANUFACTURING PN SEMICONDUCTOR TRANSITIONS
DE3815512A1 (en) Solar cell with reduced effective recombination rate of the charge carriers
WO1980000510A1 (en) Method for producing semi-conductor devices
DE3230569A1 (en) METHOD FOR PRODUCING A VERTICAL CHANNEL TRANSISTOR
DE2649935A1 (en) REFERENCE DIODE
DE3540452C2 (en) Method of manufacturing a thin film transistor
DE1696607C3 (en) Process for producing an insulating layer consisting essentially of silicon and nitrogen
DE2162219A1 (en) Method for producing a field effect transistor
DE2536174C3 (en) Process for producing polycrystalline silicon layers for semiconductor components

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): GB JP US

AL Designated countries for regional patents

Designated state(s): FR